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ABSTRACT 

 
Thin steel plates - with or without cutouts - are structural components largely used in several engineering applications as 
buildings, bridges, ships, airplanes and automobiles. However, if an axial compressive load is imposed to these panels an 
undesired instability phenomenon can occur: buckling. At a certain load magnitude the limit stress is reached and the plate 
suffers lateral displacements (out of plane) indicating the buckling occurrence. In plates an elastic buckling or an elasto-
plastic buckling can occur, depending on dimensional, constructive or operational aspects. Therefore, in the present work, 
the Constructal Design method was adopted to investigate the influence of the type and shape of the cutout in the plate 
buckling. To do so, by means the Finite Element Method (FEM), computational models were developed to simulate the 
elastic (linear) and elasto-plastic (nonlinear) plate buckling. Square and rectangular thin steel plates, simply supported in its 
four edges, with a centered cutout, were analyzed, being the objective function to maximize the buckling limit stress, 
avoiding the plate buckling occurrence. The square and rectangular plates have a ratio H/L (ratio between height and length 
of the plate) of 0.5 and 1.0, respectively. A value of 0.2 for the cutout volume fraction (ratio between the cutout volume and 
the total plate volume) was adopted for different types of cutout: diamond, longitudinal hexagonal, transversal hexagonal, 
elliptical, and rectangular. The cutout shape variations were produced by the H0/L0 degree of freedom (which relates the 
characteristic dimensions of the cutout). The results showed that the cutout shape variation has a fundamental influence in 
the plate buckling behavior, determining if the buckling is elastic or elasto-plastic, allowing the definition of a buckling 
stress limit curve for each studied cutout type. In addition, it was observed that the Constructal Design method conduct to 
the definition of optimal geometries, reaching buckling stress limit improvements around 100%. 
 

Keywords: Constructal design, Thin steel plate with cutout, Linear elastic buckling, Nonlinear elasto-plastic buckling, 
computational modeling. 
 
 

 

1. INTRODUCTION 

Thin steel plate elements constitute very important 
structural components in many structures, such as ship decks 
and hulls, dock gates, plate and box girders of bridges, 

off shore structures, and structures used in aerospace 

industries. In many cases, these plates are subjected to axial 
compressive forces, which make them prone to instability or 
buckling. If the plate is slender, the buckling is elastic. 
However, if the plate is sturdy, it buckles in the plastic range 
causing the so-called inelastic (or elasto-plastic) buckling. It is 
very likely in many cases to have holes in the plate elements 
for inspection, maintenance, and service purposes, and the 
size of these holes could be significant. In such cases, the 
presence of these holes redistributes the membrane stresses in 
the plate and may cause significant reduction in its strength in  

addition to changing its buckling characteristics, El-Sawy et 
al. [1]. 

The buckling of a plate involves two planes, and two 
boundary conditions on each edge of the plate. The basic 
difference between a column and a plate lies in the buckling 
characteristics. A column, once it buckles, cannot resist any 
additional axial load. Thus, the critical load of a column is 
also its failure load. On the other hand, a plate, since it is 
invariably supported at the edges (e.g., interconnection 
between two structural plates, and web connected to flanges), 
continues to resist the additional axial load even after the 
primary buckling load. Thus, for a plate, the post-buckling 
load is much higher than the elastic buckling load. When 
designing structural members, this fact is largely exploited to 
minimize the weight of the structure, Iyengar [2]. 

Moreover, in several practical applications it is necessary to 
provide cutouts in plate structures to allow access for services 
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or inspection and even aesthetics purposes, as well as to 
reduce the structure self-weight. The presence of a hole in a 
plate panel changes the stress distribution within the member, 
alters its elastic buckling and post-buckling characteristics and 
generally reduces its ultimate load carrying capacity. The 
performance of a plate containing an opening is influenced by 
the nature of the applied stress (e.g. compressive, tensile, 
shear, etc.), besides the shape, size and location of the hole, 
Narayanan [3]. 

Among the elastic buckling studies category, Sharkeley & 
Brown [4], studied the effect of eccentricity on square plates 
with square holes. They concluded that the center of a small 
square hole should be located away from the center of the 
structural element, but the center of a large square hole should 
be located on the center of the structural element. El-Sawy & 
Nazmy [5], provided a comprehensive discussion on the 
elastic buckling of thin rectangular perforated plates for 
various hole shapes, sizes, and locations. El-Sawy & Martini 
[6] used the finite element method to determine the elastic 
buckling stresses of biaxial loaded perforated rectangular 
plates with longitudinal axis located circular holes. 
Alternatively, Moen & Schafer [7] developed, validated and 
summarized analytical expressions for estimating the influence 
of single or multiple holes on the elastic buckling critical 
stress of plates in bending or compression. In Rocha et al. [8, 
9] and Isoldi et al. [10], the Constructal Design method was 
employed to determine the best shape and size of centered 
cutout in a plate, aiming to maximize the critical buckling 
load. 

In the group of studies dedicated to the problem of elasto-
plastic buckling, Narayanan & Chow [11] developed design 
charts based on ultimate capacity of uniaxial compressed 
perforated plates with square and circular openings. Azizan & 
Roberts [12], generated interaction curves for ultimate 
strength of square plates with central square and circular holes 
subjected to uniaxial compression, biaxial compression and 
pure shear. Yettram & Brown [13] studied the stability 
behaviour of flat square plates with central square 
perforations. Jwalamalini et al. [14], developed the design 
charts for the stability of simply supported square plate with 
opening under in-plane loading as uniform compression and 
trapezoidal loading. Madasamy & Kalyanaraman [15] 
presented the analysis of plated structures with rectangular 
cutouts and internal supports using the spline finite strip 
method. Durban & Zuckerman [16], examines the 
elastoplastic buckling of a rectangular plate, with various 
boundary conditions, under uniform compression combined 
with uniform tension (or compression) in the perpendicular 
direction. Shanmugam et al. [17] presented a design formula 
for axially compressed perforated plates with circular 
openings under axial compression for simply supported and 
clamped boundary conditions. Paik et al. [18], presented 
ultimate strength formulations for ship plating under 
combined biaxial compression/tension, edge shear, and lateral 
pressure loads. Toulios & Caridis [19] carried out a numerical 
study on the effect of aspect ratio on the buckling and collapse 
behaviour of flat bar stiffened plates loaded in uniaxial 
compression, El-Sawy et al. [1] employed the finite element 
method to determine the elasto-plastic buckling stress of 
uniaxial loaded simply supported square and rectangular 
plates with circular openings. Bakker et al. [20], discussed 
analytical and semi-analytical formulas for describing the 
post-buckling behavior of uniformly compressed square plates 
with initial imperfections. Kumar et al. [21], studied the effect 
of the size increase of a rectangular opening along the loading 

direction on the ultimate strength is determined using 
nonlinear finite element analysis. Helbig et al. [22] studied the 
shape influence of an elliptical cutout in the elastic and elasto-
plastic buckling of square and rectangular steel plates for two 
different thickness. The Constructal Design method was used 
to promote the shape hole variation, by means the degree of 
freedom H0/L0 (ratio between the characteristic dimensions of 
the elliptical hole), while the slenderness influence was 
considered by the DOF H/t (ratio between height and 
thickness of the plate). The numerical results, obtained 
through the ANSYS software, indicated that both the cutout 
shape and slenderness of the plate have direct influence in the 
buckling behavior. In addition, the Constructal Design method 
allow to define the maximum limit buckling load in each case. 
More recently, Helbig et al. [23] analyzed numerically the 
influence of the cutout shape in the plate buckling behavior by 
means the Finite Element Method. The Constructal Design 
was applied, ensuring a consistent comparison among 
elliptical, rectangular and diamond perforations. A constant 
cutout volume fraction of 0.20 was considered, while the 
degree of freedom H0/L0 was varied. The objective function 
was to maximize the limit stress, avoiding the plate buckling. 
A thin steel plate, simply supported in four edges, with a 
centered perforation was considered. The results showed the 
H0/L0 influence in the buckling behavior as well as the cutout 
shape influence in the limit stress. 

Considering the above, it appears of fundamental 
importance in the structural engineering, the study and 
understanding of the mechanical behavior of perforated steel 
plates submitted buckling, especially if the goal is to improve 
the performance of these structural elements. Therefore, the 
main objective of this work is numerically investigate the 
influence of the type and shape of the hole in the behavior of 
buckling perforated steel plates, in order to improve its 
mechanical behavior. The Constructal Design method is used 
in order to guarantee an adequate and consistent comparison 
among the studied cases. The objective function is to 
maximize the compressive stress, avoiding the plate buckling 
occurrence. To do so, it was considered a hole volume 
fraction (ratio between the hole and the volume of the total 
volume of the plate) of 0.20, for different cutout types: 
diamond, longitudinal hexagonal, transversal hexagonal, 
elliptical, and rectangular. The shape of these perforations can 
vary by means the ratio H0/L0, which relates the characteristics 
dimensions of each hole. Besides, two ratios between the plate 
height (H) and the plate length (L) were studied: H/L = 0.5 
and H/L = 1.0: emphasizing that the total volume of the plate 
was kept constant, with a plate thickness (t) of 10 mm. In all 
studied cases, the plate is simply supported in its four edges 
and has a centered perforation. A constraint which limit a 
minimal distance of 100 mm from the plate edges until the 
hole edges is also employed.  

 

 

2. BUCKLING AND POSTBUCKLING OF PLATES 

In the late 1800s, Bryan successfully formulated and solved 
the problem of buckling for a linearly elastic and simply 
supported uniaxial compressed plate. Approximately 33 years 
later, Bleich made efforts to extend linear elastic plate 
buckling theory to the solution of problems of plates buckling 
above the proportional limit. He demonstrated that critical 
stresses for plates buckling between the proportional limit and 
the yield stress could be approximated using linear elastic 
theory with Young’s modulus, E, replaced by a reduced value 
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equal to , where Et is the tangent modulus. 

Timoshenko agreed with this observation and further 
concluded that plate buckling stresses cannot exceed the yield 
stress, Dawe et al. [24]. 

For a common man, the word buckling means sudden 
catastrophic failure of a structure involving large 
deformations. But in engineering parlance, the buckling is a 
phenomenon that generally occurs well before deformations 
are very large. When a slender structure is loaded in 
compression, for small loads it deforms with hardly any 
noticeable change in geometry and load-carrying capacity. On 
reaching a critical load value, the structure suddenly 
experiences a large deformation and it may lose its ability to 
carry the load further. At this stage, the structure is considered 
to have buckled, Raviprakash [25]. 

The transition of the plate from the stable state of 
equilibrium to the unstable one, when submitted a 
compressive load, is referred to as buckling or structural 
instability. The smallest value of the load producing buckling 
is called the critical or buckling load. The importance of 
buckling is the initiation of a deflection pattern, which if the 
loads are further increased above their critical values, rapidly 
leads to very large lateral deflections. Consequently, it leads 
to large bending stresses, and eventually to complete failure of 
the plate. The linear buckling analysis of plates based on these 
assumptions makes it possible to determine accurately the 
critical loads (Pcr), which are of practical importance in the 
stability analysis of thin plates. However, this analysis gives 
no way of describing the behavior of plates after buckling, 
which is also of considerable interest. The post-buckling 
analysis of plates is usually difficult because it is basically a 
nonlinear problem, Ventsel [26]. 

Therefore, plate buckling has a post-critical load-carrying 
capacity that enables for additional loading after elastic 
buckling has occurred. A plate is in that sense inner statically 
indeterminate, which makes the collapse of the plate not 
coming when elastic buckling occurs, but instead later, at a 
higher loading level reached in the elasto-plastic buckling. 
This is taken into consideration in the ultimate limit state 
design of plates because the elastic buckling does not restrict 
the load carrying capacity to the critical buckling stress, 
instead the maximum capacity consists of the two parts: the 
buckling load added to the additional post-critical load, 
Åkesson [27]. In other words, the ultimate loading capacity 
(Pu) of plates is not restricted to the occurrence of elastic 
buckling once these structural elements do possess ability for 
a post-critical reserve strength, which enables for an 
additional loading capacity after that buckling has occurred. 
This post-critical reserve strength is shown in the 
load/displacement diagram in Fig. 1. 

 

 
 

Figure 1. Load/displacement diagram in the post-critical 
range 

This capacity to carry additional load after elastic buckling 

is due to the formation of a membrane that stabilizes the 

buckle through a transverse tension band. When the central 

part of the plate buckles, it loses the major part of its stiffness, 

and then the load is forced to be “linked’’ around this 

weakened zone into the stiffer parts on either side. 

Additionally, due to this redistribution a transverse membrane 

in tension is formed and anchored, as can be seen by the load 

paths in Fig. 2, Åkesson [27]. 

 

 
 

Figure 2. The redistribution of the transfer of load in the 
ultimate limit state 

 

The relative magnitude of the post-buckling strength to the 

buckling load depends on various parameters such as 

dimensional properties, boundary conditions, types of loading, 

and the ratio of buckling stress to yield stress, Yoo & Lee 

[28]. There is an analytical solution for the problem of the 

elastic buckling of a simply supported solid plate of length L, 

width H, thickness t, and subjected to a distributed uniaxial 

load P as it is shown in Fig. 3. 
  

 
 

Figure 3. The solid plate subject to uniaxial compressive load 

 

The critical load per unit length for elastic buckling can be 

written according to, Vinson [29] as: 

2

2


cr

D
P k

H
           (1) 

Where π is the mathematical constant; k is the function of 

aspect radio H/L and wavelength parameter m, given by: 
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and D is the plate bending stiffness, defined as: 

 

 

3

212 1




Et
D

v
                                                                 (3) 

S11



 

Where E is the Young’s Modulus and v is the Poisson’s 

ratio of the plate material. 

The optimum value of m that gives the lowest σcr depends 

on the aspect ratio H/L. For example, the optimum m is 1.0 for 

a square plate (H/L = 1.0) while it is 2.0 for a plate of (H/L = 

2.0). For a plate with a large aspect ratio, k = 4.0 serves as a 

good approximation. Since the aspect ratio of a component of 

a steel structural member such as a web plate is large in 

general, we can often assume k is simply equal to 4.0, 

Yamaguchi [30]. 

In turn, the stress at which elastic buckling occurs, σcr, is 

defined by the average stress that is equal to the uniformly 

applied compressive load, Pcr, divided by the thickness of the 

plate, t. This stress is called elastic buckling stress, and it is 

given by: 

 

 

22

212 1




 
  
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cr

E t
k

Hv
                                                   (4) 

3. COMPUTATIONAL MODELS 

There are many practical engineering problems for which 

exact solutions cannot be obtained. This inability to obtain an 

exact solution may be attributed to either the complex nature 

of governing differential equations or the difficulties that arise 

from dealing with the boundary and initial conditions. To deal 

with such problems, one may resort to numerical 

approximations. In contrast to analytical solutions, which 

show the behavior of a system at any point within the system, 

numerical solutions approximate the solutions only at discrete 

points, called nodes. The first step of any numerical procedure 

is the discretization. This process divides the medium of 

interest into a number of small subregions and nodes. There 

are two common classes of numerical methods: finite 

difference methods (FDM) and finite element methods (FEM). 

With FDM, the differential equation is written for each node, 

and the derivatives are replaced by difference equations. This 

approach results in a set of simultaneous linear equations. 

Although finite difference methods are easy to understand and 

employ in simple problems, they become difficult to apply to 

problems with complex geometries or complex boundary 

conditions. This situation is also true for problems with 

nonisotropic material properties. In contrast, the FEM uses 

integral formulations rather than difference equations to create 

a system of algebraic equations. Moreover, an approximate 

continuous function is assumed to represent the solution for 

each element. The complete solution is then generated by 

connecting or assembling the individual solutions, allowing 

for continuity at the interelemental boundaries, Moaveni [31]. 

In this context, the ANSYS® software, which is based on the 

FEM, was used to solve elastic and elasto-plastic plate 

buckling problems. A set of interpolation functions is used to 

define uniquely the state of displacement within each element 

in terms of its nodal displacements. The state of strain within 

the element is uniquely defined by the strain-displacement 

relationship. The state of stress throughout the element is 

determined by the material stress-strain law. By applying the 

Virtual Work Principle, the nodal forces corresponding to a 

displacement field in the element are determined. These nodal 

forces are related to the nodal displacements through the 

element stiffness matrix. Thus, the conditions of overall 

equilibrium have already been satisfied within the element. 

Now, all that is necessary is to establish equilibrium 

conditions at the nodes of the structure. The resulting linear 

equation system will contain the displacements as unknowns. 

Once these equations have been solved the structural problem 

is determined. The internal forces in elements, or the stresses, 

can easily be found by using the strain-displacement 

relationship and the material stress-strain law, Real & Isoldi 

[32]. The analytical solutions are only available for problems 

involving very simple geometry, loading and boundary 

conditions. Computer modeling can be used to search 

approximate solution to solve more complex problems, Helbig 

et al. [22]. 

In the present work the 8-Node Structural Shell finite 

element so-called SHELL93 was used (Fig. 4). This element is 

particularly well suited to model curved shells. The element 

has six degrees of freedom at each node: translations in the 

nodal x, y and z directions and rotations about the nodal x, y 

and z axes. The deformation shapes are quadratic in both in-

plane directions. The element has plasticity, stress stiffening, 

large deflection, and large strain capabilities, Ansys® [33]. 

 

 
 

Figure 4. SHELL93 finite element [33] 
 

3.1 Elastic buckling 

Eigenvalue linear buckling analysis is generally used to 

estimate the critical buckling load of ideal structures Vinson 

[29]. This numerical procedure is used for calculating the 

theoretical buckling load of a linear elastic structure. Since it 

assumes the structure exhibits linearly elastic behavior, the 

predicted buckling loads are overestimated. So, if the 

component is expected to exhibit structural instability, the 

search for the load that causes structural bifurcation is referred 

to as a buckling load analysis. Because the buckling load is 

not known a priori, the finite element equilibrium equations 

for this type of analysis involve the solution of homogeneous 

algebraic equations whose lowest eigenvalue corresponds to 

the buckling load, and the associated eigenvector represents 

the primary buckling mode, Madenci & Guven [34].  
The strain formulation used in the analysis includes both the 

linear and nonlinear terms. Thus, the total stiffness matrix, 
[K], is obtained by summing the conventional stiffness matrix 
for small deformation, [KE], with another matrix, [KG], which 
is the so-called geometrical stiffness matrix, Przemieniecki 
[35]. The matrix [KG] depends not only on the geometry but 
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also on the initial internal forces (stresses) existing at the start 
of the loading step, {P0}. Therefore the total stiffness matrix 
of the plate with load level {P0} can be written as: 

 

      E GK K K .                                        (5) 

 

When the load reaches the level of {P} = λ{P0}, where  is 
a scalar, the stiffness matrix can be defined as: 

 

      E GK K K .                                                     (6) 

 
Now, the governing equilibrium equations for the plate 

behavior can be written as: 
 

       0    E GK K U P                                            (7) 

 

where  U  is the total displacement vector that may 

therefore be determined from: 
 

       
1

0 


   E GU K K P .                          (8) 

 
At buckling, the plate exhibits a large increase in its 

displacements with no increase in the load. From the 
mathematical definition of the matrix inverse as the adjoint 
matrix divided by the determinant of the coefficients it is 

possible to note that the displacements  U  tend to infinity 

when: 
 

   det 0   E GK K .                                       (9) 

 
Equation (9) represents an eigenvalue problem, which when 

solved provides the lowest eigenvalue, λ1 that corresponds to 
the critical load level {Pcr} = λ1{P0} at which buckling occurs. 
In addition, the associated scaled displacement vector 

 U defines the mode shape at buckling. In the finite element 

program ANSYS®, the eigenvalue problem is solved by using 
the Lanczos numerical method, Ansys® [33]. 

 

3.2 Elasto-plastic buckling 
 

Nonlinear or collapse buckling analysis is a more accurate 
approach since this finite element analysis has capability of 
analyzing the actual structures with imperfections. This 
approach is highly recommended for design or evaluation of 
actual structures. This technique employs a non-linear 
structural analysis with gradually increasing loads to seek the 
load level at which the structure become unstable. Using this 
technique, features such as initial imperfections, plastic 
behavior etc., can be included in the model. In this analysis, 
both geometrical and material nonlinearities are considered. A 
shell is said to behave nonlinearly if the deflection at any point 
is not proportional to the magnitude of the applied load, 
Budiansky [36]. The geometric nonlinearity is the result of 
nonlinear strain-displacement relations, and the material 
nonlinearity is the result of nonlinear stress-strain relations. 
The material non-linearities can also be defined with different 
work hardening behaviors, Avner [37]. 

To do so, the plate material was assumed to be linear 
elastic–perfectly plastic (i.e., with no strain hardening) which 
is the most critical case for the steel material. An initial 

imperfect geometry for the plate that follows the first buckling 
mode of its elastic eigenvalue pre-analysis is assumed. The 
maximum value of the imperfection is chosen to be H/2000, 
El-Sawy et al. [1], being H the plate width (see Fig. 3). 

To find out the plate ultimate load, a reference load given 

by Py = σy.t, where σy is the material yielding strength, was 
applied in little increments in the plate edge parallel to the y 
axis. For each load increment the standard Newton-Raphson 
method was applied to determine the displacements that 
correspond to the equilibrium configuration of the plate 
through the equations: 

 

     
1
  

i i
P P P ,                                                   (10) 
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1




  NLi
P F ,                                                   (11) 

 

     tK U ,                                                   (12) 

 

     
1
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i i
U U U ,                                                   (13) 

 

Where [Kt] is updated tangent stiffness matrix,  U is the 

displacements increment vector necessary to reach the 
equilibrium configuration, {FNL} is the nonlinear internal 

nodal forces vector and    is the out-of-balance load vector. 

The vectors {U}i and {U}i+1 correspond to the displacements, 
while the vectors {P}i and {P}i+1 correspond to the applied 
external loads, at two successive equilibrium configurations of 
the structure. 

If at a certain load stage the convergence could not be 
achieved; that is, a finite displacement increment cannot be 

determined so that the out-of-balance load vector   is 

annulled; it means that the failure load of the structure has 
been reached. This occurs because no matter as large as the 
displacements and strains can be, the stresses and internal 
forces cannot increase as it would be required to balance the 
external loads. The material has reached the exhaustion of its 
strength capacity. 

 

 

4. CONSTRUCTAL DESIGN METHOD 

The Constructal Theory was created by Adrian Bejan, in 

1997, when a new geometric solution philosophy was applied 

to the conductive cooling of electronics, Bejan [38, 39]. These 

studies have a significant importance because they played a 

basic and a starting point role for the extension and 

application of Constructal Theory to problems in engineering 

and other branches of science, Bejan & Lorente [40] and 

Ghodoossi [41]. Moreover, Constructal Theory has been 

employed to explain deterministically the generation of shapes 

in nature, and the lesson taught by the Bejan’s Constructal 

Theory is: geometry matters. The principle is the same in 

engineering and nature: the optimization of flow systems 

subjected to constraints generates shape and structure, Bejan 

[39]. 

The Constructal Law is the base of the Constructal Design 

Theory and tells us that for a finite size system to persist in 

time (to live), its configuration must evolve in such a way that 

provides easier access to the currents that flow throught it. 

The fundamental idea is: everything that moves, whether 
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animate or inanimate, is a flow system. All flow systems 

generate shape and structure in time in order to facilitate this 

movement across a landscape filled with resistance. The 

designs we see in nature are not the result of chance. They 

arise naturally, spontaneously, because they enhance access to 

flow in time, Bejan & Zane [42]. 

It is well known that a major engineering goal is to improve 

the system configuration in order to improve their 

performance, that is, the application of Constructal Law is 

fundamental to the evolution of the system, and its application 

is made possible by the Constructal Design method. In the 

past, scientific and technical knowledge combined with 

practice and intuition guided engineers in system design man-

made for specific purposes. Further, with the advent of 

computer tools, it was possible to simulate and evaluate 

several engineering flow architectures formed by a large 

number of degrees of freedom. However, while the 

performance of the system was being analyzed and evaluated 

in a scientific way, the system design remained in art status, 

Bejan & Lorente [43]. 

Therefore the Constructal Design method guides the 

designer toward flow architectures that have greater and 

greater global performance for the specified flow access 

conditions (fluid flow, heat flow, flow of stresses), in other 

words, the Constructal Design method is about the optimal 

distribution of imperfection. Being this natural tendency of 

flowing with better and better configuration is the essence of 

the Constructal Law, Bejan & Lorente [40]. 

So, in order to apply this philosophy the Constructal Design 

method needs one or more degrees of freedom (DOF) and 

constraints to achieve an objective function. To do so, 

considering the plates with diamond (Fig. 5a), longitudinal 

hexagonal (Fig. 5b), transversal hexagonal (Fig. 5c), elliptical 

(Fig. 5d) and rectangular (Fig. 5e) cutouts, the DOF (H0/L0) is 

free to vary respecting the vertical limit of H - H0 = 200 mm 

and horizontal limit of L - L0 = 200 mm, while the DOF (H/L) 

assume two values of 0.5 (H = 1000 mm and L = 2000 mm) 

and 1.0 (H = L = 1414.2 mm), and the plate slenderness. 

To allow an adequate and consistent comparison among the 

different hole types, a constraint called hole volume fraction, 

given by the ratio between the hole volume (V0) and total plate 

volume (V) (without perforation), is also taken into account 

with a value of 0.20, being defined for the diamond, 

longitudinal hexagonal, transversal hexagonal, elliptical, and 

rectangular cutouts, respectively, by: 

 

 0 00 0 0
/ 2

2
   

H L tV H L

V HLt HL
                                         (14) 

 

   0 1 2 0 1 20
 

  
H L L t H L LV

V HLt HL
                          (15) 

 

   0 1 2 0 1 20
 

  
H L L t L H HV

V HLt HL
                         (16)  

 

 0 00 0 0
/ 4

4

 
   

H LV H L

V HLt HL
                                     (17) 

 

0 0 0 0 0   
V H L t H L

V HLt HL
                                                 (18) 

 

Where π is the mathematical constant; H0 and L0 are the 

characteristic dimensions of the hole in y and x directions (see 

Fig. 5), respectively; H, L and t are the height, length and 

thickness of the plate, respectively. 

The objective function is to maximize the buckling limit 

stress and hence to define the optimal hole geometry (H0/L0) 

for each perforated plate. To normalize, the obtained results 

for the critical stress (elastic buckling) and ultimate stress 

(elasto-plastic buckling) the Normalized Limit Stress (NLS) 

was adopted, being defined by: 




 cr

y

NLS                                                                      (19) 

or 




 u

y

NLS                                                                       (20) 

Where σy is the yielding strength of the plate material, being 

250 MPa for the steel A-36 adopted in this work. 

 

 
 

(a) Diamond 
 

 
 

(b) Longitudinal hexagonal 
 

 
 

(c) Transversal hexagonal 
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(d) Elliptical 

 
 

(e) Rectangular 
 

Figure 5. Plate of a centered cutout 

5. RESULTS AND DISCUSSION 

To verify the computational model used to solve the 

problem of plate elastic buckling, a comparison of its results 

with the critical load obtained through the analytical solution 

Eq. (1), was done. It was used a steel plate (E = 210 GPa and 

v = 0.3) without perforation and with H = 1000 mm, L = 2000 

mm and t = 10 mm, (see Fig. 3), discretized by a regular mesh 

generated with SHELL93 elements having maximum size of 

20 mm. The results obtained were 753.74 kN/m by 

computational model and 759.20 kN/m for the analytical 

solution, so a difference of only -0.72% was observed, 

verifying the numerical model. 

For the plate elasto-plastic buckling problem was used as 

reference to validate the numerical model the experimental 

results, El-Sawy et al. [1]. Considering Fig. 3, a square steel 

plate simply supported at its edges (H = 1000 mm, L = 1000 

mm, t = 20 mm, E = 210 GPa, v = 0.3 and σy = 350 MPa) with 

a circular central hole (H0 = L0 = 300 mm) was employed. Its 

discretization was performed with quadrangular SHELL93 

elements with maximum dimension of 20 mm. The 

experimental result obtained by El Sawy et al. [1] for the 

rupture stress of the plate was σu = 213.50 MPa while the 

present numerical simulation result was σu = 217.00 MPa, 

existing a difference of approximately 1.610%, which allows 

validation of the computational model. 

After verification and validation of the computational 

models, the earlier defined cases were numerically simulated. 

Figures 6, 7, 8, 9 and 10 show the results for the elastic 

buckling and elasto-plastic buckling of the plates with H/L = 

0.5 and having, respectively, a centered diamond (Fig. 6), 

longitudinal hexagonal (Fig. 7), transversal hexagonal (Fig. 

8), elliptical (Fig. 9) and rectangular (Fig. 10) cutout. In these 

figures the shape of each hole change as a function of the 

DOF H0/L0.  

 

 
 

Figure 6. Rectangular plate with diamond hole 
 

 
 

Figure 7. Rectangular plate with longitudinal hexagonal hole 
 

 
 

Figure 8. Rectangular plate with transversal hexagonal hole 
 

 
 

Figure 9. Rectangular plate with elliptical hole 
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Figure 10. Rectangular plate with rectangular hole 
 

From Figs. 6, 7, 8, 9 and 10, in a general way it can be said 

that for small values of the ratio H0/L0 there is a predominance 

of elastic buckling and for larger values the dominance 

becomes the elasto-plastic buckling. 

The transition between the elastic and elasto-plastic 

buckling has a specific point defined in terms of the DOF 

H0/L0 by values of 0.55, 0.55, 0.70, 0.64 and 0.70, 

respectively, for the diamond (Fig. 6), longitudinal hexagonal 

(Fig. 7), transversal hexagonal (Fig. 8), elliptical (Fig. 9) and 

rectangular (Fig. 10) hole. 

Therefore, Fig. 11 shows the limit curves for the maximum 

NLS which each perforated plate can support without to suffer 

the buckling phenomenon. 

One can note in Fig. 11 that the maximum global NLS for 

the plate with H/L = 0.5 was obtained with the rectangular 

cutout with (H0/L0)opt = 0.70 and reaching a (NLS)max value of 

0.36. If this best case is compared with the lower maximum 

NLS obtained (diamond hole) an improvement of 37.25% was  

 

achieved only due to the cutout type. However, the rectangular 
perforation is not the best global hole type, because for the 
H0/L0 range between 0.25 and 0.66 the superior plate 
performance was observed for the longitudinal hexagonal 
perforation. In addition, for specific values of H0/L0 the 
elliptical and diamond hole also presented superior 
performances if compared with the rectangular cutout. 

 

 
Figure 11. Elastic Buckling and elasto-plastic buckling of 

rectangular perforated plate 

 

In Table 1, considering only the elasto-plastic buckling of 

the plates with H/L = 0.5, it is presented a comparison 

between the values of the optimal geometry and maximum 

NLS with the worst geometry and minimum NLS for each hole 

type. It is observed that improvements around 60.00%, 

52.17%, 70.00%, 75.00% and 80.00% can be obtained, 

respectively for the diamond, hexagonal, elliptical and 

rectangular cutouts, if the adequate hole geometry is 

employed. 

Table 1. Comparison between best and worst shape for each hole type for the plate with H/L = 0.5 

 
Hole Type (H0/L0)opt (NLS)max H0/L0 NLS NLS Difference % 

Diamond 0.51 0.32 0.80 0.20 60.00 

Longitudinal Hexagonal 0.55 0.35 1.09 0.23 52.17 

Transversal Hexagonal 0.70 0.34 1.20 0.20 70.00 

Elliptical 0.64 0.35 1.25 0.20 75.00 

Rectangular 0.70 0.36 1.60 0.20 80.00 

 

Figures 12, 13, 14, 15 and 16 show the von Mises stress 

distribution in studied rectangular plates (H/L = 0.5) 

considering the cases presented in Table 1, for the diamond, 

longitudinal hexagonal, transversal hexagonal, elliptical and 

rectangular holes, respectively. 

 

 
 

Figure 12. Stress distribution in plates with diamond hole: 
(a) optimal shape and (b) worst shape 

 

S  
 

Figure 13. Stress distribution in plates with longitudinal 
hexagonal hole: (a) optimal shape and (b) worst shape 
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Figure 14. Stress distribution in plates with transversal 
hexagonal hole: (a) optimal shape and (b) worst shape 

 

 
 

Figure 15. Stress distribution in plates with elliptical hole: 
(a) optimal shape and (b) worst shape 

 

 
 

Figure 16. Stress distribution in plates with rectangular 
hole: (a) optimal shape and (b) worst shape 

 

It is possible to note in Figs. 12, 13, 14, 15 and 16 that the 

optimal cutout shapes promote a better distribution of the 

maximum stress, i.e., there are more regions submitted to the 

maximum stress in the optimal geometries, being this behavior 

in agreement with the Constructal principle of the optimal 

distribution of imperfections. 

Now, the NLS variation is depicted as function of the DOF 

H0/L0 for the square plates (H/L = 1.0) with diamond (Fig. 

17), longitudinal hexagonal (Fig. 18), transversal hexagonal 

(Fig. 19), elliptical (Fig. 20) and rectangular (Fig. 21) 

perforations. 

 

 
Figure 17. Square plate with diamond hole 

 

 
Figure 18. Square plate with longitudinal hexagonal hole. 

 
Figure 19. Square plate with transversal hexagonal hole 

 
Figure 20. Square plate with elliptical hole 

 
Figure 21. Square plate with rectangular hole 

 

The H0/L0 value that define the transition from elastic 

buckling, to the elasto-plastic buckling are 1.30, 1.68, 1.98, 

1.94 and 2.23 for the plates with diamond (Fig. 17), 

longitudinal hexagonal (Fig. 18), transversal hexagonal (Fig. 

19), elliptical (Fig. 20) and rectangular (Fig. 21) holes. 

From Figs. 17, 18, 19, 20 and 21 the NLS limit curves to 

avoid the buckling occurrence can be defined adding the 

elastic behavior portion (on the left of the intersection point) 

and the elasto-plastic behavior portion (on the right of 

theintersection point) for each hole type, as can be seen in Fig. 

22. As already observed for the plates with H/L = 0.5 (see Fig. 

11), the rectangular hole conduct to the global superior 

performance with (H0/L0)opt = 2.23 and (NLS)max = 0.25. This 
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geometry has a mechanical behavior approximately 64% 

better than the best case among the studied plates with 

diamond holes. 

 
Figure 22. Elastic buckling and elasto-plastic buckling of 

square plate perforated 

Again, in some specific regions the rectangular hole do not 

conducts to the superior performance, despite having reached 

the highest NLS level. Diamond (1.15 ≤ H0/L0 ≤ 1.40), 

hexagonal (1.40 ≤ H0/L0 ≤ 1.90), and elliptical (1.90 ≤ H0/L0 ≤ 

2.15) perforations can be more efficient depending of the 

H0/L0 value. 

In Table 2, considering only the elastic-plastic buckling 

behavior and for each hole type, the optimized shape and the 

maximum NLS value is confronted with the worst shape and 

the minimum NLS value. It is observed that, for the square 

plates the variation between maximum and minimum NLS 

values can generate performance improvements of 20.00%, 

20.00%, 46.67%, 64.29% and 78.57%, respectively, for 

diamond, hexagonal, elliptical and rectangular hole types. 

 

 

Table 2. Comparison between best and worst shape for each hole type for the plate H/L = 1.0. 

 

Hole Type (H0/L0)opt (NLS)max H0/L0 NLS NLS Difference % 

Diamond 1.30 0.18 1.80 0.15 20.00 

Longitudinal Hexagonal 1.68 0.24 2.31 0.20 20.00 

Transversal Hexagonal 1.98 0.22 2.76 0.15 46.67 

Elliptical 1.94 0.23 2.89 0.14 64.29 

Rectangular 2.25 0.25 3.65 0.14 78.57 

 
For the cases showed in Table 2, the von Mises stress 

distribution are illustrated in Fig. 23 (diamond), Fig. 24 
(longitudinal hexagonal), Fig. 25 (transversal hexagonal), Fig. 
26 (elliptical), and Fig. 27 (rectangular). 
 

 
 

Figure 23. Stress distribution plates with diamond hole: 
(a) optimal shape and (b) the worst shape. 

 

 
 

Figure 24. Stress distribution plates with longitudinal 
hexagonal hole: (a) optimal shape and (b) the worst shape. 

 
 
 
 
 
 
 
 
 

 
 

Figure 25. Stress distribution plates with transversal 
hexagonal hole: (a) optimal shape and (b) the worst shape. 

 

 
 

Figure 26. Stress distribution plates with elliptical hole: 
(a) optimal shape and (b) the worst shape. 

 

 
 

Figure 27. Stress distribution plates with rectangular hole: 
(a) optimal shape and (b) the worst shape. 

As noted in the plates with H/L = 0.5, the optimized 

geometries have more regions where the maximum NLS is 
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reached, totaling a larger area submitted to the maximum 

stress. Therefore, the principle of optimal distribution of 

imperfections is respected for these plates, conducting to a 

superior performance. 

6. CONCLUSIONS 

The present work shows that the hole type and shape have a 

fundamental importance for the definition of the buckling 

behavior in perforated plates. The adequate hole type choice 

allow to obtain a superior performance, i.e., removing the 

same material amount of the plate is possible to improve its 

performance only by the correct hole type choice. In addition, 

for all studied hole types, its shape variation promoted by 

means the DOF H0/L0 is responsible to define if the buckling 

will be elastic (linear) or elasto-plastic (nonlinear). For lower 

values of H0/L0 an elastic buckling occur while an elasto-

plastic buckling happens for higher values for the ratio H0/L0. 

Hence, there is an intersection point between the curves that 

define the elastic and elasto-plastic plate buckling. This point 

determines the transitions between these mechanical 

behaviors, usually also being where the level maximum of the 

stress is reached among all studied DOF H0/L0 for each hole 

type. 

Another important observation is that there is no optimal 

global geometry. Depending of the H0/L0 value, a particular 

hole type presents the best performance. This is an important 

aspect if the cutout at the plate need to be done with a specific 

geometry. 

For each hole type, considering only the elasto-plastic plate 

buckling behavior and comparing the best and worst 

geometries one can note that the decrease in the area between 

the hole and the upper and lower edges of the plate leads to 

the collapse of the structure. This fact can be explained by the 

decreasing of the plate resistant area. In addition, the best 

geometry always have a better stress distribution, in 

accordance with the Constructal principle of optimal 

distribution of imperfections, justifying its superior 

performances. 

In general it can be said that the studied rectangular 

perforated plates (H/L = 0.5) and square perforated plates 

(H/L = 1.0) have a similar buckling behavior. However, the 

rectangular perforated plates can support a more elevated 

stress level when compared with the square perforated plates. 

As the total volume of the plate material is the same in both 

cases, if possible it is recommended to use the rectangular 

perforated plate. 

Therefore, the Constructal Design method proved to be able 

to analyze the geometric configuration influence at the plate 

buckling problem, allowing to define for each studied hole 

type a limit stress curve as function of the hole shape variation 

which avoids the buckling phenomenon occurrence. 
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