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Sign language, a vital medium for communication, particularly for individuals with speech 

and hearing impairments, is gaining recognition for its efficacy. To evaluate the efficacy of 

sign language alphabet recognition systems, three prominent image classification deep 

learning models—ResNeXt101, VGG19, and ViT—were chosen due to their established 

relevance and popularity in the field. The study aimed to identify the most effective model 

for accurate and efficient sign language classification using the NUS hand posture dataset-

II. The study utilized Bayesian optimization for hyperparameter tuning, recognizing its

superiority in systematically exploring the hyperparameter space compared to other

optimization methods. This approach significantly enhanced the performance of the models

by tailoring their configurations, leading to improved accuracy and robustness in sign

language recognition across various experimental scenarios. While the findings consistently

favored ResNeXt101 over VGG19, with a notable 2% higher F1 score, ViT also showcased

comparable performance in certain experiments, achieving an impressive F1 score of 99%.

Despite these successes, the study encountered limitations, including dataset bias and

generalization challenges, which underscore the need for further research in this domain to

address these complexities.
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1. INTRODUCTION

Human interaction is profoundly shaped by the vital process 

of communication, a dynamic phenomenon governed by 

several essential components. At its core, communication 

hinges on the presence of a communicator responsible for 

transmitting a message, a receptive entity in the form of a 

receiver, the medium or channel through which information is 

conveyed, and a crucial feedback loop through which the 

recipient responds to the conveyed message. These 

fundamental elements collectively underpin the intricate fabric 

of human socialization [1]. 

Effective communication encompasses a multifaceted 

process that employs a diverse array of mediums. This process 

extends beyond direct verbal exchanges to encompass a 

spectrum of communication tools, which serve as conduits for 

conveying messages. Such tools encompass both traditional 

and modern technologies, including landline and mobile 

phones, email, social media platforms, intercom systems, short 

message service (SMS), as well as versatile cross-platform 

instant messaging applications [2]. 

In numerous instances, individuals encounter challenges in 

conventional communication as a consequence of various 

factors, including those afflicted with speech impairments 

characterized by compromised articulation or an inability to 

vocalize. Additionally, a subset of the population comprises 

deaf individuals who experience hearing impairments either 

from birth or later in life, rendering them incapable of 

engaging in standard speech practices, especially during 

infancy or early childhood, wherein their linguistic aptitude 

lags cognitive development. In addressing these challenges, a 

system of sign language emerges, founded on intricate body 

language that amalgamates hand gestures, movements, lower 

limb actions, and overall body expressions, complemented by 

nuanced facial expressions to effectively convey messages, as 

eloquently exemplified in the study by [3]. 

Figure 1. Process on hand gesture recognition 

Sign language, traditionally associated with communication 

Revue d'Intelligence Artificielle 
Vol. 38, No. 3, June, 2024, pp. 929-938 

Journal homepage: http://iieta.org/journals/ria 

929

https://orcid.org/0000-0003-4223-1627
https://orcid.org/0000-0003-4241-997X
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380319&domain=pdf


 

for individuals with speech and hearing impairments, extends 

its utility beyond this realm. Beyond its crucial role in the lives 

of those with impairments, sign language serves as a versatile 

means of communication for diverse groups. This form of non-

verbal communication finds application within the military, 

where it enables seamless interaction between troops amid 

battlefield operations [4]. Additionally, infants and toddlers 

employ sign language to convey their intentions and desires 

before developing verbal proficiency. 

In Figure 1, hand gesture recognition involves training a 

model with a dataset of hand gestures, preprocessing frames to 

enhance quality, segmenting the hand, and extracting relevant 

features like finger positions and hand shapes. The trained 

model's feature set is saved for future recognition. During 

testing, new gestures undergo similar preprocessing, and their 

features are matched with the saved ones. This process 

classifies the gestures into predefined categories, enabling 

practical interaction in applications from virtual reality to 

human-computer interfaces. 

Sign Language Recognition, a groundbreaking 

advancement, aims to bridge communication barriers for the 

hearing-impaired. Researchers have explored various aspects 

of SLR, from data acquisition to feature extraction and 

classification methods. Despite progress, cost remains a 

challenge [5], spurring efforts toward affordable solutions. 

Different approaches are being investigated, including visual-

based gesture recognition and hybrid classification methods 

like CNN-HMM and full deep learning [6]. Challenges persist, 

such as overfitting and computational demands [7]. Deep 

learning models like AlexNet [8], VGG19 [9], CNN [10], and 

LSTM [6] are utilized for feature extraction and classification, 

showing promising results [8-11]. 

In recent times, there has been a proliferation of innovative 

models, including ResNeXt101, VGG19, and ViT, which have 

demonstrated commendable performance in image 

classification tasks. In this study, the researcher seeks to 

compare and evaluate the efficacy of these three models in the 

context of sign language recognition. ResNeXt, known for its 

depth and parallelism, excels at capturing intricate features in 

sign language gestures, which involve subtle variations in 

hand shapes, movements, and facial expressions. Its 

hierarchical representations through residual connections suit 

the complexity of sign language. VGG, while simpler than 

newer architectures, has shown impressive performance in 

tasks like ImageNet classification. Its straightforward 

architecture strikes a balance between simplicity and 

effectiveness, in sign language recognition, where 

interpretability and generalization matter, VGG may reveal 

crucial features of sign gestures. The vision transformer differs 

from CNNs by using self-attention to capture long-range 

dependencies in images, offering a fresh perspective on image 

understanding for sign language gestures. Its scalability and 

handling of variable-length sequences align well with the 

diverse nature of sign language gestures. 

The specific objectives of this study encompass two main 

aspects. Firstly, we seek to implement these deep learning 

models in the context of sign language image classification, 

aiming to ascertain whether they can surpass the performance 

of previous methodologies. This involves not only assessing 

their accuracy but also considering factors such as 

computational efficiency and scalability, crucial for real-world 

deployment. Secondly, we aim to explore the efficacy of 

Bayesian optimization hyperparameter tuning techniques in 

enhancing the performance of these models. By systematically 

optimizing the hyperparameters of ResNeXt, VGG, and the 

vision transformer, we aim to identify the most optimal 

configurations for each model, thereby potentially improving 

their accuracy and generalization capabilities in sign language 

recognition tasks. Through these endeavors, this research 

endeavors to address the following key research questions: 

Can ResNeXt, VGG, and the vision transformer outperform 

existing methodologies in sign language recognition, thus 

advancing the state-of-the-art in this domain? Furthermore, 

can the utilization of Bayesian optimization techniques 

contribute to obtaining the best parameters for these deep 

learning models, ultimately enhancing their performance and 

efficacy in sign language recognition? By elucidating these 

questions, we aspire to contribute to the development of more 

robust and accurate sign language recognition systems, 

ultimately fostering greater inclusivity and accessibility for 

individuals with hearing impairments. 

This study utilizes pre-trained models like ResNeXt101, 

VGG19, and ViT to enhance hand posture recognition in 

computer vision and human-computer interaction fields. By 

refining hyperparameters and using Bayesian optimization, we 

aim to optimize model performance, potentially guiding future 

research. Ultimately, we seek to advance sign language 

recognition for more accurate and efficient applications. The 

societal and technological impact of improving sign language 

recognition systems extends far beyond the realm of assistive 

technology. It encompasses broader goals of social inclusion, 

technological innovation, and advancing the frontiers of 

artificial intelligence. By addressing these critical challenges, 

the research not only enhances accessibility and empowerment 

for individuals with hearing impairments but also contributes 

to building more inclusive and equitable societies driven by 

technological progress.  

 

 

2. RELATED WORKS 
 

Hand gesture recognition has evolved significantly over 

time, starting from basic image processing techniques in the 

1960s to sophisticated deep learning models today. In the 

1980s and 1990s, machine learning techniques like neural 

networks and Hidden Markov Models (HMMs) were explored, 

but were limited by computational resources. The early 2000s 

saw a leap with Convolutional Neural Networks (CNNs), 

which improved accuracy by learning features directly from 

pixel data. Large annotated datasets further fueled progress. 

Recent advancements include recurrent neural networks 

(RNNs), attention mechanisms, and graph neural networks 

(GNNs), enabling models to capture temporal and spatial 

dependencies for better accuracy. Integration of depth sensors 

like Kinect and RealSense has enhanced 3D gesture 

recognition in real-world scenarios. 

Currently, state-of-the-art hand gesture recognition 

methods leverage of deep learning architectures, large-scale 

annotated datasets, and advanced sensor technologies to 

achieve high accuracy and robustness across a wide range of 

applications, including human-computer interaction, sign 

language recognition, and virtual reality interfaces.  

A notable example of this is the fusion approach, which 

involves the amalgamation of Histograms of Oriented 

Gradients (HOG) for hand shape depiction and Local Binary 

Pattern (LBP) for hand texture description, coupled with a 

Support Vector Machine (SVM) employing a radial basis 

function as its kernel. This method has demonstrated 
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significant promise in enhancing the classification 

performance for hand gesture recognition, as discussed in the 

study [12]. Empirical evaluations conducted on the NUS hand 

posture dataset-II illustrate that the proposed HOG-LBP 

features significantly enhance hand recognition accuracy, 

achieving an average recognition accuracy of 97.8% for 

Subset A and 95.07% for subset B. The method proposed 

showing the strength of achieving a better classification 

performance on hand gesture recognition. Nevertheless, there 

remains a weakness to augment the speed and efficiency of 

hand gesture recognition, with a specific focus on complex 

background scenarios. 

In a study focusing on the recognition of Indonesian Sign 

Language (BISINDO), researchers employed deep learning 

techniques to analyze results from a dataset of 1100 images 

across 10 categories [11]. The dataset is split into subsets A 

(1000 images for training) and B (100 for validation), with 

preprocessing techniques applied before training. Results 

show CNN achieving 73% accuracy, LSTM 81%, and a fusion 

of CNN and LSTM reaching 96% accuracy with a 17% loss. 

This highlights the synergy between CNN and LSTM in 

improving sign language recognition systems, a key strength. 

However, limitations include the dataset's scope, lacking 

comprehensive coverage of all symbols. Future research 

should focus on expanding the dataset and exploring 

additional aspects like expression detection and body gesture 

recognition to enhance overall interpretation systems. 

In a comprehensive investigation, researchers analyzed an 

American Sign Language dataset, which consisted of 

approximately 205 images per numerical class (0 to 9) at 

100x100 resolution [13]. A sophisticated ten-layer 

Convolutional Neural Network (CNN) was deployed, 

showcasing a strong 87.5% accuracy rate. This demonstrates 

the effectiveness of the tailored approach. Additionally, 

preprocessing reduces computational complexity, aiding 

efficiency. Manual hyperparameter fine-tuning ensures 

optimal performance, suitable for mobile applications and 

embedded systems. However, scalability and generalizability 

to other datasets or tasks beyond ASL recognition require 

further investigation, marking a potential weakness. 

In the realm of hand gesture recognition, an extensive study 

explored the use of convolutional neural networks (CNNs) in 

recognizing American Sign Language (ASL) gestures [14]. It 

involves a dataset of 2515 200x200 pixel images of ASL 

numerical digits and alphabet characters. The CNN 

architecture includes four layers: two convolutional layers, 

batch normalization, a pooling layer, dropout layers, and 

flattening operation, followed by two fully connected layers, 

each with dropout. This approach achieves an impressive 

accuracy of 94.34% in ASL gesture recognition. Its strength 

lies in its accessibility via a simple camera and scalability 

through continuous training. Moreover, it offers a cost-

effective alternative to specialized cameras like Microsoft's 

Kinect. However, reliance on pre-made datasets may limit 

adaptability to diverse real-world scenarios. Further research 

could enhance robustness to lighting conditions and hand 

positions. 

In a study conducted by researchers [15], the Multi-scale 

Cross Feature Aggregation Network (Cross-Feat) achieved 

remarkable accuracy rates of 98.33% on the NUS hand posture 

dataset-ii and 99.5% on the ASL fingerspelling dataset, 

showcasing its strength in hand posture recognition and ASL 

fingerspelling. CrossFeat’s efficient design and effective 

feature preservation enable precise gesture recognition by 

capturing both local and global information. With only 975K 

trainable parameters, it is lightweight and computationally 

efficient. However, its performance in more complex 

environments beyond benchmark datasets is a potential 

weakness, necessitating further testing in diverse real-world 

scenarios to assess its robustness and generalizability. 

The researchers conducted a series of experiments utilizing 

Moore's algorithm for edge detection and Fourier descriptor 

transform for feature extraction. These experiments, outlined 

in the study [16], achieved a notable 96.92% accuracy in 

recognizing Indonesian sign language alphabet, BISINDO, 

showcasing its potential for broader applications in image 

processing and recognition. The strength of Fourier 

descriptors lies in their effective feature extraction, but a 

weakness arises in their performance with translated and 

rotated images. Future work should focus on improving 

accuracy under such transformations, possibly through 

refining feature extraction or employing more robust distance 

metrics. 

In a pioneering study conducted by researchers [17], an 

innovative approach to SIBI sign language recognition was 

introduced, using a cutting-edge 3D-CNN methodology. This 

study employed advanced camera technology to analyze a 

self-collected dataset, leading to a significant breakthrough. 

The strength lies in its ability to internally gather a large and 

varied dataset, a departure from conventional techniques. The 

researchers achieved an impressive accuracy rate of 97.5% 

with their model. This underscores the potential of 3D-CNN 

technology and innovative data collection strategies. The 

strength of transfer learning here lies in its effectiveness with 

small datasets, as evidenced by the significant accuracy 

improvement. However, a potential weakness is its sensitivity 

to variations in data distribution or domain shifts, which could 

affect generalization across different datasets or real-world 

scenarios. Thus, careful consideration and further evaluation 

are needed to ensure the method's robustness and adaptability 

beyond the study's specific context. 

In their comprehensive research, the authors conducted 

extensive experiments on the BISINDO dataset, employing 

various methodologies to explore sign language recognition 

[8]. They used deep learning models like AlexNet and VGG-

16, achieving high accuracy rates of 98.6% and revealing 

dataset characteristics. They also developed a custom CNN 

model with a commendable accuracy score of 98.3%. These 

findings offer valuable insights into sign language recognition. 

The strength of the simplified CNN model lies in its effective 

recognition of BISINDO hand gestures, showing robustness 

across different conditions. However, its scalability and 

performance in complex environments like varied 

backgrounds remain unclear, affecting its real-world 

applicability. Additionally, concerns persist regarding its 

computational efficiency and speed for real-time 

implementations. 

In their seminal study [18], researchers have introduced a 

novel approach using Convolutional Neural Networks (CNNs) 

to advance American Sign Language (ASL) recognition. The 

objective was to accurately recognize a diverse set of 24 ASL 

alphabet signs collected from real-life scenarios, showcasing 

the model's robustness. The CNN architecture, designed for 

intricate spatial feature capture, includes convolutional layers 

for pattern detection, max-pooling for information 

preservation, and a fully connected layer for feature fusion. 

Experimental results demonstrated an impressive 99.3% 

accuracy, highlighting the approach's efficacy. Strengths 
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include efficient Deep Learning utilization, achieving 

remarkable accuracy, and fast training due to small elapsed 

time and low loss error. However, a potential weakness lies in 

its reliance on static images, limiting applicability to dynamic 

scenarios. Further exploration into dynamic gesture 

recognition methods could enhance versatility and robustness. 

In the realm of empirical investigations using a curated 

dataset [19], a novel convolutional neural network (CNN) 

architecture was devised, incorporating two convolutional 

layers, max-pooling, dropout, and densely connected layers, 

totaling 4,073,540 parameters. This approach yields 

remarkable accuracy scores of 99.72% for color data and 

99.9% for grayscale data. Strengths include comprehensive 

methodology and robust performance, with high accuracies 

across various conditions and datasets. However, scalability 

and adaptability to real-time processing, especially with 

dynamic signs and video-based datasets, remain weaknesses. 

After an in-depth exploration of related research in the field, 

this study aims to contribute new insights through a 

comparative analysis of three prominent image classification 

models: ResNeXt101 [20], VGG19 [21], and ViT [22] which 

have a good track record in image classification. The approach 

goes beyond traditional evaluation by incorporating Bayesian 

optimization [23] for hyperparameter tuning where no 

previous related research has explicitly described the 

hyperparameter process. This advanced optimization 

technique is used to systematically fine-tune the configuration 

of each model. The expected outcome is a better understanding 

of how these models work in the specific context of this study, 

shedding light on the impact of hyperparameter tuning on their 

overall effectiveness. By conducting this comparative study, 

the authors aim to see real differences in performance, offering 

valuable insights that can inform future developments in the 

field of image classification and model optimization. 

 

 

3. PROPOSED METHOD 
 

3.1 Dataset 

 

The research at hand employs the NUS hand posture dataset 

II, as described in reference [24]. This dataset is a 

comprehensive collection of hand posture images that have 

been categorized into ten distinct classes. In total, it comprises 

2000 unique data samples, each manifesting as hand posture 

images set against a variety of backgrounds. Specifically, there 

are 750 image samples featuring individuals as background, 

while an additional 1250 images encompass background-only 

data as shown in Table 1. 

 

Table 1. NUS hand posture dataset 

 
Subset Data Amount of Data 

A 2000 

B 750 

C 1250 

 

The images within this dataset were meticulously captured 

in the vicinity of the National University of Singapore (NUS). 

They exhibit a remarkable diversity in terms of background 

complexity, encompassing both indoor and outdoor 

environments. Furthermore, the hand postures themselves 

exhibit notable variations, spanning different hand shapes, 

skin tones, and sizes. This variability is a testament to the 

dataset’s richness, making it a valuable resource for research 

purposes. 

One remarkable aspect of the NUS hand posture dataset II 

lies in its diversity of participants. It consists of 40 individuals 

hailing from various ethnic backgrounds. This group includes 

both men and women, ranging in age from 22 to 56 years. Each 

participant was carefully guided to display ten distinct hand 

positions, and each of these poses was recorded five times. The 

resulting image data has been standardized to 160x120 pixel 

dimensions, making it suitable for consistent and compatible 

image analysis methods. To provide a visual glimpse into the 

dataset’s contents, an illustrative example of a hand posture 

image from this dataset can be found in Figure 2 and Figure 3. 

 

 
 

Figure 2. Example hand posture images from dataset a NUS 

hand posture dataset-II 

 

 
 

Figure 3. Examples of various class 9 hand posture images 

from dataset a NUS hand posture dataset-II 

 

3.2 Models implementation 

 

3.2.1 ResNeXt101 

ResNeXt101, a state-of-the-art convolutional neural 

network (CNN) architecture, is renowned for its exceptional 

ability to capture complex spatial features. Rooted in the 

ResNeXt framework, it introduces the ResNeXt Block, which 

employs a novel "split-transform-merge" strategy, reminiscent 

of the Inception module. This strategic approach allows the 

aggregation of multiple transformations within a single 

module, setting it apart from its predecessors. The introduction 

of a new dimension known as "cardinality" plays a pivotal role 

within the ResNeXt architecture, alongside traditional 

dimensions of depth and width. The cardinality factor 

determines how transformations are organized and combined, 

significantly enhancing the network's capacity to capture 

intricate patterns and features. An overview of the resnext 

model architecture can be seen in Figure 4. 

ResNeXt has excelled in various computer vision tasks, 

outperforming other network architectures like ResNet and 

Inception on the ImageNet dataset. A 101-layer ResNeXt, for 

instance, achieves superior accuracy to ResNet-200 while 

maintaining only half the complexity. Additionally, it boasts a 

more streamlined design compared to Inception models. 

Notably, ResNeXt served as the foundation for a second-place 

finish in the ILSVRC 2016 classification task [20]. 

ResNeXt101 facilitates real-time identification of dynamic 

hand movements from video feeds, employing a hierarchical 

structure for efficient online operation of offline-trained CNN 

architectures. It consists of a lightweight detector and a deep 
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classifier, utilizing the Levenshtein distance metric to evaluate 

single-time activations of detected gestures. ResNeXt-101 

achieves state-of-the-art offline classification accuracy on 

benchmarks like EgoGesture and NVIDIA, maintaining near-

offline performance in real-time detection and classification. 

The architecture's codes and pre-trained models are publicly 

available for further exploration and utilization [25]. 

 

 
(a) 

 
(b) 

 

Figure 4. (a) ResNeXt-101 architecture (b) Block of 

ResNeXt with 32 cardinality 

3.2.2 VGG19 

VGG19, an innovative convolutional neural network (CNN) 

architecture, stood out as a significant breakthrough in the 

realm of computer vision, representing noteworthy progress in 

the field of image recognition. It was first presented in a 

seminal research paper published in 2014 [21], and it ranks 

among the remarkable achievements of its creators, setting a 

standard for future research undertakings. 

At its core, VGG19 comprises a deep architecture, 

encompassing a total of 19 layers, with a specific arrangement 

of 16 convolutional layers and 3 fully connected layers as 

shown in Figure 5. A distinguishing characteristic of this 

model is its consistent utilization of 3×3 convolutional filters 

throughout its convolutional layers, coupled with a stride of 1 

pixel. Additionally, VGG19 employs 2×2 max-pooling layers 

with a stride of 2 pixels. Notably, the authors investigation 

revealed that the application of these smaller convolution 

filters (3×3) was more efficacious in feature extraction and 

information representation than larger filters with a depth of 

5×5 or 7×7. 

 

 
 

Figure 5. VGG19 architecture 
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VGG19's remarkable performance and influential role in the 

realm of deep learning are substantiated by its training on the 

extensive ImageNet dataset, boasting a vast repository of over 

one million images encompassing a thousand diverse classes. 

The outcome of this training was nothing short of exceptional, 

as the authors managed to attain state-of-the-art results in 

ImageNet's classification and localization tasks. Notably, 

VGG19 achieved a top-5 error rate of 7.3%, showcasing its 

competence in top-tier image classification. Furthermore, its 

localization error rate of 25.3% underscores its proficiency in 

accurately pinpointing objects within the images, a critical 

capability in practical applications like object detection and 

recognition. 

 

3.2.3 Vision transformer 

The vision transformer, or ViT, represents a paradigm shift 

in computer vision by leveraging the success of transformer 

architectures in natural language processing tasks. 

Traditionally, convolutional neural networks (CNNs) have 

been the backbone of image classification models, but ViT 

introduces a novel approach by treating an image as a 

sequence of patches, much like words in a sentence. This 

departure from grid-based processing enables ViT to capture 

long-range dependencies and relationships within an image. 

At the heart of the vision transformer is the transformer 

architecture, originally designed for sequence-to-sequence 

tasks in natural language processing. The transformer's self-

attention mechanism allows it to focus on different parts of the 

input sequence, making it highly effective for capturing global  

contextual information. In the context of ViT, this attention 

mechanism is applied to image patches, allowing the model to 

attend to different spatial regions simultaneously. 

 

 
 

Figure 6. Vision transformer architecture 

 

In Figure 6, The ViT architecture consists of an initial 

embedding layer that linearly projects the flattened image 

Later, as the training progresses, these earlier layers can be 

gradually unfrozen to allow for more adaptation to the target 

dataset. During the fine-tuning process, all layers are trained 

using the same learning rate. This decision is based on the 

hyperparameter tuning results obtained using Bayesian 

optimization.  

 

3.3 Experimental setup 

 

In this study, the main objective is to assess the performance 

of three pre-trained models, namely ResNeXt101, VGG19, 

and ViT, obtained from PyTorch’s ImageNet dataset. These 

models will be fine-tuned using Stochastic Gradient Descent 

as the optimizer with the momentum value set to 0.9. In the 

fine-tuning process, only the final layers (fully connected 

layers or classifier layers) are modified to suit the target task. 

The earlier layers, responsible for learning general features, 

are often retained without modification, as they have already 

learned valuable features from the ImageNet dataset, in 

practice to freeze the weights of the earlier layers during the 

initial training epochs to prevent them from being disrupted by 

the random initialization of the final layers. 

 Later, as the training progresses, these earlier layers can be 

gradually unfrozen to allow for more adaptation to the target 

dataset. During the fine-tuning process, all layers are trained 

using the same learning rate. This decision is based on the 

hyperparameter tuning results obtained using Bayesian 

optimization. 

 To ensure a balanced and comprehensive evaluation, the 

dataset will be divided into A and B subsets, and in addition, 

a combined Subset A and B will be created. To maintain a 

balanced distribution strategy, the authors will perform 

stratification. Each of these subsets will undergo further 

division into training, validation, and testing sets, with a 

composition of 60% allocated to training, 20% to validation, 

and 20% to testing, as shown in Table 2. This careful dataset 

separation approach is implemented to facilitate a thorough 

and robust model evaluation process. The authors will then 

conduct hyperparameter tuning using Bayesian optimization 

on two critical hyperparameters: learning rate (ranging from 

1e-5 to 1e-1), and batch size (choices of 16, 32, 64, and 128). 

This process will help us determine the optimal combination 

of hyperparameters for each model, leading to better 

performance. 

 

Table 2. Composition of the separation of train, validation, 

and test datasets 

 

Dataset 
Amount of 

Image 
Train Validation Testing 

Subset A 2000 1200 400 400 

Subset B 750 450 150 150 

Subset A + 

B 
2750 1650 550 550 

 

 To ensure thorough training and avoid overfitting and 

underfitting, the authors will monitor the model’s training 

process and validation metrics at intervals of epochs, 

specifically at epoch multiples of 50. This approach ensures 

that the training process is observed at key checkpoints, 

providing insight into the model's behavior and performance. 

However, the authors will implement early stopping with a 

patience of 10 and a minimum delta of 0.001. This entails 

halting the training procedure if, for 10 consecutive epochs, 

there is no discernible decrease in the loss function beyond 

0.001, where the loss function used in this research is cross 

entropy loss. This strategy allows for termination of training 

when the model's performance on the validation set ceases to 

improve significantly, indicating potential overfitting, avoid 

potential underfitting, and reaching convergence. 
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 To conduct the experiments, the authors use 2*T4 GPUs 

available on Kaggle for training the model. Utilizing these 

resources will help the authors accelerate the training process 

and handle the computational demands efficiently. 

3.4 Performance metrics 

In evaluating hand posture recognition models, the focus 

lies on utilizing two key performance metrics: accuracy and 

the F1 score, crucial for assessing the efficacy of these models 

in recognizing various sign language gestures. Accuracy 

measures the proportion of correctly classified instances 

within the dataset, indicating the model's proficiency in 

distinguishing hand postures accurately. Additionally, the 

authors analyze training and validation accuracy and loss to 

understand the model's learning dynamics. High training 

accuracy and low loss demonstrate adeptness at fitting the data, 

while validation metrics offer insights into generalization and 

prevent overfitting. These metrics inform decisions on training, 

fine-tuning, and generalization, ensuring a robust hand posture 

recognition system. 

(1) 

(2) 

4. RESULT AND DISCUSSION

The experiments in this research will employ parameters 

outlined in Table 3, which serves as a reference for the baseline 

model settings. These baseline parameters are shared between 

ResNeXt101, VGG19, and Vision Transformer models. For 

optimization, Stochastic Gradient Descent (SGD) will be used, 

with a common momentum value of 0.9. Additionally, the 

table provides insights into the total number of parameters for 

each model, which are essential in understanding the model 

complexity.  

Table 3. Baseline model parameters 

Parameters ResNeXt101 VGG19 ViT 

Optimizer SGD SGD SGD 

Momentum 0.9 0.9 0.9 

Total Params 20,101,194 42,149,194 87,423,754 

Specifically, ResNeXt101 contains 20,101,194 parameters, 

while VGG19 and Vision Transformer are characterized by a 

more extensive architecture, with a total of 42,149,194 

parameters, and 87,423,754 parameters. These baseline 

settings serve as a starting point for the forthcoming 

experiments, allowing for a comparative evaluation of model 

performance and efficiency against the results obtained using 

other hyperparameter configurations. 

In conjunction with these baseline settings, early stopping 

will be implemented with a criterion of patience set to 10 

epochs and a minimum delta of 0.001. This approach aims to 

enhance training efficiency by halting the process if, for 10 

consecutive epochs, there is no significant improvement in the 

loss function beyond the specified threshold. Such a strategy 

not only optimizes computational resources but also 

potentially prevents overfitting, thus positively influencing the 

generalization performance of the models. Consequently, 

integrating early stopping into the training process is 

anticipated to contribute to a more robust evaluation of model 

performance and efficiency, augmenting the findings derived 

from various hyperparameter configurations, bears the 

potential to influence the overall training dynamics and 

subsequently impact the results, warranting careful 

consideration and analysis throughout the experimentation 

phase. 

The choice of the loss function plays a pivotal role in 

guiding the optimization process and ultimately determining 

the model's performance. The selected loss function for the 

task at hand is cross-entropy loss, which is commonly 

employed in classification tasks and particularly suited for 

scenarios where the model predicts probabilities across 

multiple classes. The appropriateness of cross-entropy loss 

stems from its ability to confidently penalize incorrect 

predictions more severely, thereby encouraging the model to 

learn more discriminative features and make accurate 

classifications. 

4.1 Experiment on dataset subset A 

Table 4 displays the key parameters obtained through a 

rigorous process of hyperparameter tuning. This tuning was 

carried out for three distinct models, namely ResNeXt101, 

VGG19 and ViT, which are used in the subsequent 

experiments. These parameters were determined using 

Bayesian optimization and are crucial in defining the 

performance of the models. In particular, the learning rates for 

ResNeXt101, VGG19, and ViT were found to be 0.0001987, 

6.593e-05, and 0.0001308, respectively. The batch sizes 

chosen for the three models were 16 for ResNeXt101, 128 for 

VGG19, and 16 for ViT, while all models were trained for 200 

epochs. It's worth noting that early stopping criteria were 

applied, resulting in the conclusion of training at the 143rd 

epoch for ResNeXt101, the 151st epoch for VGG19, and the 

83rd epochs for ViT. 

Table 4. Parameters obtained from hyperparameter tuning 

Parameters ResNeXt101 VGG19 ViT 

Learning Rate 0.0001987 6.593e-05 0.0001308 

Batch Size 16 128 16 

Epochs (early stop) 200 (143) 200 (151) 200 (83) 

Table 5. Training and validation results on accuracy and loss 

Model ResNeXt101 VGG19 ViT 

Train Loss 0.0010 1.4631 0.0012 

Validation Loss 0.0860 1.4692 0.0552 

Train Accuracy 100.00 99.92 100.00 

Validation Accuracy 98.00 96.00 98.50 

The first experimental phase utilized the optimized 

parameters from Table 4 to conduct experiments on a subset 

of the data A, assessing the performance of pre-trained models 

ResNeXt101, VGG19, and ViT. Notably, all models showed 

significant improvements in accuracy and reductions in loss. 

Details of the loss and accuracy values for both training and 

validation phases are provided in Table 5. In summary, 

ResNeXt101 and ViT achieved remarkably low training losses 

of 0.0010 and 0.0012, with 100.00% training accuracy. 

VGG19 exhibited a slightly higher training loss of 1.4631 but 

maintained a commendable training accuracy of 99.92%. 

During validation, ViT achieved a loss of 0.0552 and an 

accuracy of 98.50%, showcasing its effectiveness in 
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generalization. ResNeXt101 and VGG19 had validation losses 

of 0.0860 and 1.4692, with validation accuracies of 98.00% 

and 96.00%, respectively, demonstrating robust performance. 

These results underscore the effectiveness of the chosen 

hyperparameters and the capabilities of the three models in 

both training and validation phases. 

Table 6 presents the experimental results for accuracy and 

F1-score for three prominent models, ResNeXt101, VGG19, 

and ViT. These metrics are essential for evaluating the models' 

overall performance. ResNeXt101 achieved a remarkable 

accuracy of 99.03%, indicating its high precision in correctly 

classifying data points. Additionally, it recorded an impressive 

F1-score of 0.99, underscoring its effectiveness in both 

precision and recall. ViT and VGG19, while slightly lower in 

accuracy at 99.01% and 97.01%, still demonstrated strong 

classification capabilities. It achieved an F1-score of 0.99 and 

0.97, suggesting its proficiency in achieving a balance 

between precision and recall. These results illustrate the 

excellent performance of all models, with both model 

ResNeXt101 and ViT exhibiting a slight edge in accuracy and 

F1-score, making it a potentially preferable choice for tasks 

that prioritize precision and recall in classification. 

Table 6. Testing result on dataset subset A 

Model Accuracy F1 

ResNeXt101 99.03 0.99 

VGG19 97.01 0.97 

ViT 99.01 0.99 

4.2 Experiment on dataset subset B 

In Table 7, the authors present the parameters obtained 

through a meticulous hyperparameter tuning process for three 

distinct models, ResNeXt101, VGG19. and ViT. These 

parameters are critical in shaping the training and performance 

of the models. For all models, the author determined the 

optimal learning rate, batch size, and the number of training 

epochs. The learning rate for ResNeXt101 was set at 0.0018, 

while VGG19 and ViT used a slightly higher value of 0.0022 

and 0.0112. All models utilized a batch size of 16 during 

training, and the author conducted training for a total of 200 

epochs, implementing an early stopping mechanism at 32 

epochs for ResNeXt101, 42 epochs for VGG19 and 34 epochs 

for ViT. 

Table 7. Parameters obtained from hyperparameter tuning 

Parameters ResNeXt101 VGG19 ViT 

Learning Rate 0.0018 0.0022 0.0112 

Batch Size 16 16 16 

Epochs (early stop) 200 (32) 200 (42) 200 (34) 

In the second experiment, the authors focused on evaluating 

a subset of data labeled as 'B' using hyperparameter settings 

derived from Bayesian optimization results, as outlined in 

Table 7. Employing pretrained ResNeXt101, VGG19, and ViT 

models, significant improvements in accuracy and loss 

reduction were observed. Table 8 provides specific numerical 

values for training and validation loss and accuracy, offering a 

comprehensive overview of model performance. ViT and 

ResNeXt101 exhibit remarkably low training loss of 0.0001 

and 0.0206, respectively, highlighting their capacity to fit the 

training data well. Similarly, VGG19 achieves a respectable 

training loss of 1.4612. Regarding validation loss, 

ResNeXt101 achieves a value of 0.0890, while VGG19 and 

ViT record validation losses of 1.5081 and 0.4611, 

respectively. These results underscore the robust performance 

of the models in generalizing to unseen data, further validating 

the efficacy of the chosen hyperparameter settings and the 

overall success of the experiment. 

Table 8. Training and validation results on accuracy and loss 

Model ResNeXt101 VGG19 ViT 

Train Loss 0.0206 1.4612 0.0001 

Validation 

Loss 
0.0890 1.5081 0.4611 

Train 

Accuracy 
100.00 100.00 100.00 

Validation 

Accuracy 
97.33 96.00 89.17 

Table 9. Testing result on dataset subset B 

Model Accuracy F1 

ResNeXt101 95.31 0.95 

VGG19 93.97 0.93 

ViT 89.97 0.89 

Table 9 presents the experimental results for accuracy and 

F1-score, focusing on three prominent models, ResNeXt101, 

VGG19, and ViT. In these experiments, ResNeXt101 

achieved a commendable accuracy of 95.31%, showcasing its 

ability to correctly classify data instances. Additionally, it 

obtained an F1-score of 0.95, indicating its proficiency in 

striking a balance between precision and recall, which is 

crucial in classification tasks. VGG19 and ViT, while slightly 

lower in accuracy at 93.97% and 89.97%, still demonstrated 

strong performance in data classification. It obtained an F1-

score of 0.93 and 0.89, highlighting its reliability in handling 

classification tasks with a favorable trade-off between 

precision and recall. These results underscore the effectiveness 

of all models ResNeXt101, VGG19, and ViT in the context of 

accuracy and F1-score, offering valuable insights into their 

capabilities for specific tasks. 

4.3 Experiment on combination dataset subset A and B 

Table 10 provides an overview of the hyperparameters 

obtained through a thorough tuning process for the third 

experiment. The three models used, ResNeXt101, VGG19, 

and ViT, have different parameter settings. For ResNeXt101, 

the learning rate was set at 0.0159, while a batch size of 128 

was utilized, and training continued for 200 epochs, with early 

stopping occurring at the 22nd epoch. Meanwhile, VGG19 and 

ViT were configured with a learning rate of 0.0043 and 

0.008679, with a batch size of 32 and 16, and it also trained 

for 200 epochs, but early stopping took place at the 19th epoch 

and 30th epochs. 

Table 10. Parameters obtained from hyperparameter tuning 

Parameters ResNeXt101 VGG19 ViT 

Learning Rate 0.0159 0.0043 0.008679 

Batch Size 128 32 16 

Epochs (early stop) 200 (22) 200 (19) 200 (30) 

In the third experiment, a combination of data from subsets 

A and B was tested using the hyperparameters obtained from 
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Bayesian optimization, as detailed in Table 10. All models 

demonstrated impressive performance improvements, 

exhibiting increased accuracy and reduced loss within each 

epoch. Table 11 presents a comprehensive view of the 

experiment's results, showcasing the training and validation 

metrics. Both the ResNeXt101 and ViT models achieved 

remarkable 100% accuracy in training, with a negligible 

training loss of 0.0000. Moreover, they maintained strong 

accuracies of 98.36% and 97.82% on the validation set, with 

low validation losses of 0.021 and 0.0559, respectively. 

Conversely, the VGG19 model also achieved high training 

accuracy of 100%, albeit with a slightly higher training loss of 

1.4612. In the validation phase, VGG19 demonstrated an 

accuracy of 96.73% with a validation loss of 1.4910. These 

results in Table 11 highlight the exceptional performance of 

both models, emphasizing their suitability for the task at hand. 

Table 11. Training and validation results on accuracy and 

loss 

Model ResNeXt101 VGG19 ViT 

Train Loss 0.0000 1.4612 0.0000 

Validation Loss 0.0210 1.4910 0.0559 

Train Accuracy 100.00 100.00 100.00 

Validation Accuracy 98.36 96.73 97.82 

In Table 12, the authors present the experimental results of 

accuracy and F1-score for three well-established models, 

ResNeXt101, VGG19, and ViT. These results provide 

valuable insights into the performance of these models in the 

context of the task at hand. The ResNeXt101 model achieved 

an impressive accuracy of 99.02% and an F1-score of 0.99, 

indicating its remarkable capability to correctly classify and 

provide a balanced trade-off between precision and recall. 

Similarly, the VGG19 and ViT models displayed a high level 

of accuracy, registering at 99.01% and 988.42, and while its 

F1-score was slightly lower at 0.97amd 0.98, it still showcased 

strong overall performance. These results underscore the 

effectiveness of all models ResNeXt101, VGG19, and ViT in 

accurately and reliably classifying the data, making them 

valuable choices for this task. 

Table 12. Testing result on combination dataset subset A and 

B 

Model Accuracy F1 

ResNeXt101 99.02 0.99 

VGG19 99.01 0.97 

ViT 98.42 0.98 

In comparing sign language recognition models 

ResNeXt101, VGG19, and ViT to the previous HOG-LBP + 

SVM approach on the NUS Hand Posture Dataset-II, notable 

advancements and limitations arise. In Subset A, VGG19 falls 

short while ResNeXt101 and ViT succeed. In Subset B, only 

ResNeXt101 succeeds, with VGG19 and ViT showing 

shortcomings. Combined experiments yield high accuracy, 

indicating overall success. ResNeXt101 consistently 

outperforms other models, though its computational 

complexity and resource-intensive training are notable. ViT 

may struggle with fine-grained spatial information, and 

VGG19's limitations underscore the need for further research 

on model scalability and effectiveness in sign language 

recognition tasks. 

5. CONCLUSIONS AND FUTURE WORKS

In conclusion, the research presented valuable insights into 

the efficacy of deep learning models, particularly ResNeXt101, 

VGG19, and ViT, in hand posture recognition tasks using the 

NUS hand posture dataset II. Through a systematic 

experimental approach, the authors meticulously evaluated the 

performance of these models across different dataset subsets, 

employing rigorous hyperparameter tuning, including 

Bayesian optimization, and performance metrics assessment. 

The key findings underscored the consistent superiority of 

ResNeXt101, which consistently outperformed VGG19 and 

ViT in terms of accuracy and generalization across all 

experiments. However, it is crucial for the authors to concisely 

summarize these key findings to reinforce the main takeaways 

of the research, emphasizing ResNeXt101's remarkable 

performance while acknowledging the nuances of its 

superiority, including the role of Bayesian optimization in 

fine-tuning model parameters. Specifically, ResNeXt101's 

effectiveness in capturing complex spatial features and 

achieving high accuracy in hand posture recognition tasks was 

evident, but it is essential to clarify the context in which it 

outperforms other models, while also acknowledging potential 

limitations such as computational complexity and resource-

intensive training requirements. 

Future research should address current study limitations and 

explore alternative architectures or optimization techniques to 

improve deep learning model scalability and effectiveness in 

sign language recognition. Investigating model interpretability 

and integrating domain-specific knowledge can advance the 

field and enable real-world applications. Utilizing a more 

challenging dataset will push current models' boundaries, 

fostering a deeper understanding of their performance in 

complex scenarios and serving as a benchmark for evaluating 

their efficacy in challenging contexts. Engaging with 

demanding datasets can enhance image classification models' 

applicability in diverse scenarios. 
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