
A New Algorithm for Arabic Document Clustering Utilizing Maximal Wordsets

Khitam A. Salman1* , Hussein K. Khafaji2

1 Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad

10068, Iraq
2 Computer Communication Engineering Department, Al-Rafidain University College, Baghdad 10014, Iraq

Corresponding Author Email: khitam.a.salman@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380307 ABSTRACT

Received: 15 September 2023

Revised: 12 January 2024

Accepted: 29 March 2024

Available online: 21 June 2024

Arabic document clustering (ADC) is a critical task in Arabic Natural Language Processing

(ANLP), with applications in text mining, information retrieval, Arabic search engines,

sentiment analysis, topic modeling, document summarization, and user review analysis. In

spite of the critical needs of ADC, the available ADC algorithms achieved limited success

based on the evaluation metrics used for clustering. This paper proposes a novel method for

clustering Arabic documents. The method leverages Maximal Frequent Wordsets (MFWs).

The MFWs are extracted using the FPMax algorithm, a data mining technique adept at

identifying significant recurring word patterns within the documents. These MFWSs serve

as features for a new clustering approach that groups documents based on content similarity.

Each MFW serves as a data structure housing features, their respective strengths in

clustering, and the corresponding documents, simplifying the clustering process to a mere

measurement of similarity. The proposed approach offers various clustering results for

varying numbers of clusters in one training session. The effectiveness of the proposed

method is assessed using two well-known benchmark datasets (CNN and OSAC), achieving

accuracy of 80% and 81% respectively. This approach offers a promising contribution to

the field of ANLP.

Keywords:

MFWs, Maximal Frequent Wordsets, Arabic

documents clustering, similarity functions,

CNN, OSAC

1. INTRODUCTION

Arabic is a Semitic language. It is most often spoken in

nations where the majority of the population is Muslim. It is

also the language of the "AL-Quran AL-Kareem," the

Muslims’ holy book. Over 400 million people speak Arabic as

their first language, and over 250 million speak it as their

second language, and it is recognized as the official tongue of

states in North Africa and the Middle East [1]. Traditional,

Modern Standard Arabic (MSA), and dialects are the three

main categories of Arabic.

The Arabic language presents unique challenges for

document clustering tasks compared to languages with simpler

structures. Notably, the Arabic script lacks inherent vowel

markings, leading to ambiguity. Additionally, Arabic

morphology features complex derivational prefixes and

suffixes that significantly alter word meaning. These

characteristics necessitate specialized preprocessing

techniques like disambiguation and stemming to overcome

these challenges during document preparation [2, 3].

Document clustering plays a crucial role in data mining and

information retrieval, especially for the vast and ever-growing

volume of Arabic documents online. By grouping documents

based on thematic similarity, clustering facilitates efficient

navigation and analysis of these information resources.

Effective clustering of Arabic documents is essential for

various applications, including information retrieval, text

mining, automatic document categorization and user review

analysis [4].

Document clustering is an unsupervised machine learning

process that groups documents based on similarities by

eliminating the intra-similarity among documents in one group

and increasing the inter-similarity properties among different

groups. This process does not require class labels for the

documents [5]. A challenging task in data and text mining is

identifying hidden, important, and possible patterns in the

document [6]. The most difficult problems in document

clustering can be summed up as coping with massive data

quantities, high dimensionality, and low retrieval precision.

Dealing with large data volumes, high dimensionality, and

low retrieval precision can be summed up as the most

challenging issues when dealing with document clustering [7].

Arabic documents are now readily available online in a variety

of formats, making it difficult to organize them without the aid

of a computer. The clustering of Arabic-language documents

has recently attracted the attention of researchers.

To depict the connection between data points and the

clusters they belong to, hierarchical clustering creates a

structure like a tree. Each data point is initially clustered

separately and iteratively merging smaller clusters into bigger

clusters when the stopping criteria is satisfied. Hierarchical

clustering comes in two forms: agglomerative (bottom-up) and

divisive (top-down).

Partitional clustering divides the data into a predetermined

Revue d'Intelligence Artificielle
Vol. 38, No. 3, June, 2024, pp. 805-813

Journal homepage: http://iieta.org/journals/ria

805

https://orcid.org/0000-0002-6779-3231
https://orcid.org/0000-0002-1830-0568
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380307&domain=pdf

number of distinct, non-overlapping clusters. It aims to keep

the distances between the data points and the cluster centroids

as small as possible. K-means and K-medoids are two

common partitional clustering algorithms. While density-

based clustering, creates clusters by locating regions with a

high data point density. A cluster is defined as a dense zone

surrounded by a sparse region. This type of clustering is

helpful in detecting clusters of arbitrary forms. DBSCAN and

HDBSCAN are examples of this type of clustering algorithms

[8].

Association rule mining (ARM) [9] is a data mining

technique that is used to discover potential hidden patterns

among data. Apriori and FP-Growth are the most widely used

algorithms for extracting all frequent itemsets (FI) and

frequent patterns in datasets, respectively [10]. To extract FI

from large transactions, the Apriori approach is widely utilized.

It works on the assumption that all FI subsets must also be

frequent. It continuously counts the support of items and item

combinations that can be utilized within a transaction and

eliminating any sets that go below a user-defined threshold and

by integrating sets from the previous iteration and validating

them against the transaction, candidate frequent itemsets are

created. Despite being easy to comprehend and utilize, the

Apriori technique can be computationally expensive for

massive transactions and demands several database searches.

On the other hand, the FP-Growth approach is scalable and

utilized to mine frequent item sets in large datasets. The

algorithm stores the frequent item sets in a tree-like data

structure known as the FP-tree. The itemsets are encoded in

the tree after a single run over the dataset to generate it, making

it fast and quick to mine the common itemsets by utilizing

depth-first search to traverse the tree. In order to decrease the

size of the tree and improve the algorithm's scalability and

performance, the divide-and-conquer strategy and pruning

techniques are used. FP-Growth has been shown to be faster

than traditional frequent item set mining algorithms, such as

Apriori, and is widely used in data mining and machine

learning applications.

The conventional frequent itemsets mining algorithms are

computationally extensive and generate voluminous sets of

items. Therefore, maximal frequent itemsets (MFI) approach

is undertaken to overcome the forementioned problems by

significantly reducing the search space. Various algorithms

were proposed for mining MFI, such as MAFIA [11], FPmax

algorithm [12], MaxMining [13], GenMax [14], and MIMA

[15, 16] which dedicated to mine textual MFI from Arabic

documents.

Document clustering plays a vital role in organizing and

analyzing vast collections of Arabic text data. However, the

unique characteristics of the Arabic language, such as the lack

of inherent vowel markings and complex morphology, pose

significant challenges for traditional clustering techniques.

This paper proposes a novel algorithm to Arabic document

clustering that addresses these challenges and offers promising

accuracy.

Our key contribution lies in leveraging Maximal Frequent

Word Sequences (MFWSs) for Arabic document clustering.

By employing the FPMax algorithm, we extract the most

prominent recurring sequences of words within the documents.

These MFWSs capture the thematic content of documents

more effectively compared to individual words, as they

account for the inherent structure and context of the Arabic

language.

The remainder of this paper is organized as follows; the

second section examines previous studies that have used

maximally frequent item sets for document clustering. The

proposed approach is thoroughly explained in Section 3 with

an example, and the experiments and findings are covered in

Section 4. The conclusion is demonstrated in the final section.

2. RELATED WORKS

The interest in Arabic document clustering has increased

recently due to the growing amount of Arabic content on the

Internet, making manual clustering impractical. Our previous

survey [17] on the research of Arabic document clustering

approaches and techniques revealed a limited number of

studies in this area. To the best of our knowledge, no one has

utilized Maximum Frequent Itemset (MFI) for categorizing

Arabic documents. So far, only one study has used Frequent

Itemsets (FI) to cluster Arabic documents, using a hierarchical

clustering approach based on N-grams [18]. The clustering

accuracy achieved by the Frequent Itemset-based Hierarchical

Clustering (FIHC) was 70%, higher than the 63% accuracy

obtained for clustering European languages. The results of the

research are not confident due to the lack of information about

the dataset used for experiments. Also, the use of only one

dataset is insufficient to judge the efficiency and predict the

behavior of an algorithm

In literature [19], a study investigated an approach that used

K-means and particle swarm optimization (PSO) to group

Arabic documents. K-means is sensitive to the selection of the

initial clusters producing different results according to the

initial points selected. This issue has been overcome by using

PSO to analyze the entire dataset and identify the best starting

points for K-means and achieve good clustering results. This

approach inherited the drawbacks of PSO and K-means such

as sensitivity to initial parameters, computational complexity,

and convergence to local optima.

Alhawarat and Hegazi [20] utilized Latent Dirichlet

Allocation (LDA) and K-means for document clustering,

finding that normalization of text data led to substantial

improvements in clustering outcomes. When the combined

method was applied with normalization, it achieved higher

scores (29% and 40% F-score for BBC and CNN respectively)

compared to the traditional approach (24% and 29% for the

same datasets). However, LDA may face scalability

challenges when applied to large-scale datasets, as the model's

complexity increases with the number of documents and topics.

Also, LDA requires tuning of hyperparameters such as the

number of topics (K), Dirichlet priors, and sampling

techniques. Improper selection of hyperparameters can impact

the quality of clustering results.

Sangaiah [21] proposed unsupervised clustering for Arabic

documents. He compared three approaches: supervised, semi-

supervised, and unsupervised. These methods utilized K-

means, incremental K-means, threshold + K-means, and K-

means with dimensionality reduction (DR) for clustering.

Unsupervised clustering achieved 70% and 43% for F-

measure and entropy, respectively, and it is regarded as

effective for Arabic document clustering.

Although k-means is effective, it is sensitive to selecting the

initial point, and this may hinder the performance. PSO-K-

means solve this issue but poses computation costs. When the

semantic is crucial, LDA is sufficient, but it adds complexity.

K-means with dimensionality reduction is effective, but

information loss may occur during reduction.

806

Our clustering strategy effectively reduces dimensions in

Arabic documents, ensuring accurate text analysis and high-

speed reduction of dimensions for effective clustering results,

as we will describe in the upcoming sections.

3. THE PROPOSED SYSTEM

The Maximal Frequent Wordset-Based Arabic Document

Clustering System (MFW-ADC) is presented in this paper.

MFW leverages the FPMax algorithm to extract informative

MFWs from Arabic documents. These MFWs capture the

thematic content and inherent structure of the language,

enabling effective document clustering. The model comprises

three modules: preprocessing, dimensionality reduction and

MFW mining, and clustering (as shown in Figure 1). These

modules are described in detail in the subsequent sections.

Figure 1. System architecture

3.1 Preprocessing module

Document preprocessing is a crucial step in natural

language analysis, ensuring trustworthy and reproducible

textual data. It comprises four stages: tokenization,

normalization, punctuation and stopword removal, and

stemming. Tokenization divides a document into separate

words. Normalization converts letters into one form, while

special characters and stopword removal reduce data

dimensionality and improve analysis accuracy. Stemming

generates a morphological variant of the base word, ensuring

the same root word is considered the same entity. In Arabic,

several stemming algorithms have been developed, such as

Tashapheen, Khoja [22], Light Stemmer [23], etc., to achieve

optimal results. The algorithm is depicted in Algorithm 1.

Table 1. shows an explanation of the variables, symbols, and

functions used in the proposed algorithms.

Algorithm 1. Dataset Preprocessing algorithm

Input: D: Dataset (Document text), special_char_list,

normalized_letters_list

Output: preprocessed_dataset

Begin

For each document d in D Do

Read (d)

td=tokenization(d)

For each token t in td Do

//Check token letter

If letter in normalized_letters_list Do {

norm_t=normalization(token);

If norm_t in special_char_list Do

Remove(norm_t);

Else{ stemmed_t= stemming(norm_t);

write stemmed_t to preprocessed_d;}}

Next token

preprocessed_dataset ∪= preprocessed_d;

 Next document

Return preprocessed_dataset;

End

Table 1. Variables and functions explanation

Seq Variable/ Function Meaning

1 D Arabic document dataset

2 special_char_list, [.... ،""، ،! ،؟]

3 normalized_letters_list
 [ا] to [أ، إ، آ، ء]

 [ه] to [ت، ة، ـة]

4 preprocessed_dataset
Arabic document dataset

after the preprocessing.

5 d A document in D

6 DID
A file contains the tokens

of d.

7 Tokenization function
A function to tokenize a

document d.

8 normalization
A function to normlize a

lettet

9 Stemming
A stemming function to

extract a word’s root

10 minsupp Minimum support

11 𝑇𝑑𝑜𝑐 Fp tree of document

12 MFWT
MFW tree of maximum

frequent wordsets

13 MFW Set of all the mined MFW

14 P Path

15 Best_mfw Best cluster

16 filtered_clusters
A list containing unique

clusters

17 Dinitial_cluster

information about the

clusters (mfw (cluster

label), ID,

DID,mfw_support)

18 Merge_cluster
A function to merge

clusters

19 belong_cluster

A percentage at which a

document belongs to a

cluster

20 doc_feature Document feature vector

3.2 Dimension reduction and wordsets mining module

This module comprises two steps: dimension reduction and

wordset mining. Dimension reduction is accomplished in two

stages. The first phase is done by representing the

preprocessed documents using TF/IDF approach and the

second stage is accomplished by utilizingthe FPmax algorithm

to extract the MFWs according to the provided minimum

support.

TF/IDF is one of the best metrics used to show how

significant a word is to a document in a dataset. Two factors

are considered when calculating TF/IDF: word frequency

(how many times a word appears in a specific document) and

the inverse document frequency (how often this word appears

in all document in the dataset). This technique optimizes

frequent, rare words in a document to highlight discriminative

features, ensuring the content is understood while excluding

irrelevant or common words. Eqs. (1) and (2) show how to

calculate TF-IDF.

𝐼𝐷𝐹(𝑤) = 𝑙𝑜𝑔(𝑁/𝑛_𝑤) (1)

𝑇𝐹 − 𝐼𝐷𝐹(𝑤, 𝑑) = 𝑇𝐹(𝑤, 𝑑) ∗ 𝐼𝐷𝐹(𝑤) (2)

807

where, TF(w,d) is the frequency of word w in document d (i.e.,

the number of times word w appears in document d) and

IDF(w) is the inverse document frequency of word w, N is the

total number of documents in the corpus, and n_w is the

number of documents in the corpus that contain word w.

Our dataset consists of Arabic documents. Each document

is identified by a unique document identifierDID and a list of

preprocessed words (wordlist). To reduce the data complexity,

Fpmax algorithm [12] is used to discover the most frequent

word patterns (MFWs) within the documents. This technique

relies on two key parameters: minimum support and maximum

wordset length. Adjusting these parameters helps in reducing

the data dimentionality while still obtaining the crucial

inormation from the documents. This will enhance the

clustering effeciency and accuracy. The algorithm used is

shown in Algorithm 2.

Algorithm 2. Mining maximal frequent wordsets algorithm

fpmax (𝑇𝑑𝑜𝑐)

Input: preprocessed_dataset, minsupp, max_mfw-len, 𝑇𝑑𝑜𝑐 ,

𝑀𝐹𝑊𝑇, Head: a linked list of words.

Output: MFWT that contains all the MFWs, DID sets

Begin

Read preprocessed_dataset

if 𝑇𝑑𝑜𝑐 only contains a single path P

insert 𝐻𝑒𝑎𝑑 ∪ 𝑃 into 𝑀𝐹𝑊𝑇

else for each w in Header-table of 𝑇𝑑𝑜𝑐

Append w to Head

Construct the Head-pattern base

Tail = {𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑏𝑎𝑠𝑒}

subset_checking(𝐻𝑒𝑎𝑑 ∪ 𝑇𝑎𝑖𝑙);
if 𝐻𝑒𝑎𝑑 ∪ 𝑇𝑎𝑖𝑙 is not in 𝑀𝐹𝑊

construct the FP-tree 𝑇𝐻𝑒𝑎𝑑

call Fpmax(𝑇𝐻𝑒𝑎𝑑)

remove w from 𝐻𝑒𝑎𝑑

3.3 Clustering module

This module outlines four key steps: primary clustering,

merging equal clusters, hard clustering, and final clustering,

which are detailed in the following subsections.

3.3.1 Primary clustering

Initial clusters are created using the Fpmax algorithm's

MFWs, with words as labels. The best-fit clusters are

determined using similarity functions such as Euclidean

distance, cosine similarity, Manhattan distance, overlap, and

Jaccard index, as represented by Eqs. (3) to (7). The length of

the cluster’s label, i.e., MFW’s length, will be added to the

similarity function. The purpose of adding this factor is to

assign the document to the most similar and largest clusters.

The process of determining initial clusters is illustrated in

algorithm 3.

𝑑(𝑑, 𝑚𝑓𝑤) 𝑠𝑞𝑟𝑡(𝑠𝑢𝑚((𝑑𝑖 − 𝑚𝑓𝑤𝑖)
2)) + |𝑚𝑓𝑤| (3)

𝑐𝑜𝑠(𝜃) = ((𝑑 ∗ 𝑚𝑓𝑤)/||𝑑|| ∗ ||𝑚𝑓𝑤||) + |𝑚𝑓𝑤| (4)

𝑑(𝑑, 𝑚𝑓𝑤) = ∑|𝑑𝑖 − 𝑚𝑓𝑤𝑖| + |𝑚𝑓𝑤| (5)

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐷, 𝑚𝑓𝑤) = [
|𝐷 ∩ 𝑚𝑓𝑤|

𝑚𝑖𝑛 (|𝐷|, |𝑚𝑓𝑤)|
] + |𝑚𝑓𝑤| (6)

𝐽(𝐷, 𝑚𝑓𝑤) = [
|𝐷 ∩ 𝑚𝑓𝑤|

|𝐷 ∪ 𝑚𝑓𝑤|
] + |𝑚𝑓𝑤| (7)

Algorithm 3. Primary clustering algorithm

Input: MFWs, DID sets

Output: initial clusters

Begin

Initial_clusters = []

For d_i in preprocessed_dataset:

//Determine best initial cluster (best MFW)

best_mfw = None

For mfw_i in MFW:

intersection = find_intersection(mfw_i, d_i)

if intersection == 0 {score = 0}

else{score = similarity_metric(mfw_i, d_i)

+|mfw_i|}

//End if

similarity = best_score (depending on similarity

metrics)

best_mfw = mfw_i

initial_clusters ∪= (best_mfw, d_i)

End For

Next d_i

End for

Return initial_clusters

End

3.3.2 Merging equal clusters

It's worthy to mention that, after identifying the initial

clusters, it is possible to identify numerous clusters with

similar DID sets. After that, these clusters can be combined

using the approach illustrated in Algorithm 4.

Algorithm 4. Merging equal clusters algorithm

Input: MFWs, DID sets

Output: filtered clusters

Begin

filtered_clusters = []

For i=0 to |MFWs| -1 Do

For j =i+1 to |MFWs| -1 Do

//determine if two clusters contain same DID (Same

documents)

If (DID_i == DID_j):

merge_cluster(MFW_i, MFW_j)

filtered_clusters∪= (MFW_i, filtered_clusters)

End for

End for

Return filtered_clusters

End

3.3.3 Hard clustering

The proposed algorithm uses hard clustering to assign

documents to specific clusters based on their similarity. This

process calculates the percentage of belonging between

documents and MFWs, retaining the highest-percentage-

related document and removing the lowest-percentage-related

document. The cluster with significant support can incorporate

a document when competing with other clusters. The

algorithm utilized for hard clustering implementation is

depicted in algorithm 5.

Algorithm 5. Hard clustering algorithm

Input: Dinitial_cluster(information about the clusters

(mfw(cluster label),DID, mfw_support, ocument_feature

Output: hrad clusters

Begin

for i=0 to |Dinitial_cluster| -1 Do

808

for j = i+1 to |Dinitial_cluster| -1 Do

// check if documents are assigned to many clusters

value = intersection(initial_cluster[i, DID],

initial_cluster[j, DID])

if value !=0 Do

//calculate document belong percentage

belong_cluster_i=intersection(cluster_i_mfw,

doc_feature)

belong_cluster_j = intersection(cluster_i_mfw,

doc_feature)

if (belong_cluster_ i) > (belong_cluster_j) Do

remove(DID, cluster_j)

else if (belong_ cluster_i) < (belong_ cluster_j)

remove(DID, cluster_i)

else: //compare clusters size

if |cluster_i| > |cluster_j| Do

remove(DID, cluster_j)

else if |cluster_i| < |cluster_j|

remove(DID, cluster_i)

else : if support(cluster_i) > support(cluster_j)

remove(DID, cluster_j)

else if support(cluster_i) < support(cluster_j)

remove(DID, cluster_j)

else {remove(DID, cluster_j)}

end if

end if

end if

end for

end if

end for

end for

End

3.3.4 Final clustering

The final step involves merging clusters (MFWs) from

previous stages to create final clusters. The desired number of

clusters is specified, and the clusters are merged with the most

similar one based on their similarity value. One of the

measures described in Section 3.2 is used to calculate the

similarities between the MFWs. The length of the MFW is a

significant factor that ensures a cluster will be merged with the

longest and most similar one. The employed algorithm is

depicted in algorithm 6.

Algorithm 6. Final clustering algorithm

Input: MFWs, DID sets

Output: final_clusters

Begin

Final_cluster=[]

For each mfw_i in MFWs:

For each mfw_j in MFWs:

Intersection = intersection(mfw_i, mfw_j)

If Intersection == 0 Do: {score = 0}

Else:

score = similarity_metric(mfw_i, mfw_j) +

len(mfw_j)

append(score_list,[mfw_i,mfw_j,score])

similarity = best_score(score_list) //

depending on similarity metrics

mfw_i = merge(mfw_i, mfw_j) // merge the

clusters’ labels

DID = merge_cluster(DID_i, DID_j)

final_clusters = append(mfw_i)

End for

End for

Return final_clusters

End

3.4 Illustrative example

Suppose we have the following dataset:

Dataset = [[G, I], [F, E, G, I, A], [H, A, D, C, E, G, F], [B,

I, F], [H, B, E, F], [H, F], [C, D, H, G]], where A, B, C, D, E,

F, G, H, and I represent preprocessed words in the document

dataset.

By applying Algorithm 2 that was mentioned in the previous

section with a minimum support of 0.2, the mined MFWs and

their corresponding DID support values are shown in Table 2.

Table 2. Mined MFWs

MFWs DID Support

{A, G, E, F} [0, 1, 2, 3, 4, 5, 6] 0.285714

{F, B} [1, 2, 3, 4, 5] 0.285714

{G, D, C, H} [0, 1, 2, 4, 5, 6] 0.285714

{F, E, H} [1, 2, 3, 4, 5, 6] 0.285714

{G, I} [0, 1, 2, 3, 6] 0.285714

{F, I} [0, 1, 2, 3, 4, 5] 0.285714

When algorithm 3 is applied to the mined MFWs, the initial

clusters obtained are shown in Table 3.

Table 3. Initial clusters

MFWs DID Support

{A, G, E, F} [1, 2] 0.285714

{F, B} [3] 0.285714

{G, D, C, H} [2, 6] 0.285714

{F, E, H} [4, 5] 0.285714

{G, I} [0] 0.285714

{F, I} [3] 0.285714

From Table 3, we can see that document 2 is assigned to two

clusters (cluster 1 and cluster 3), and we can also find two

equal clusters, i.e., two clusters contain document 3. By

applying algorithms 4 and 5 for merging equal clusters and

hard clustering, respectively, we obtain Table 4.

Table 4. Merging and hard clustering

MFWs DID Support

{A, G, E, F} [1, 2] 0.285714

{I, F, B} [3] 0.285714

{G, D, C, H} [6] 0.285714

{F, E, H} [4, 5] 0.285714

{G, I} [0] 0.285714

By determining the number of clusters to 3, the final

clustering process is depicted in Table 5.

Table 5. Final clustering

MFWs DID Support

{F, H, A, G, E} [1, 2, 4,5] 0.285714

{I, F, G, B} [3, 0] 0.285714

{G, D. C, H} [6] 0.285714

809

4. RESULTS AND DISCUSSION

Using Python code running on a core i7 computer with

16GB of RAM, the suggested technique was examined on

several datasets. The datasets and assessment metrics utilized

for evaluating the effectiveness of the clustering method are

described more thoroughly in the following sections.

4.1 Datasets

The proposed algorithm is implemented on two datasets CNN

and OSAC [24]. Details of these datasets are briefly described

in the following Table 6.

Table 6. Datasets description

Dataset No. Classes Total No.Doc. Classes detail

CNN 6 4689
Business (836), Entertainment (474), Middle East (1462), Scitech (526), Sport (381), World

(1010)

OSAC 10 22465
Business (3102), History (3233), family (3608), Religion (3171), Sport (2419), Health (2296),

Astronomy (557), Law (944), Stories (762), Foods (2373)

4.2 Experiments and results evaluation

This paper uses precision, recall, and F-score as assessment

metrics in clustering to evaluate the performance of a proposed

technique. Precision measures the accuracy of document

clustering by calculating the percentage of correctly assigned

documents, while recall quantifies the completeness of the

clustering. F-score balances precision and recall, indicating the

accuracy and comprehensiveness of document clustering. A

high F-score indicates high precision and recall, indicating the

majority of documents are correctly assigned. These metrics

are calculated using the following equations:

𝑅𝑒𝑐𝑎𝑙𝑙(|𝐶𝐿𝑖 , 𝐶𝑗|) =
𝑛𝑖𝑗

|𝐶𝐿𝑗|
(8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(|𝐶𝐿𝑖, 𝐶𝑗|) =
𝑛𝑖𝑗

|𝐶𝑗|
(9)

𝑓 − 𝑠𝑐𝑜𝑟𝑒(𝐶𝐿𝑖 , 𝐶𝑗)

=
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙(|CLi, Cj|) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(|𝐶𝐿𝑖 , 𝐶𝑗|)

𝑅𝑒𝑐𝑎𝑙𝑙(|CLi, Cj|) + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(|𝐶𝐿𝑖 , 𝐶𝑗|)

(10)

where, CL is the original class of the dataset. nij is the number

of documents of class CLi that are presented in cluster Cj. |CLi|

is the number of documents in class i and |Cj| is the number of

documents in cluster j.

The experiments were repeated with different

predetermined minimum support value (minsupp) for different

number of clusters of each of the selected datasets i.e. (CNN_3,

CNN_4, CNN_5, CNN_6, OSAC_3, OSAC_4, OSAC_5, and

OSAC_10). Table 7 and Table 8 show the experiments details.

The selection of a similarity metric can significantly impact

clustering results. Across various cluster sizes (3, 4, 5, and 6),

for the CNN dataset, Euclidean distance, overlap similarity,

and Jaccard index yielded similar outcomes. However, the best

clustering results are obtained with Euclidean distance with

different minimum support values for each cluster size (0.42

for CNN-3, varying between 0.38 and 0.40 for CNN-4 and

CNN-6) as shown in Table 7.

In contrast, the best performance for the OSAC dataset is

obtained using cosine similarity and occasionally Manhattan

distance, with minimum support values ranging from 0.40 to

0.42. This led to the conclusion that the optimal similarity

metric depends on the specific dataset. The results depicted in

Table 8.

Table 7. F-measure for CNN dataset

No. Clusters Similarity Metric
F-Measure for Minimum Support minSupp =

0.43 0.42 0.41 0.40 0.39 0.38

3

Euclidean 0.75 0.76 0.75 0.74 0.75 0.75

Overlap 0.74 0.74 0.75 0.75 0.75 0.75

Jaccard index 0.66 0.74 0.75 0.75 0.75 0.75

Cosine 0.71 0.70 0.72 0.72 0.72 0.72

Manhattan 0.70 0.70 0.70 0.71 0.72 0.72

4

Euclidean 0.78 0.78 0.79 0.80 0.79 0.80

Overlap 0.72 0.77 0.78 0.78 0.78 0.79

Jaccard index 0.68 0.73 0.77 0.78 0.80 0.77

Cosine 0.70 0.68 0.70 0.70 0.70 0.71

Manhattan 0.68 0.70 0.70 0.70 0.70 0.71

5

Euclidean 0.77 0.77 0.79 0.78 0.80 0.79

Overlap 0.77 0.77 0.77 0.78 0.78 0.80

Jaccard index 0.78 0.79 0.78 0.78 0.80 0.78

Cosine 0.69 0.68 0.72 0.72 0.72 0.71

Manhattan 0.70 0.70 0.70 0.70 0.70 0.70

6

Euclidean 0.77 0.77 0.79 0.78 0.80 0.79

Overlap 0.76 0.77 0.79 0.80 0.79 0.79

Jaccard index 0.71 0.71 0.71 0.77 0.73 0.71

Cosine 0.71 0.71 0.71 0.72 0.72 0.72

Manhattan 0.70 0.70 0.70 0.70 0.71 0.70

810

Table 8. F-measure for OSAC dataset

No. Clusters Similarity Metric
F-Measure for Minimum Support minSupp =

0.45 0.44 0.43 0.42 0.41 0.40

3

Euclidean 0.70 0.70 0.70 0.70 0.71 0.72

Overlap 0.71 0.70 0.72 0.72 0.72 0.72

Jaccard index 0.70 0.70 0.70 0.71 0.72 0.71

Cosine 0.77 0.72 0.78 0.78 0.77 0.80

Manhattan 0.77 0.77 0.78 0.79 0.77 0.80

4

Euclidean 0.71 0.71 0.71 0.72 0.72 0.72

Overlap 0.72 0.70 0.70 0.70 0.72 0.72

Jaccard index 0.65 0.68 0.70 0.70 0.71 0.71

Cosine 0.73 0.78 0.77 0.78 0.77 0.80

Manhattan 0.62 0.62 0.64 0.66 0.69 0.69

5

Euclidean 0.66 0.66 0.69 0.70 0.71 0.71

Overlap 0.60 0.68 0.66 0.69 0.70 0.71

Jaccard index 0.65 0.72 0.67 0.69 0.71 0.70

Cosine 0.77 0.73 0.77 0.80 0.77 0.80

Manhattan 0.72 0.73 0.75 0.75 0.76 0.78

10

Euclidean 0.70 0.69 0.70 0.70 0.70 0.71

Overlap 0.76 0.72 0.70 0.70 0.72 0.75

Jaccard index 0.62 0.64 0.61 0.65 0.68 0.68

Cosine 0.78 0.78 0.80 0.80 0.81 0.80

Manhattan 0.61 0.65 0.69 0.71 0.73 0.73

Table 9. Comparison of the suggested approach and related work

Ref. Author Approach Dataset
Evaluation Metric

Type Percentage%

[18]
Al-sarrayrih and Al-

Shalabi
FIHC Built in house DS F-measure 70

[19] Daoud et al. PSO-Kmeans

BBC

CNN

OSAC

F-measure

33

52

54

[20] Alhawarat and Hegazi LDA-Kmeans

BBC
F-measure

Purity

29

58

59

40
CNN

F-measure

Purity

[21] Sangaiah et al.

K-means

Set of doc.

Entropy

F-measure
45

70

34

43 Incremental K-means
Entropy

F-measure

The proposed approach MFWs
CNN

OSAC
F-measure

80

81

The results presented in Table 7 and Table 8 shows that the

minimum support threshold can positively affect the results

because it involves the process of choosing the discriminative

features, so it clear that the low-level supports provide such

features. Also, the Euclidean similarity metric mostly provides

best results of F-score due to its appropriateness for the

representation of maximal wordsets. The high value of F-score

Indicates that the proposed algorithm's performance is good in

terms of balancing precision and recall. Also, it suggests that

the model is effectively identifying true positives while

minimizing false positives and false negatives, implying that

the behavior of the proposed algorithm has a good trade-off

between precision (accuracy of positive predictions) and recall

(sensitivity to true positives), resulting in reliable and balanced

clustering outcomes.

The proposed algorithm is compared with the studies

mentioned in Section 2, and the results showed that our

algorithm achieved better clustering results than these works.

When comparing it with the model presented in the study [18]

it is found that using frequent itemsets for the clustering

process leads to a voluminous number of itemsets, which in

turn increases the search space and the computation time.

These problems are overcome in our proposed algorithm by

using maximal frequent wordsets, which shrink the search

space and eliminate the computation time.

Daoud et al. [19] enhanced the selection of the initial

clusters by combining K-means with PSO to scan the entire

search space. The method supposes that each particle of the

swarm represents the centroid of the clusters. The fitness

function is minimized at each iteration by measuring the local

best position and the global best position. In our proposed

algorithm, as we mentioned before, the search space is reduced

by using the user-defined threshold to mine MFWs, which will

be the search space that will be scanned. Furthermore, the

results achieved by us are better than those provided by this

study for the same dataset.

K-means and LDA were used in literature [20] for clustering

and topic modeling. The documents are represented as a bag

of words, and then TF-IDF is applied to the document vector

space to eliminate redundant data; afterwards, the data is

normalized using Euclidean distance. As a last step, k-means

was used for document clustering. On the other hand, topics

are modeled using the same normalized dataset as an input to

the LDA. The result achieved by this study is less than that

811

achieved by our model for the CNN dataset. Clustering Arabic

documents was accomplished using either unsupervised or

semi-supervised approaches suggested by A. K. Sangaiah [21].

K-means or incremental K-means were used for these

approaches, and the clustering results were evaluated using the

F-measure and entropy. The comparison is figured out Table

9.

It is a noteworthy accomplishment to obtain an F-score

value in Arabic document clustering of more than 80%, as this

shows that the suggested method performs well in terms of

recall and precision. Such a score indicates:

High Accuracy: An F-score of more than 80% is a strong

indication of the system's accuracy in correctly clustering

Arabic documents because the F-score is a metric that strikes

a balance between precision and recall.

Efficient Clustering: A high F-score indicates that the

suggested method efficiently clusters related Arabic

documents while reducing false positives and

misclassifications.

Robustness: The robustness and generalizability of the

algorithm are demonstrated by its consistent achievement of

an F-score above 80% in a variety of datasets and

circumstances.

Comparative Advantage: The proposed algorithm performs

better than other algorithms that usually yield F-score values.

5. CONCLUSIONS

In this paper, we introduce a novel approach for clustering

Arabic documents. The method utilizes the maximal frequent

word sets discovered by the Fpmax algorithm to achieve

effective clustering results. This technique addresses the

challenge of high-dimensionality datasets by employing

MFWs for efficient dimension reduction. The evaluation of the

proposed method is done on two benchmark datasets, CNN

and OSAC. The experiments revealed different cluster

configurations by tuning the specified threshold and the

number of clusters. Hence, a diverse set of clustering outcomes

result. These promising results contribute to the field of ANLP

and encourage further exploration of diverse techniques for

enhanced Arabic document clustering. In the future work, we

aim to apply other data mining techniques, evaluate their

impact for clustering purposes, and evaluate the clustering of

Arabic documents.

REFERENCES

[1] Salloum, S.A., AlHamad, A.Q., Al-Emran, M., Shaalan,

K. (2018). A survey of Arabic text mining. Intelligent

natural language processing: Trends and Applications,

417-431. https://doi.org/10.1007/978-3-319-67056-0_20

[2] Al Sbou, A.M., Hussein, A., Talal, B., Rashid, R.A.

(2018). A survey of Arabic text classification models.

International Journal of Electrical and Computer

Engineering, 8(6): 4352-4355.

https://doi.org/10.11591/ijece.v8i6.pp.4352-4355

[3] Zitouni, I. (2014). Natural Language Processing of

Semitic Languages. Heidelberg: Springer.

[4] Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe,

E.D., Gutierrez, J.B., Kochut, K. (2017). A brief survey

of text mining: Classification, clustering and extraction

techniques. arXiv preprint arXiv:1707.02919.

https://doi.org/10.48550/arXiv.1707.02919

[5] Witten, I.H., Frank, E., Hall, M.A., Pal, C.J. (2017).

Moving on: Applications and beyond. Data Mining, 503-

532. https://doi.org/10.1016/B978-0-12-804291-

5.00013-1

[6] Chen, Z.L. (2022). Research and application of

clustering algorithm for text big data. Computational

Intelligence and Neuroscience, 2022: 7042778.

https://doi.org/10.1155/2022/7042778

[7] Afzali, M., Kumar, S. (2019). Text document clustering:

issues and challenges. In 2019 International Conference

on Machine Learning, Big Data, Cloud and Parallel

Computing (COMITCon), Faridabad, India, 2019, pp.

263-268.

https://doi.org/10.1109/COMITCon.2019.8862247

[8] Xu, D., Tian, Y. (2015). A comprehensive survey of

clustering algorithms. Annals of Data Science, 2: 165-

193. https://doi.org/10.1007/s40745-015-0040-1

[9] Hamdad, L., Benatchba, K. (2021). Association rules

mining. SN Computer Science, 2: 449.

https://doi.org/10.1007/s42979-021-00819-x

[10] Ai, D., Pan, H., Li, X. Gao, Y.X., He, D. (2018).

Association rule mining algorithms on high-dimensional

datasets. Artificial Life and Robotics. 23: 420-427.

https://doi.org/10.1007/s10015-018-0437-y

[11] Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu,

T. (2005). MAFIA: A maximal frequent itemset

algorithm. IEEE Transactions on Knowledge and Data

Engineering, 17(11): 1490-1504.

https://doi.org/10.1109/TKDE.2005.183

[12] Grahne, G., Zhu, J. (2003). High Performance Mining of

Maximal Frequent Itemsets Gösta.

https://api.semanticscholar.org/CorpusID:13264349.

[13] Wang, H. (2015). MaxMining: A novel algorithm for

mining maximal frequent itemset. Applied Mechanics

and Materials, 713: 1765-1768.

https://doi.org/10.4028/www.scientific.net/amm.713-

715.1765

[14] Gouda, K., Zaki, M.J. (2001). Efficiently mining

maximal frequent itemsets. In Proceedings 2001 IEEE

International Conference on Data Mining, San Jose, CA,

USA, pp. 163-170.

https://doi.org/10.1109/ICDM.2001.989514

[15] Hamid, Z., Khafaji, H.K. (2021). Classification of Arabic

documents depending on maximal frequent itemsets.

Journal of Physics: Conference Series, 1804(1): 012009.

https://doi.org/10.1088/1742-6596/1804/1/012009

[16] Khafaji, H.K. (2021). A new algorithm for extracting

textual maximal frequent itemsets from Arabic

Documents. Journal of Physics: Conference Series,

1773(1): 012012. https://doi.org/10.1088/1742-

6596/1773/1/012012

[17] Salman, K.A., Khafaji, H.K. (2022). Arabic document

clustering: A survey. In 22022 4th International

Conference on Current Research in Engineering and

Science Applications (ICCRESA), Baghdad, Iraq, pp.

59-64.

https://doi.org/10.1109/ICCRESA57091.2022.1035251

1

[18] Al-sarrayrih, H., Al-Shalabi, R. (2009). Clustering arabic

documents using frequent itemset-based hierarchical

clustering with an n-grams. Microsoft Word - 520-Paper-

Haytham (zuj.edu.jo).

[19] Daoud, A.S., Sallam, A., Wheed, M.E. (2018).

812

https://www.zuj.edu.jo/conferences/ICIT09/PaperList/Papers/Natural%20Language%20Processing/520-Paper-Haytham.pdf
https://www.zuj.edu.jo/conferences/ICIT09/PaperList/Papers/Natural%20Language%20Processing/520-Paper-Haytham.pdf

Improving Arabic document clustering using K-means

algorithm and Particle Swarm Optimization. In 2017

Intelligent Systems Conference (IntelliSys), London, UK,

pp. 879-

885.https://doi.org/10.1109/IntelliSys.2017.8324233

[20] Alhawarat, M., Hegazi, M. (2018). Revisiting k-means

and topic modeling, a comparison study to cluster Arabic

documents. IEEE Access, 6: 42740-42749.

https://doi.org/10.1109/ACCESS.2018.2852648

[21] Sangaiah, A.K., Fakhry, A.E., Abdel-Basset, M., El-

henawy, I. (2019). Arabic text clustering using improved

clustering algorithms with dimensionality reduction.

Cluster Computing, 22: 4535-4549.

https://doi.org/10.1007/s10586-018-2084-4

[22] Mamoun, R., Ahmed, M. (2016). Arabic text stemming:

Comparative analysis. In 2016 Conference of Basic

Sciences and Engineering Studies (SGCAC), Khartoum,

Sudan, pp. 88-93.

https://doi.org/10.1109/SGCAC.2016.7458011

[23] Larkey, L.S., Ballesteros, L., Connell, M.E. (2007). Light

Stemming for Arabic Information Retrieval. In: Soudi,

A., Bosch, A.v., Neumann, G. (eds) Arabic

Computational Morphology, pp. 221-243.

https://doi.org/10.1007/978-1-4020-6046-5_12

[24] Saad, M.K., Ashour, W. (2010). OSAC: Open source

Arabic corpora. In e 6th International Conference on

Electrical and Computer Systems (EECS’10), Lefke,

North Cyprus. https://doi.org/10.13140/2.1.4664.9288

813

