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Arabic document clustering (ADC) is a critical task in Arabic Natural Language Processing 

(ANLP), with applications in text mining, information retrieval, Arabic search engines, 

sentiment analysis, topic modeling, document summarization, and user review analysis. In 

spite of the critical needs of ADC, the available ADC algorithms achieved limited success 

based on the evaluation metrics used for clustering. This paper proposes a novel method for 

clustering Arabic documents. The method leverages Maximal Frequent Wordsets (MFWs). 

The MFWs are extracted using the FPMax algorithm, a data mining technique adept at 

identifying significant recurring word patterns within the documents. These MFWSs serve 

as features for a new clustering approach that groups documents based on content similarity. 

Each MFW serves as a data structure housing features, their respective strengths in 

clustering, and the corresponding documents, simplifying the clustering process to a mere 

measurement of similarity. The proposed approach offers various clustering results for 

varying numbers of clusters in one training session. The effectiveness of the proposed 

method is assessed using two well-known benchmark datasets (CNN and OSAC), achieving 

accuracy of 80% and 81% respectively. This approach offers a promising contribution to 

the field of ANLP.  
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1. INTRODUCTION

Arabic is a Semitic language. It is most often spoken in 

nations where the majority of the population is Muslim. It is 

also the language of the "AL-Quran AL-Kareem," the 

Muslims’ holy book. Over 400 million people speak Arabic as 

their first language, and over 250 million speak it as their 

second language, and it is recognized as the official tongue of 

states in North Africa and the Middle East [1]. Traditional, 

Modern Standard Arabic (MSA), and dialects are the three 

main categories of Arabic. 

The Arabic language presents unique challenges for 

document clustering tasks compared to languages with simpler 

structures. Notably, the Arabic script lacks inherent vowel 

markings, leading to ambiguity. Additionally, Arabic 

morphology features complex derivational prefixes and 

suffixes that significantly alter word meaning. These 

characteristics necessitate specialized preprocessing 

techniques like disambiguation and stemming to overcome 

these challenges during document preparation [2, 3]. 

Document clustering plays a crucial role in data mining and 

information retrieval, especially for the vast and ever-growing 

volume of Arabic documents online. By grouping documents 

based on thematic similarity, clustering facilitates efficient 

navigation and analysis of these information resources. 

Effective clustering of Arabic documents is essential for 

various applications, including information retrieval, text 

mining, automatic document categorization and user review 

analysis [4]. 

Document clustering is an unsupervised machine learning 

process that groups documents based on similarities by 

eliminating the intra-similarity among documents in one group 

and increasing the inter-similarity properties among different 

groups. This process does not require class labels for the 

documents [5]. A challenging task in data and text mining is 

identifying hidden, important, and possible patterns in the 

document [6]. The most difficult problems in document 

clustering can be summed up as coping with massive data 

quantities, high dimensionality, and low retrieval precision. 

Dealing with large data volumes, high dimensionality, and 

low retrieval precision can be summed up as the most 

challenging issues when dealing with document clustering [7]. 

Arabic documents are now readily available online in a variety 

of formats, making it difficult to organize them without the aid 

of a computer. The clustering of Arabic-language documents 

has recently attracted the attention of researchers. 

To depict the connection between data points and the 

clusters they belong to, hierarchical clustering creates a 

structure like a tree. Each data point is initially clustered 

separately and iteratively merging smaller clusters into bigger 

clusters when the stopping criteria is satisfied. Hierarchical 

clustering comes in two forms: agglomerative (bottom-up) and 

divisive (top-down).  

Partitional clustering divides the data into a predetermined 
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number of distinct, non-overlapping clusters. It aims to keep 

the distances between the data points and the cluster centroids 

as small as possible. K-means and K-medoids are two 

common partitional clustering algorithms. While density-

based clustering, creates clusters by locating regions with a 

high data point density. A cluster is defined as a dense zone 

surrounded by a sparse region. This type of clustering is 

helpful in detecting clusters of arbitrary forms. DBSCAN and 

HDBSCAN are examples of this type of clustering algorithms 

[8]. 

Association rule mining (ARM) [9] is a data mining 

technique that is used to discover potential hidden patterns 

among data. Apriori and FP-Growth are the most widely used 

algorithms for extracting all frequent itemsets (FI) and 

frequent patterns in datasets, respectively [10]. To extract FI 

from large transactions, the Apriori approach is widely utilized. 

It works on the assumption that all FI subsets must also be 

frequent. It continuously counts the support of items and item 

combinations that can be utilized within a transaction and 

eliminating any sets that go below a user-defined threshold and 

by integrating sets from the previous iteration and validating 

them against the transaction, candidate frequent itemsets are 

created. Despite being easy to comprehend and utilize, the 

Apriori technique can be computationally expensive for 

massive transactions and demands several database searches. 

On the other hand, the FP-Growth approach is scalable and 

utilized to mine frequent item sets in large datasets. The 

algorithm stores the frequent item sets in a tree-like data 

structure known as the FP-tree. The itemsets are encoded in 

the tree after a single run over the dataset to generate it, making 

it fast and quick to mine the common itemsets by utilizing 

depth-first search to traverse the tree.  In order to decrease the 

size of the tree and improve the algorithm's scalability and 

performance, the divide-and-conquer strategy and pruning 

techniques are used. FP-Growth has been shown to be faster 

than traditional frequent item set mining algorithms, such as 

Apriori, and is widely used in data mining and machine 

learning applications. 

The conventional frequent itemsets mining algorithms are 

computationally extensive and generate voluminous sets of 

items. Therefore, maximal frequent itemsets (MFI) approach 

is undertaken to overcome the forementioned problems by 

significantly reducing the search space. Various algorithms 

were proposed for mining MFI, such as MAFIA [11], FPmax 

algorithm [12], MaxMining [13], GenMax [14], and MIMA 

[15, 16] which dedicated to mine textual MFI from Arabic 

documents.  

Document clustering plays a vital role in organizing and 

analyzing vast collections of Arabic text data. However, the 

unique characteristics of the Arabic language, such as the lack 

of inherent vowel markings and complex morphology, pose 

significant challenges for traditional clustering techniques. 

This paper proposes a novel algorithm to Arabic document 

clustering that addresses these challenges and offers promising 

accuracy. 

Our key contribution lies in leveraging Maximal Frequent 

Word Sequences (MFWSs) for Arabic document clustering. 

By employing the FPMax algorithm, we extract the most 

prominent recurring sequences of words within the documents. 

These MFWSs capture the thematic content of documents 

more effectively compared to individual words, as they 

account for the inherent structure and context of the Arabic 

language. 

The remainder of this paper is organized as follows; the 

second section examines previous studies that have used 

maximally frequent item sets for document clustering. The 

proposed approach is thoroughly explained in Section 3 with 

an example, and the experiments and findings are covered in 

Section 4. The conclusion is demonstrated in the final section. 

2. RELATED WORKS

The interest in Arabic document clustering has increased 

recently due to the growing amount of Arabic content on the 

Internet, making manual clustering impractical. Our previous 

survey [17] on the research of Arabic document clustering 

approaches and techniques revealed a limited number of 

studies in this area. To the best of our knowledge, no one has 

utilized Maximum Frequent Itemset (MFI) for categorizing 

Arabic documents. So far, only one study has used Frequent 

Itemsets (FI) to cluster Arabic documents, using a hierarchical 

clustering approach based on N-grams [18]. The clustering 

accuracy achieved by the Frequent Itemset-based Hierarchical 

Clustering (FIHC) was 70%, higher than the 63% accuracy 

obtained for clustering European languages. The results of the 

research are not confident due to the lack of information about 

the dataset used for experiments. Also, the use of only one 

dataset is insufficient to judge the efficiency and predict the 

behavior of an algorithm 

In literature [19], a study investigated an approach that used 

K-means and particle swarm optimization (PSO) to group

Arabic documents. K-means is sensitive to the selection of the

initial clusters producing different results according to the

initial points selected. This issue has been overcome by using

PSO to analyze the entire dataset and identify the best starting

points for K-means and achieve good clustering results. This

approach inherited the drawbacks of PSO and K-means such

as sensitivity to initial parameters, computational complexity,

and convergence to local optima.

Alhawarat and Hegazi [20] utilized Latent Dirichlet 

Allocation (LDA) and K-means for document clustering, 

finding that normalization of text data led to substantial 

improvements in clustering outcomes. When the combined 

method was applied with normalization, it achieved higher 

scores (29% and 40% F-score for BBC and CNN respectively) 

compared to the traditional approach (24% and 29% for the 

same datasets). However, LDA may face scalability 

challenges when applied to large-scale datasets, as the model's 

complexity increases with the number of documents and topics. 

Also, LDA requires tuning of hyperparameters such as the 

number of topics (K), Dirichlet priors, and sampling 

techniques. Improper selection of hyperparameters can impact 

the quality of clustering results. 

Sangaiah [21] proposed unsupervised clustering for Arabic 

documents. He compared three approaches: supervised, semi-

supervised, and unsupervised. These methods utilized K-

means, incremental K-means, threshold + K-means, and K-

means with dimensionality reduction (DR) for clustering. 

Unsupervised clustering achieved 70% and 43% for F-

measure and entropy, respectively, and it is regarded as 

effective for Arabic document clustering.  

Although k-means is effective, it is sensitive to selecting the 

initial point, and this may hinder the performance. PSO-K-

means solve this issue but poses computation costs. When the 

semantic is crucial, LDA is sufficient, but it adds complexity. 

K-means with dimensionality reduction is effective, but

information loss may occur during reduction.
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Our clustering strategy effectively reduces dimensions in 

Arabic documents, ensuring accurate text analysis and high-

speed reduction of dimensions for effective clustering results, 

as we will describe in the upcoming sections. 

 

 

3. THE PROPOSED SYSTEM 

 

The Maximal Frequent Wordset-Based Arabic Document 

Clustering System (MFW-ADC) is presented in this paper. 

MFW leverages the FPMax algorithm to extract informative 

MFWs from Arabic documents. These MFWs capture the 

thematic content and inherent structure of the language, 

enabling effective document clustering. The model comprises 

three modules: preprocessing, dimensionality reduction and 

MFW mining, and clustering (as shown in Figure 1). These 

modules are described in detail in the subsequent sections. 

 

 
 

Figure 1. System architecture 

 

3.1 Preprocessing module 

 

Document preprocessing is a crucial step in natural 

language analysis, ensuring trustworthy and reproducible 

textual data. It comprises four stages: tokenization, 

normalization, punctuation and stopword removal, and 

stemming. Tokenization divides a document into separate 

words. Normalization converts letters into one form, while 

special characters and stopword removal reduce data 

dimensionality and improve analysis accuracy. Stemming 

generates a morphological variant of the base word, ensuring 

the same root word is considered the same entity. In Arabic, 

several stemming algorithms have been developed, such as 

Tashapheen, Khoja [22], Light Stemmer [23], etc., to achieve 

optimal results. The algorithm is depicted in Algorithm 1. 

Table 1. shows an explanation of the variables, symbols, and 

functions used in the proposed algorithms.  

 

Algorithm 1. Dataset Preprocessing algorithm 

Input: D: Dataset (Document text), special_char_list, 

normalized_letters_list 

Output: preprocessed_dataset 

Begin  

For each document d in D Do 

Read (d) 

td=tokenization(d) 

For each token t in td Do  

//Check token letter  

If letter in normalized_letters_list Do { 

norm_t=normalization(token); 

If norm_t in special_char_list Do  

Remove(norm_t); 

Else{ stemmed_t= stemming(norm_t); 

write stemmed_t to preprocessed_d;}} 

Next token 

preprocessed_dataset ∪= preprocessed_d; 

 Next document  

Return preprocessed_dataset; 

End 

 

Table 1. Variables and functions explanation 

 
Seq Variable/ Function Meaning 

1 D Arabic document dataset 

2 special_char_list, [.... ،""، ،! ،؟] 

3 normalized_letters_list 
 [ا] to [أ، إ، آ، ء ]

 [ه] to [ت، ة، ـة]

4 preprocessed_dataset 
Arabic document dataset 

after the preprocessing. 

5 d A document in D 

6 DID 
A file contains the tokens 

of d. 

7 Tokenization function 
A function to tokenize a 

document d. 

8 normalization 
A function to normlize a 

lettet 

9 Stemming 
A stemming function to 

extract a word’s root 

10 minsupp Minimum support 

11 𝑇𝑑𝑜𝑐 Fp tree of document 

12 MFWT 
MFW tree of maximum 

frequent wordsets 

13 MFW Set of all the mined MFW 

14 P Path 

15 Best_mfw Best cluster 

16 filtered_clusters 
A list containing unique 

clusters 

17 Dinitial_cluster 

information about the 

clusters (mfw (cluster 

label), ID, 

DID,mfw_support) 

18 Merge_cluster 
A function to merge 

clusters 

19 belong_cluster 

A percentage at which a 

document belongs to a 

cluster 

20 doc_feature Document feature vector 

 

3.2 Dimension reduction and wordsets mining module 

 

This module comprises two steps: dimension reduction and 

wordset mining. Dimension reduction is accomplished in two 

stages. The first phase is done by representing the 

preprocessed documents using TF/IDF approach and the 

second stage is accomplished by utilizingthe FPmax algorithm 

to extract the MFWs according to the provided minimum 

support. 

TF/IDF is one of the best metrics used to show how 

significant a word is to a document in a dataset. Two factors 

are considered when calculating TF/IDF: word frequency 

(how many times a word appears in a specific document) and 

the inverse document frequency (how often this word appears 

in all document in the dataset). This technique optimizes 

frequent, rare words in a document to highlight discriminative 

features, ensuring the content is understood while excluding 

irrelevant or common words. Eqs. (1) and (2) show how to 

calculate TF-IDF. 

 

𝐼𝐷𝐹(𝑤) = 𝑙𝑜𝑔(𝑁/𝑛_𝑤) (1) 

 

𝑇𝐹 − 𝐼𝐷𝐹(𝑤, 𝑑) = 𝑇𝐹(𝑤, 𝑑) ∗ 𝐼𝐷𝐹(𝑤) (2) 
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where, TF(w,d) is the frequency of word w in document d (i.e., 

the number of times word w appears in document d) and 

IDF(w) is the inverse document frequency of word w, N is the 

total number of documents in the corpus, and n_w is the 

number of documents in the corpus that contain word w. 

Our dataset consists of Arabic documents. Each document 

is identified by a unique document identifierDID and a list of 

preprocessed words (wordlist). To reduce the data complexity, 

Fpmax algorithm [12] is used to discover the most frequent 

word patterns (MFWs) within the documents. This technique 

relies on two key parameters: minimum support and maximum 

wordset length. Adjusting these parameters helps in reducing 

the data dimentionality while still obtaining the crucial 

inormation from the documents. This will enhance the 

clustering effeciency and accuracy. The algorithm used is 

shown in Algorithm 2. 

Algorithm 2. Mining maximal frequent wordsets algorithm 

fpmax (𝑇𝑑𝑜𝑐)

Input: preprocessed_dataset, minsupp, max_mfw-len, 𝑇𝑑𝑜𝑐 ,

𝑀𝐹𝑊𝑇, Head: a linked list of words. 

Output: MFWT that contains all the MFWs, DID sets 

Begin  

Read preprocessed_dataset 

if 𝑇𝑑𝑜𝑐  only contains a single path P

insert 𝐻𝑒𝑎𝑑 ∪  𝑃 into 𝑀𝐹𝑊𝑇 

else for each w in Header-table of 𝑇𝑑𝑜𝑐

Append w to Head 

Construct the Head-pattern base 

Tail = {𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑏𝑎𝑠𝑒} 

subset_checking(𝐻𝑒𝑎𝑑 ∪  𝑇𝑎𝑖𝑙); 
if 𝐻𝑒𝑎𝑑 ∪  𝑇𝑎𝑖𝑙 is not in 𝑀𝐹𝑊 

construct the FP-tree 𝑇𝐻𝑒𝑎𝑑

call Fpmax(𝑇𝐻𝑒𝑎𝑑)

remove w from 𝐻𝑒𝑎𝑑 

3.3 Clustering module 

This module outlines four key steps: primary clustering, 

merging equal clusters, hard clustering, and final clustering, 

which are detailed in the following subsections. 

3.3.1 Primary clustering 

Initial clusters are created using the Fpmax algorithm's 

MFWs, with words as labels. The best-fit clusters are 

determined using similarity functions such as Euclidean 

distance, cosine similarity, Manhattan distance, overlap, and 

Jaccard index, as represented by Eqs. (3) to (7). The length of 

the cluster’s label, i.e., MFW’s length, will be added to the 

similarity function. The purpose of adding this factor is to 

assign the document to the most similar and largest clusters. 

The process of determining initial clusters is illustrated in 

algorithm 3. 

𝑑(𝑑, 𝑚𝑓𝑤) 𝑠𝑞𝑟𝑡(𝑠𝑢𝑚((𝑑𝑖 − 𝑚𝑓𝑤𝑖)
2)) + |𝑚𝑓𝑤| (3) 

𝑐𝑜𝑠(𝜃) = ((𝑑 ∗ 𝑚𝑓𝑤)/||𝑑|| ∗ ||𝑚𝑓𝑤||) + |𝑚𝑓𝑤| (4) 

𝑑(𝑑, 𝑚𝑓𝑤) = ∑|𝑑𝑖 − 𝑚𝑓𝑤𝑖| + |𝑚𝑓𝑤| (5) 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐷, 𝑚𝑓𝑤) = [
|𝐷 ∩ 𝑚𝑓𝑤|

𝑚𝑖𝑛 (|𝐷|, |𝑚𝑓𝑤)|
] + |𝑚𝑓𝑤| (6) 

𝐽(𝐷, 𝑚𝑓𝑤) = [
|𝐷 ∩ 𝑚𝑓𝑤|

|𝐷 ∪ 𝑚𝑓𝑤|
] + |𝑚𝑓𝑤| (7) 

Algorithm 3. Primary clustering algorithm 

Input: MFWs, DID sets 

Output: initial clusters 

Begin 

Initial_clusters = [] 

For d_i in preprocessed_dataset: 

//Determine best initial cluster (best MFW) 

best_mfw = None 

For mfw_i in MFW: 

intersection = find_intersection(mfw_i, d_i) 

if intersection == 0 {score = 0} 

else{score = similarity_metric(mfw_i, d_i)  

+|mfw_i|} 

//End if 

similarity = best_score (depending on similarity 

metrics) 

best_mfw = mfw_i 

initial_clusters ∪= (best_mfw, d_i) 

End For 

Next d_i 

End for  

Return initial_clusters 

End 

3.3.2 Merging equal clusters 

It's worthy to mention that, after identifying the initial 

clusters, it is possible to identify numerous clusters with 

similar DID sets. After that, these clusters can be combined 

using the approach illustrated in Algorithm 4. 

Algorithm 4. Merging equal clusters algorithm 

Input: MFWs, DID sets 

Output: filtered clusters 

Begin  

filtered_clusters = [] 

For i=0 to |MFWs| -1 Do 

For j =i+1 to |MFWs| -1 Do 

//determine if two clusters contain same DID (Same 

documents) 

If (DID_i == DID_j): 

merge_cluster(MFW_i, MFW_j) 

filtered_clusters∪= (MFW_i, filtered_clusters) 

End for 

End for 

Return filtered_clusters 

End 

3.3.3 Hard clustering 

The proposed algorithm uses hard clustering to assign 

documents to specific clusters based on their similarity. This 

process calculates the percentage of belonging between 

documents and MFWs, retaining the highest-percentage-

related document and removing the lowest-percentage-related 

document. The cluster with significant support can incorporate 

a document when competing with other clusters.  The 

algorithm utilized for hard clustering implementation is 

depicted in algorithm 5. 

Algorithm 5. Hard clustering algorithm 

Input: Dinitial_cluster(information about the clusters 

(mfw(cluster label),DID, mfw_support, ocument_feature 

Output: hrad clusters  

Begin  

for i=0 to |Dinitial_cluster| -1 Do 
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for j = i+1 to |Dinitial_cluster| -1 Do 

// check if documents are assigned to many clusters 

value = intersection(initial_cluster[i, DID], 

initial_cluster[j, DID] ) 

if value !=0 Do   

//calculate document belong percentage  

belong_cluster_i=intersection( cluster_i_mfw, 

doc_feature) 

belong_cluster_j = intersection(cluster_i_mfw, 

doc_feature) 

if (belong_cluster_ i) > (belong_cluster_j) Do 

remove(DID, cluster_j) 

else if (belong_ cluster_i) < (belong_ cluster_j) 

remove(DID, cluster_i) 

else: //compare clusters size 

if |cluster_i| > |cluster_j| Do 

remove(DID, cluster_j) 

else if |cluster_i| < |cluster_j| 

remove(DID, cluster_i) 

else : if support(cluster_i) > support(cluster_j) 

remove(DID, cluster_j) 

else if support(cluster_i) < support(cluster_j) 

remove(DID, cluster_j) 

else {remove(DID, cluster_j)} 

end if 

end if 

end if 

end for 

end if 

end for 

end for 

End 

3.3.4 Final clustering 

The final step involves merging clusters (MFWs) from 

previous stages to create final clusters. The desired number of 

clusters is specified, and the clusters are merged with the most 

similar one based on their similarity value. One of the 

measures described in Section 3.2 is used to calculate the 

similarities between the MFWs. The length of the MFW is a 

significant factor that ensures a cluster will be merged with the 

longest and most similar one. The employed algorithm is 

depicted in algorithm 6. 

Algorithm 6. Final clustering algorithm 

Input: MFWs, DID sets 

Output: final_clusters 

Begin 

Final_cluster=[] 

For each mfw_i in MFWs: 

For each mfw_j in MFWs: 

Intersection = intersection(mfw_i, mfw_j) 

If Intersection == 0 Do: {score = 0} 

Else: 

score = similarity_metric(mfw_i, mfw_j) + 

len(mfw_j) 

append(score_list,[mfw_i,mfw_j,score]) 

similarity = best_score(score_list)  // 

depending on similarity metrics 

mfw_i = merge(mfw_i, mfw_j) // merge the 

clusters’ labels   

DID = merge_cluster(DID_i, DID_j) 

final_clusters = append(mfw_i) 

End for 

End for 

Return final_clusters 

End 

3.4 Illustrative example 

Suppose we have the following dataset: 

Dataset = [[G, I], [F, E, G, I, A], [H, A, D, C, E, G, F], [B, 

I, F], [H, B, E, F], [H, F], [C, D, H, G]], where A, B, C, D, E, 

F, G, H, and I represent preprocessed words in the document 

dataset. 

By applying Algorithm 2 that was mentioned in the previous 

section with a minimum support of 0.2, the mined MFWs and 

their corresponding DID support values are shown in Table 2. 

Table 2. Mined MFWs 

MFWs DID Support 

{A, G, E, F} [0, 1, 2, 3, 4, 5, 6] 0.285714 

{F, B} [1, 2, 3, 4, 5] 0.285714 

{G, D, C, H} [0, 1, 2, 4, 5, 6] 0.285714 

{F, E, H} [1, 2, 3, 4, 5, 6] 0.285714 

{G, I} [0, 1, 2, 3, 6] 0.285714 

{F, I} [0, 1, 2, 3, 4, 5] 0.285714 

When algorithm 3 is applied to the mined MFWs, the initial 

clusters obtained are shown in Table 3. 

Table 3. Initial clusters 

MFWs DID Support 

{A, G, E, F} [ 1, 2] 0.285714 

{F, B} [3] 0.285714

{G, D, C, H} [2, 6] 0.285714 

{F, E, H} [4, 5] 0.285714 

{G, I} [0] 0.285714

{F, I} [3] 0.285714

From Table 3, we can see that document 2 is assigned to two 

clusters (cluster 1 and cluster 3), and we can also find two 

equal clusters, i.e., two clusters contain document 3. By 

applying algorithms 4 and 5 for merging equal clusters and 

hard clustering, respectively, we obtain Table 4. 

Table 4. Merging and hard clustering 

MFWs DID Support 

{A, G, E, F} [ 1, 2] 0.285714 

{I, F, B} [3] 0.285714

{G, D, C, H} [6] 0.285714

{F, E, H} [4, 5] 0.285714

{G, I} [0] 0.285714

By determining the number of clusters to 3, the final 

clustering process is depicted in Table 5. 

Table 5. Final clustering 

MFWs DID Support 

{F, H, A, G, E} [1, 2, 4,5] 0.285714 

{I, F, G, B} [3, 0] 0.285714 

{G, D. C, H} [6] 0.285714
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4. RESULTS AND DISCUSSION

Using Python code running on a core i7 computer with 

16GB of RAM, the suggested technique was examined on 

several datasets. The datasets and assessment metrics utilized 

for evaluating the effectiveness of the clustering method are 

described more thoroughly in the following sections. 

4.1 Datasets 

The proposed algorithm is implemented on two datasets CNN 

and OSAC [24]. Details of these datasets are briefly described 

in the following Table 6. 

Table 6. Datasets description 

Dataset No. Classes Total No.Doc. Classes detail 

CNN 6 4689 
Business (836), Entertainment (474), Middle East (1462), Scitech (526), Sport (381), World 

(1010) 

OSAC 10 22465 
Business (3102), History (3233), family (3608), Religion (3171), Sport (2419), Health (2296), 

Astronomy (557), Law (944), Stories (762), Foods (2373) 

4.2 Experiments and results evaluation 

This paper uses precision, recall, and F-score as assessment 

metrics in clustering to evaluate the performance of a proposed 

technique. Precision measures the accuracy of document 

clustering by calculating the percentage of correctly assigned 

documents, while recall quantifies the completeness of the 

clustering. F-score balances precision and recall, indicating the 

accuracy and comprehensiveness of document clustering. A 

high F-score indicates high precision and recall, indicating the 

majority of documents are correctly assigned. These metrics 

are calculated using the following equations: 

𝑅𝑒𝑐𝑎𝑙𝑙(|𝐶𝐿𝑖 , 𝐶𝑗|) =
𝑛𝑖𝑗

|𝐶𝐿𝑗|
(8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(|𝐶𝐿𝑖, 𝐶𝑗|) =
𝑛𝑖𝑗

|𝐶𝑗|
(9) 

𝑓 − 𝑠𝑐𝑜𝑟𝑒(𝐶𝐿𝑖 , 𝐶𝑗)

=
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙(|CLi, Cj|) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(|𝐶𝐿𝑖 , 𝐶𝑗|)

𝑅𝑒𝑐𝑎𝑙𝑙(|CLi, Cj|) + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(|𝐶𝐿𝑖 , 𝐶𝑗|)

(10) 

where, CL is the original class of the dataset. nij is the number 

of documents of class CLi that are presented in cluster Cj. |CLi| 

is the number of documents in class i and |Cj| is the number of 

documents in cluster j. 

The experiments were repeated with different 

predetermined minimum support value (minsupp) for different 

number of clusters of each of the selected datasets i.e. (CNN_3, 

CNN_4, CNN_5, CNN_6, OSAC_3, OSAC_4, OSAC_5, and 

OSAC_10). Table 7 and Table 8 show the experiments details. 

The selection of a similarity metric can significantly impact 

clustering results. Across various cluster sizes (3, 4, 5, and 6), 

for the CNN dataset, Euclidean distance, overlap similarity, 

and Jaccard index yielded similar outcomes. However, the best 

clustering results are obtained with Euclidean distance with 

different minimum support values for each cluster size (0.42 

for CNN-3, varying between 0.38 and 0.40 for CNN-4 and 

CNN-6) as shown in Table 7. 

In contrast, the best performance for the OSAC dataset is 

obtained using cosine similarity and occasionally Manhattan 

distance, with minimum support values ranging from 0.40 to 

0.42. This led to the conclusion that the optimal similarity 

metric depends on the specific dataset. The results depicted in 

Table 8. 

Table 7. F-measure for CNN dataset 

No. Clusters Similarity Metric 
F-Measure for Minimum Support minSupp =

0.43 0.42 0.41 0.40 0.39 0.38 

3 

Euclidean 0.75 0.76 0.75 0.74 0.75 0.75 

Overlap 0.74 0.74 0.75 0.75 0.75 0.75 

Jaccard index 0.66 0.74 0.75 0.75 0.75 0.75 

Cosine 0.71 0.70 0.72 0.72 0.72 0.72 

Manhattan 0.70 0.70 0.70 0.71 0.72 0.72 

4 

Euclidean 0.78 0.78 0.79 0.80 0.79 0.80 

Overlap 0.72 0.77 0.78 0.78 0.78 0.79 

Jaccard index 0.68 0.73 0.77 0.78 0.80 0.77 

Cosine 0.70 0.68 0.70 0.70 0.70 0.71 

Manhattan 0.68 0.70 0.70 0.70 0.70 0.71 

5 

Euclidean 0.77 0.77 0.79 0.78 0.80 0.79 

Overlap 0.77 0.77 0.77 0.78 0.78 0.80 

Jaccard index 0.78 0.79 0.78 0.78 0.80 0.78 

Cosine 0.69 0.68 0.72 0.72 0.72 0.71 

Manhattan 0.70 0.70 0.70 0.70 0.70 0.70 

6 

Euclidean 0.77 0.77 0.79 0.78 0.80 0.79 

Overlap 0.76 0.77 0.79 0.80 0.79 0.79 

Jaccard index 0.71 0.71 0.71 0.77 0.73 0.71 

Cosine 0.71 0.71 0.71 0.72 0.72 0.72 

Manhattan 0.70 0.70 0.70 0.70 0.71 0.70 
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Table 8. F-measure for OSAC dataset 

No. Clusters Similarity Metric 
F-Measure for Minimum Support minSupp =

0.45 0.44 0.43 0.42 0.41 0.40 

3 

Euclidean 0.70 0.70 0.70 0.70 0.71 0.72 

Overlap 0.71 0.70 0.72 0.72 0.72 0.72 

Jaccard index 0.70 0.70 0.70 0.71 0.72 0.71 

Cosine 0.77 0.72 0.78 0.78 0.77 0.80 

Manhattan 0.77 0.77 0.78 0.79 0.77 0.80 

4 

Euclidean 0.71 0.71 0.71 0.72 0.72 0.72 

Overlap 0.72 0.70 0.70 0.70 0.72 0.72 

Jaccard index 0.65 0.68 0.70 0.70 0.71 0.71 

Cosine 0.73 0.78 0.77 0.78 0.77 0.80 

Manhattan 0.62 0.62 0.64 0.66 0.69 0.69 

5 

Euclidean 0.66 0.66 0.69 0.70 0.71 0.71 

Overlap 0.60 0.68 0.66 0.69 0.70 0.71 

Jaccard index 0.65 0.72 0.67 0.69 0.71 0.70 

Cosine 0.77 0.73 0.77 0.80 0.77 0.80 

Manhattan 0.72 0.73 0.75 0.75 0.76 0.78 

10 

Euclidean 0.70 0.69 0.70 0.70 0.70 0.71 

Overlap 0.76 0.72 0.70 0.70 0.72 0.75 

Jaccard index 0.62 0.64 0.61 0.65 0.68 0.68 

Cosine 0.78 0.78 0.80 0.80 0.81 0.80 

Manhattan 0.61 0.65 0.69 0.71 0.73 0.73 

Table 9. Comparison of the suggested approach and related work 

Ref. Author Approach Dataset 
Evaluation Metric 

Type Percentage% 

[18] 
Al-sarrayrih and Al-

Shalabi 
FIHC Built in house DS F-measure 70 

[19] Daoud et al. PSO-Kmeans 

BBC 

CNN 

OSAC 

F-measure

33 

52 

54 

[20] Alhawarat and Hegazi LDA-Kmeans 

BBC 
F-measure

Purity

29 

58 

59 

40 
CNN 

F-measure

Purity

[21] Sangaiah et al.

K-means

Set of doc. 

Entropy

F-measure
45 

70 

34 

43 Incremental K-means 
Entropy

F-measure

The proposed approach MFWs 
CNN 

OSAC 
F-measure

80 

81 

The results presented in Table 7 and Table 8 shows that the 

minimum support threshold can positively affect the results 

because it involves the process of choosing the discriminative 

features, so it clear that the low-level supports provide such 

features. Also, the Euclidean similarity metric mostly provides 

best results of F-score due to its appropriateness for the 

representation of maximal wordsets. The high value of F-score 

Indicates that the proposed algorithm's performance is good in 

terms of balancing precision and recall. Also, it suggests that 

the model is effectively identifying true positives while 

minimizing false positives and false negatives, implying that 

the behavior of the proposed algorithm has a good trade-off 

between precision (accuracy of positive predictions) and recall 

(sensitivity to true positives), resulting in reliable and balanced 

clustering outcomes. 

The proposed algorithm is compared with the studies 

mentioned in Section 2, and the results showed that our 

algorithm achieved better clustering results than these works. 

When comparing it with the model presented in the study [18] 

it is found that using frequent itemsets for the clustering 

process leads to a voluminous number of itemsets, which in 

turn increases the search space and the computation time. 

These problems are overcome in our proposed algorithm by 

using maximal frequent wordsets, which shrink the search 

space and eliminate the computation time. 

Daoud et al. [19] enhanced the selection of the initial 

clusters by combining K-means with PSO to scan the entire 

search space. The method supposes that each particle of the 

swarm represents the centroid of the clusters. The fitness 

function is minimized at each iteration by measuring the local 

best position and the global best position. In our proposed 

algorithm, as we mentioned before, the search space is reduced 

by using the user-defined threshold to mine MFWs, which will 

be the search space that will be scanned. Furthermore, the 

results achieved by us are better than those provided by this 

study for the same dataset. 

K-means and LDA were used in literature [20] for clustering

and topic modeling. The documents are represented as a bag 

of words, and then TF-IDF is applied to the document vector 

space to eliminate redundant data; afterwards, the data is 

normalized using Euclidean distance. As a last step, k-means 

was used for document clustering. On the other hand, topics 

are modeled using the same normalized dataset as an input to 

the LDA. The result achieved by this study is less than that 
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achieved by our model for the CNN dataset. Clustering Arabic 

documents was accomplished using either unsupervised or 

semi-supervised approaches suggested by A. K. Sangaiah [21]. 

K-means or incremental K-means were used for these 

approaches, and the clustering results were evaluated using the 

F-measure and entropy. The comparison is figured out Table 

9. 

It is a noteworthy accomplishment to obtain an F-score 

value in Arabic document clustering of more than 80%, as this 

shows that the suggested method performs well in terms of 

recall and precision. Such a score indicates:  

High Accuracy: An F-score of more than 80% is a strong 

indication of the system's accuracy in correctly clustering 

Arabic documents because the F-score is a metric that strikes 

a balance between precision and recall. 

Efficient Clustering: A high F-score indicates that the 

suggested method efficiently clusters related Arabic 

documents while reducing false positives and 

misclassifications. 

Robustness: The robustness and generalizability of the 

algorithm are demonstrated by its consistent achievement of 

an F-score above 80% in a variety of datasets and 

circumstances.  

Comparative Advantage: The proposed algorithm performs 

better than other algorithms that usually yield F-score values. 

 

 

5. CONCLUSIONS 

 

In this paper, we introduce a novel approach for clustering 

Arabic documents. The method utilizes the maximal frequent 

word sets discovered by the Fpmax algorithm to achieve 

effective clustering results. This technique addresses the 

challenge of high-dimensionality datasets by employing 

MFWs for efficient dimension reduction. The evaluation of the 

proposed method is done on two benchmark datasets, CNN 

and OSAC. The experiments revealed different cluster 

configurations by tuning the specified threshold and the 

number of clusters. Hence, a diverse set of clustering outcomes 

result. These promising results contribute to the field of ANLP 

and encourage further exploration of diverse techniques for 

enhanced Arabic document clustering. In the future work, we 

aim to apply other data mining techniques, evaluate their 

impact for clustering purposes, and evaluate the clustering of 

Arabic documents. 
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