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The objective of this research was to use an Artificial Neural Network Multilayer 

Perceptron (ANN-MLP) for geological modeling of categorical variables, using a 

database of 5,654 samples obtained from a diamond drilling campaign in a mine in 

northern Peru. The ANN-PML architecture consisted of an input layer of 5 neurons, 

three hidden layers with 100, 50 and 20 neurons respectively, and an output layer with 

5 neurons, optimized with the Adam algorithm. Variables analyzed included geographic 

coordinates (east, north and elevation), copper and molybdenum concentrations, and 

rock type classification. Five different geological models were generated within a 

20×20×20 meter three-dimensional block model, where the estimated volumes for 

geological models 1 to 5 were 795.1, 4506.7, 1176.1, 333.3 and 24.7 million of tons, 

respectively. The results were validated by cross-validation, evidencing an efficiency 

of ANN-MLP with Recall metrics of 0.56, precision of 0.66 and an average F1-Score 

of 0.58, demonstrating the efficiency and precision of ANN-MLP in geological 

classification. This research highlights the integration of artificial intelligence in 

geology especially in geological modeling. 
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1. INTRODUCTION

In the mining field, geostatistics plays a crucial role in the 

identification and estimation of mineral resources, as well as 

in the definition of essential rock characteristics [1]. In this 

context, categorical geological models stand out for their 

importance by directly correlating with metallurgical 

processes and determining plant dispatch strategies in mine 

planning [2]. Although various neural network techniques, 

such as deep neural networks [3] and graphical networks [4], 

have been explored in this field, the application of Multi-Layer 

Perceptron Artificial Neural Networks (ANN-MLP) emerges 

as a significant innovation. The ANN-MLP [5] is 

distinguished by its ability to efficiently process and classify 

large volumes of geological data, surpassing conventional 

methods and playing a crucial role in optimizing mining 

planning and operation. 

The construction of three-dimensional (3D) geologic 

models is essential for the management, visual representation, 

amalgamation, and deduction of findings from geologic 

studies [6-9]. Its core lies in the generation of 3D 

representations from geological measurements and logs, with 

the aim of understanding the spatial arrangement, depositional 

connections, and nature of the stony subsurface [10-13]. These 

3D models are vital in sectors such as geological context 

analysis, deep mining prospecting, geological disaster 

mitigation, and urban subway area planning [14-19]. 

Fundamentally, geological modeling focuses on 

extrapolations and estimates related to the geological 

particularities of the study area, based on a limited set of 

information [20]. Usually, such modeling perceives geological 

entities as discrete variables, such as rock types or layers, 

making the modeling task align with a categorization activity 

based on such variables [21]. At its core, machine learning, a 

branch of artificial intelligence, aspires to acquire knowledge 

from existing data to, based on this, develop estimates and 

insights into unexplored scenarios [22, 23]. This congruence 

in objectives has led to machine learning playing a significant 

role in the construction of three-dimensional geological 

models. 

Recently, there has been a surge of interest in three-

dimensional geological modeling supported by machine 

learning techniques. Multiple approaches have been 

developed ranging from classical techniques, such as support 

vector machines (SVM) [24], decision trees (DT) [25], and 

random forests (RF) [26], to advanced neural structures such 
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as depth-first neural networks (DFNN) [27], convolutional 

(CNN) [28], recurrent (RNN) [29], graph (GNN) [30], and 

generative adversarial (GAN) [31]. 

As for the prominent tools in this field, Artificial Neural 

Networks (ANNs), especially the multilayer perceptron model, 

have established themselves as central methods, standing out 

for their ability to emulate biological neural processing and for 

their ability to interconnect elements via synaptic weights [32]. 

Although various machine learning techniques have been 

explored in geological modeling, there is a gap in the 

application of ANN-MLP specifically in the geological 

modeling of categorical variables. This study aimed to fill this 

gap, demonstrating the efficacy of the ANN-MLP in the 

accurate classification of rock types and in enhancing three-

dimensional geological modeling. 

In this article, the organization of the content is arranged as 

follows: Section 2 sets out in detail the methodology adopted, 

elucidating the underlying fundamentals of the multilayer 

artificial neural network and its specific suitability for 

geological modeling. Subsequently, in Section 3, this 

methodology is contextualized and applied to a specific case 

study, providing a pragmatic demonstration of the versatility 

and applicability of this technique. We conclude in Section 4, 

where the main conclusions drawn from this work are outlined, 

highlighting the contributions and advances achieved, as well 

as proposing directions for further research. 

2. MATERIALS AND METHODS

The collection of geological data began with obtaining 

diamond drilling records, rock samples, and other relevant 

reports that evidence the categorical variables of interest. A 

rigorous selection process was implemented for these records, 

prioritizing locations with significant geological diversity and 

high mineral potential, typical of northern Peru. This ensured 

that the dataset reflected a wide range of geological contexts, 

essential for the efficacy of the ANN-MLP model. After 

collection, a data cleansing process was carried out, focusing 

on the identification and removal of missing values or 

inconsistencies, thus ensuring the quality and accuracy of the 

processed information. 

Once the data were cleaned, categorical variables like rock 

type were transformed into numerical representations using 

techniques such as one-hot encoding, to convert categorical 

variables like rock types into binary numerical formats. This 

technique is crucial for enabling the neural network to 

efficiently process the data [33]. In addition, other 

transformation techniques were applied, such as the 

normalization of continuous variables, to standardize the scale 

of the data and improve the accuracy of the model [34]. Table 

1 shows the database used, which includes data such as 

coordinates (east, north, and elevation), grades of copper (Cu) 

and molybdenum (Mo), and the type of rock. The encoding of 

rock types was done by assigning numerical values to each 

category, such as Magnetite Skarn (1), Granodiorite (2), 

Dacite Porphyry (3), Limestone Sediments (4), and Catalina 

Volcanics (5), providing a clear and systematic approach for 

subsequent analysis. 

The neural network design focused on determining an 

optimal architecture. A specific number of hidden layers and 

neurons per layer was established based on the characteristics 

and complexity of the data. Tanh activation functions were 

chosen for the hidden layers, while for the output layer, due to 

the multi-category nature of the problem, the "softmax" 

function was chosen. The initialization of weights was 

performed considering strategies that favored convergence 

during training [35]. Within multilayer neural networks, the 

forward propagation of a neuron is generally described by 

Dowd and Pardo-Igúzquiza [36], and Henao et al. [37]: 

z(i) = ω(i)Tx(i) + b(i) (1) 

a(i) = σ(z(i)) (2) 

where, 𝜔(𝑖) are the weights, 𝑥(𝑖) in the input, 𝑏(𝑖) is the bias,

and 𝜎 is the activation function. 

Prior to training, the data set was divided into three subsets: 

training, validation, and testing, ensuring adequate 

representation of all classes in each subset. The optimizer 

selected for the training process was "adam", accompanied by 

a learning rate appropriate to the behavior of the loss function. 

The cost function "categorical_crossentropy" was used to 

guide the training. During this process, the validation set was 

monitored using techniques such as "early stopping" to 

prevent overfitting. Training is performed by iteratively 

adjusting the weights and biases using the backpropagation 

algorithm [38]. 

The cost function J is optimized with respect to w and b 

using the optimizer “adam” the iterative process is described 

by: 

wnew
(i)

= wold
(i)

− α
∂J

∂w(i)
(3) 

bnew
(i)

= bold
(i)

− α
∂J

∂b(i)
(4) 

where, α is the learning rate. 

Once the neural network was trained, its performance on the 

test set was evaluated using accuracy, completeness, and F1-

score metrics. Additionally, a confusion matrix was made to 

visualize and analyze the errors and successes of the model in 

each of the geological categories [39, 40].

Table 1. Database to be worked 

X Y Z Cu Mo Rock 

374826.686 8716699.217 4902.138 0.034 0.009 2 

374826.686 8716699.217 4887.138 0.018 0.017 3 

374826.686 8716699.217 4872.138 0.007 0.007 3 

... ... ... ... ... ... 

376212.860 8717600.669 4279.513 0.398 0.005 2 

376223.081 8717595.419 4269.871 0.421 0.003 2 

376228.430 8717592.671 4264.825 0.490 0.005 2 
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Table 2. Hyperparameters of the artificial neural network 

 

Hyperparameter Value Hyperparameter Value 

Input layers 1 Input neurons 5 

Hidden layers 3 Hidden neurons 1 layer 20 

Output layers 1 Hidden neurons 2 layer 15 

Output neurons 5 Hidden neurons 3 layer 10 

Hidden layers 

activation function 
Tanh 

Output layer activation 

function 
Softmax 

Optimizer Adam Verbose 1 

Epochs 1000 Batch size 64 

 

 
 

Figure 1. Multilayer Artificial Neural Network (MLP) 

 

The architecture of the Multi-Layer Perceptron Artificial 

Neural Network (ANN-MLP) used in this study consists of an 

input layer with 5 neurons, followed by three hidden layers 

with 20, 15, and 10 neurons respectively. The Tanh activation 

function was used in the hidden layers, while the softmax 

function was employed in the output layer. The Adam 

optimizer was utilized for network optimization during the 

training process. The network was trained with a total of 1000 

epochs and a batch size of 64, and training was halted when 

the network achieved optimal results as shown in Table 2. 

The graphical representation of the neural network used in 

this research is shown in Figure 1. 

 

 

3. RESULTS 

 

3.1 Exploratory data analysis 

 

Table 3 shows the statistics of the database to be worked, 

where the total amount, mean, standard deviation (Std), 

minimum, quartile 1 (Q1), quartile 2 (Q2), quartile 3 (Q3) and 

maximum of the variables present in the database are shown. 

Likewise, there is a categorical variable which is the type of 

rock (Rock) whose values are minimum 1 and maximum 5. 

Figure 2 shows the East-North view of the diamond drill holes 

with respect to copper grade, molybdenum grade and rock type. 
 

Table 3. Statistics of the diamond drill holes database 
 

Description Easting (x) Northing (y) Elevation (z) Copper (Cu) Molybdenum (Mo) Rock Type 

Quantity 5,654 5,654 5,654 5,654 5,654 5,654 

Mean 375,606.25 8,717,015.68 4,473.54 0.43 0.015 2.16 

Std 307.24 393.54 169.54 0.29 0.017 0.78 

Minimum 374,821.06 8,716,003.08 4,050.35 0.002 0.001 1 

Q1 375,393.42 8,716,738.40 4,340.07 0.227 0.004 2 

Q2 375,602.29 8,716,995.80 4,462.82 0.378 0.01 2 

Q3 375,824.99 8,717,271.73 4,607.49 0.578 0.02 3 

Maximum 376,414.81 8,718,153.15 4,902.14 2.95 0.23 5 

 
(a) Diamond drill holes with respect to copper grade 

 
(b) Diamond drill holes with respect to molybdenum grade 

 
(c) Diamond drill holes with respect to rock type 

 

Figure 2. East-North view of the diamond drill holes 

 

Table 4. Statistics of the rock type with respect to copper 

grade 

 
Rock Count Mean Std Min Max 

Magnetite Skarn 906.0 0.36 0.28 0.002 1.87 

Granodiorite 3317.0 0.48 0.31 0.003 2.95 

Dacite Porphyry 1079.0 0.36 0.23 0.003 1.60 

Calcareous Sediments 307.0 0.35 0.21 0.051 1.89 

Catalina Volcanics 45.0 0.29 0.17 0.038 0.57 
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(a) Copper grade and frequency with respect to rock type

(b) Molybdenum grade and frequency with respect to rock type

Figure 3. Comparison of ore grade with respect to rock type frequency 

(a) Copper grade distribution

(b) Molybdenum grade distribution

Figure 4. Ore grade distribution 
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Figure 3 shows the comparison of ore grade and frequency 

with respect to rock type, where it can be seen that for copper 

grade the maximum grade is found in lithology Granodiorite 

and for molybdenum the highest grade is located in lithology 

Calcareous Sediments, likewise, the highest amount of data in 

rock type is located in lithology Granodiorite for copper grade 

and molybdenum grade. 

Table 4 shows the statistics of the rock type with respect to 

the copper grade. In which, for rock Magnetite Skarn there is 

a total of 906.0 data and the maximum copper grade is 1.873%, 

in rock Granodiorite there is a total of 3317.0 data with a 

maximum copper grade of 2.949%, in rock Dacite Porphyry 

there is a total of 1079.0 data with a maximum copper grade 

of 1.600%, rock Calcareous Sediments has a total of 307.0 data 

with a maximum copper grade of 1.894% and rock Catalina 

Volcanics has a total of 45.0 data with a maximum copper 

grade of 0.570%. 

Figure 4 shows the distribution of copper and molybdenum 

grades, it is observed that copper grades have a mean of 0.43% 

and its grades are distributed in higher amounts in the ranges 

of 0.0% to 1.0%. Molybdenum grades have a mean of 0.02% 

and are distributed in greater quantities in the range of 0.0% to 

0.05%. Figure 5 shows a graph of copper grade probability 

with respect to rock type, where it is observed that the highest 

probability of higher copper grades is in rock type 

Granodiorite and the lowest copper grades are found in rock 

type Catalina Volcanics. 

Figure 6 shows a scatter graph showing the correlation 

between the variables of interest present in the database. It is 

observed that the correlation between the copper grade and the 

molybdenum grade is 0.14 (14%), which indicates that it is a 

very low correlation. 

Figure 5. Probability graph of copper grades with respect to rock type 

3.2 Neural network application 

Figure 7 displays the performance evolution of the Multi-

Layer Perceptron Artificial Neural Network (ANN-MLP) 

model throughout the training epochs. A consistent decrease 

in the loss function is observed until it stabilizes around 0.54, 

while the categorical accuracy reaches a peak of 0.79. 

Regarding validation, the validation loss shows a decreasing 

trend until a minimum of 0.83, and the validation categorical 

accuracy remains at 0.66. These results indicate that the model 

improves its predictive capability with each epoch. 

Figure 8 showcases the confusion matrix for the test data, 

revealing high accuracy in the classification of Geological 

Model 2, with 600 instances accurately predicted out of 820. 

Similarly, Class 1 achieved 69 correct predictions out of 114, 

while Class 3 recorded 85 correct predictions out of 154. The 

other classes also exhibit variations in classification accuracy. 

Table 5 presents the classification metrics for each class 

generated in the geological modeling. It is observed that Class 

5 achieved the highest accuracy in classification at 78%, 

followed by Class 2 with 73%. Furthermore, the highest recall 

was observed for Class 2 at 87%, indicating the model's adept 

ability to correctly identify instances within the class. 
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Figure 6. copper and molybdenum grades scatter plot 

Figure 7. Metrics register 

Figure 8. Test data confusion matrix 
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Table 5. Classification metrics for each geological modeling 

class 

 
Class Accuracy Recall F1-Score Support 

1 0.61 0.41 0.49 170 

2 0.73 0.87 0.80 686 

3 0.55 0.42 0.48 203 

4 0.50 0.28 0.36 60 

5 0.78 0.58 0.67 12 

 

3.3 Evaluation of the neural network trough cross 

validation 

 

Table 6 provides an overview of the average cross-

validation metrics for a neural network model applied in 

geological classification. The table indicates an accuracy of 

0.66, suggesting that the model correctly predicts 66% of the 

instances. The recall rate of 0.56 implies that the model can 

identify 56% of the relevant instances across all classes. The 

F1 score of 0.58 reflects a balanced measure of model 

precision and recall, indicating a moderate level of prediction 

accuracy. 

 

Table 6. Average cross-validation metrics 

 
Metrics Value 

Accuracy 0.66 

Recall 0.56 

F1-Sore 0.58 

 

Figure 9 shows the ROC (receiver operating characteristic) 

curve demonstrating the model's ability to distinguish each 

class from all others. The micro-averaged ROC curve, with an 

area of 0.92, highlights the overall high classification ability 

of the model. Meanwhile, individual class curves reveal 

specific variations in sensitivity and specificity, indicating 

how well each class is identified relative to the rest. 

 

 
 

Figure 9. ROC curve 

 

When comparing the accuracy of the Multilayer Perceptron 

Artificial Neural Network model with prior studies, it is noted 

that while it does not surpass the Deep Neural Network's 

performance at 84.4%, it does show considerable 

improvement over Naïve Bayes at 54% and aligns with 

Support Vector Machines at 65%. Moreover, its accuracy 

approaches that of Random Forest at 76%, underscoring the 

competitiveness of this method in geological modeling as 

shown in Table 7. 

 

Table 7. Comparison of results with other studies 

 
Method Accuracy 

Deep Neural Network [3] 84.4 

Naïve Bayes [41] 54.0 

Support Vector Machines [41] 65.0 

Random Forest [41] 76.0 

Multilayer Perceptron Artificial Neural Network  66.0 

3.4 Results of geological models generated with the ANN-

MLP 

 

In order to perform the geological modeling, it is necessary 

to create a block model. Table 8 shows the dimensions of the 

block model, where the origin and maximum coordinates of 

east, north and elevation are included, the block size was 20.0 

meters, generating a total of 80 blocks in the X coordinate, 108 

blocks in the Y coordinate, and 43 blocks in the Z coordinate. 

 

Table 8. Dimensions of the block model 

 

Coordinates Origin Maximum Block Size 
N of  

Blocks 

East (X) 374820.0 376420.0 20.0 80 

North (Y) 8716000.0 8718160.0 20.0 108 

Elevation (Z) 4050.0 4910.0 20.0 43 
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An estimated total volume of 8000 m³ was calculated. Using 

a density of 2.30g/cm³, the total tonnage of material (either ore 

or waste) within the block model amounts to approximately 

6835.968 million tons, with each block contributing 18400 

tons. Table 9 outlines the tonnage of material for each 

geological model, with class 2 having the largest amount. 

Figure 10 presents the visualization of the highlighted 

geological model of the neural network in a general isometric 

view with the block model, where the five types of geology 

present are observed. 

Figure 11 shows separate representations of the geological 

modeling for each specific geological category, with geology 

2 having the largest number of blocks present, followed by 

geology 1, 3, 4 and 5. 

 

Table 9. Material tonnage for each geological model 

 
Geological 

Class 

Tons per 

Block 

Number of 

Blocks 

Mton 

(Material) 

1 18400 43212 795.1 

2 18400 244929 4506.7 

3 18400 63919 1176.1 

4 18400 18115 333.3 

5 18400 1345 24.7 

 

 
 

Figure 10. Geologic modeling 

 

 
 

Figure 11. Block model with each type of geological model 
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4. CONCLUSIONS 

 

This study employs a Multi-Layer Perceptron Artificial 

Neural Network (ANN-MLP) in geological modeling, 

contributing notable advancements to the field. The 

performance of the ANN-MLP, with an average accuracy of 

66% and an F1-Score of 58%, demonstrates its robustness in 

classifying geological variables. 

However, the study is not without limitations. The potential 

for data biases and the risk of model overfitting necessitates 

further investigation. Future research should aim at enhancing 

data diversity, refining the model to prevent overfitting, and 

incorporating a broader spectrum of geological variables. 

The practical applications of this research are significant, 

offering a scalable and efficient approach to geological 

modeling. This can lead to more accurate resource estimations 

and potentially transform mining operations, underscoring the 

importance of artificial intelligence in advancing geological 

sciences. 
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NOMENCLATURE 

z(i) Encoded representation 

σ Activation function 

ω(i)T Weights 

b(i) Bias 

x(i) Input 

𝛼 Learning rate 

MLP Multilayer Artificial Neural Network 

EDA Exploratory Data Analysis 

Cu Copper grade 

Mo Molybdenum grade 

Q1, Q2, Q3 Quartiles statistics 

Mton Millions of tons 
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