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Automatic ElectroEncephalogram EEG classification for Stress detection represents a 

crucial interest, simultaneously with the increasing deaths caused by depression and 

psychological effects. Accurate automatic classification of EEG signals represents a 

complex task, requiring the use of sophisticated algorithms. In this light, we focus through 

this work on achieving the automatic stress detection from EEG signals, to help clinicians 

to get the true diagnosis in an early stage. At this light, we opt through this paper to the 

implementation of a proposed Recurrent Neural Network RNN model for automatic stress 

detection. The proposed work employs a pre-processing combined with Recurrent Neural 

Network models such as Gated Recurrent Unit (GRU). We have applied the FFT 

transformation on EEG signals, available from Kaggle. The EEG classification results have 

reached 97.23% for train, 93.68% for validation and 88.86% for the test process, by 

implementing GRU based SGD optimizer networks. To get more accurate results, Adam 

optimizer has been implemented, achieving results equal to 99.53%, for the train, 94.98% 

for the validation and 89% for the test process. Moreover, stress emotions have been well 

detected as demonstrated by the confusion matrix results. Finally, accuracy and loss curves 

show promising results for both training and validation and the error rate is too close to 

zero. Our proposed RNN model, with its reduced number of parameters shows to be an 

excellent application to be implemented on embedded systems, thanks to its lightweight 

reducing both training time and memory consumption. 
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1. INTRODUCTION

The ElectroEncephalogram (EEG) signal demonstrates 

exceptional temporal resolution, enabling the detection of 

events occurring on millisecond time scales. However, its 

spatial resolution is hindered by the presence of tissues, such 

as the skull, which envelop the electric fields generated by the 

brain, introducing a layer between the sources and the sensors. 

As a result, EEG channels frequently exhibit high spatial 

correlation. Addressing the source localization problem, or 

inverse problem, is a vibrant area of research wherein 

algorithms are actively being developed to reconstruct brain 

sources from EEG recordings. EEG finds in diverse 

applications, particularly in clinical settings. Changes in the 

brain's electrical activity are associated with various 

conditions, making EEG a valuable tool for monitoring 

disorders such as Attention Deficit Hyperactivity Disorder 

(ADHD), disorders of consciousness, depth of anesthesia, and 

more. In neuroscience and psychology research, EEG is 

extensively employed as a powerful tool for investigating the 

brain and its functionalities. Applications like cognitive and 

affective monitoring show great promise, offering the 

potential for unbiased measurements of various aspects, such 

as an individual's fatigue level, mental workload, mood, or 

psychological states like stress [1]. Electroencephalography 

(EEG) signals represent the measurement of electric fields 

produced by the active brain. It illustrates a commonly 

employed brain mapping and neuroimaging technique 

extensively utilized both within and beyond the medical 

domain. The EEG as a complex signal requires various feature 

extraction methods to properly interpret it. Recently, the 

ability of deep learning (DL) to learn good features 

representations has shown promising analysis results to well 

understand the EEG signals, representing many states such as: 

epilepsy, sleep, brain-computer interfaces, cognitive and 

emotional monitoring. However, in some cases long time 

negative emotions can affect people directly with 

psychological diseases. A human life being can caused by 

stress affects. The recorded potentials mirror stress-induced 

neuronal activity, facilitated by the rapid propagation of 

electric fields. Major scientific and engineering databases 

were queried to identify DL design decisions which play an 

important part in our daily lives. Emotions are not a mood, nor 

even a temperament. These fleeting states, enduring for a brief 

duration ranging from seconds to minutes, are employed for 

investigating various brain processes, facilitated by the rapid 

propagation of electric fields.
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1.1 Contributions 

In this context, we focus through this work to achieve an 

automatic stress detection from EEG signals using deep 

learning algorithms. Thus, we aim to help clinician to get the 

early stress diagnosis at first stage. For this fact, we proposed 

a. RNN to be implemented on the CPU. As a first step, we

realized that our RNN had to be implemented on the EEG

signals available from Kaggle repository. The implementation

results show the effectiveness of our goal, achieving accuracy

results of 98.86%, 98.61% and 98.39% for the training, 

validation and test processes respectively. Then, to improve 

the inference results, we accelerated the process by times 

compared to implementation on the CPU thanks to the parallel 

architecture of GPUs, what's more, a real-time application was 

achieved with excellent class detection accuracy rising to 

99.45% for training, 99.12% for validation and 99.03% for 

process tests, when tested on EEG signals in a short-time 

process with 0.002 s/signal during the process test and 0.006 

s/ EEG signal during the training process.  

The rest of the paper is divided as follows. Section 2 

illustrates the state-of-the-art methods for automatic stress 

detection in EEG signals with a comparative study between 

various neural networks models. The next section illustrates 

the proposed methodology-based pre-processing and proposed 

neural network model. Section 4 analyses achieved EEG 

classification results. Section 5 discusses the achieved results. 

It shows clearly that the proposed detection approach 

surpasses the state-of-the-art algorithms in terms of detection 

accuracy as well as detection speed. Finally, a conclusion and 

future works are suggested in Section 6. 

2. STATE OF THE ART

Emotions constitute human responses to events, influencing 

the entire body. Given their integral role in daily life and 

significant contribution to nonverbal communication, 

psychologists have dedicated decades to their study. Every 

encountered object serves as a stimulus eliciting emotional 

reactions, with the nature of the emotion being positive if the 

stimulus is favorable. Irrespective of the specific emotion, 

human emotions can be conveyed through various forms of 

emotional expressions, including psychophysiology, facial 

expressions, gestures, or biological responses. Researchers 

have dedicated substantial efforts to the development of 

intelligent emotion recognition systems, with some relying on 

non-physiological signal groups [2-4]. The brain's reaction to 

various stimuli is typically assessed by segmenting EEG 

signals into distinct frequency rhythms, including delta (0.5-

4Hz), theta (4-8Hz), beta (16-32Hz), and gamma (32Hz and 

above). These frequency bands are prevalent in different 

regions of the brain [5]. Nandini et al. [6] introduced an 

emotion recognition model based on the DEAP and AMIGOS 

database. In discerning emotions, the authors employed a 

hybrid neural network based on GRU-RNN. For accuracy 

reporting, the authors focused the use of new hyper parameter 

called hyperopt to improve accuracies results, achieving more 

than 99%. Thus, the robustness of RNN to improve 

classification EEG signals. In their methodology, Agrawal et 

al. [7] explored emotions such as sadness, fear, happiness, and 

disgust. They utilized spectral features to extract emotions 

from 15 subjects, concentrating on the alpha and beta wave 

bands. The evaluation of system performance involved the 

consideration of Fp1, Fp2, F3, and F4 channels. Additionally, 

Sallam et al. [8, 9] contributed to this area. As depicted in 

Table 1, various neural networks models such as Artificial 

Neural Networks (ANN), Convolutional Neural Networks 

CNN and Recurrent Neural Network (RNN) that include 

BiLSTM, LSTM and GRU. These deep learning algorithms 

have shown a big interest in early stress detection from EEG 

signals. As summarized in Table 1, Recurrent Neural 

Networks models have shown to be superior than CNNS, 

LSTMs and ANNs in terms of yielded accuracies results. 

Kamakshi et al in the study [10] have proposed a hybrid neural 

network model to automatically predict stress in EEG signals, 

the first represent a combined LSTM with PSO, achieved 

results have yielded 97%. Moreover, various neural networks 

models have been proposed such as Stress Net where the 

model exceeds the accuracy of human stress detection, 

reaching 97.8% accuracy [11]. Temporal Attention module 

has been implemented for stress detection achieving an 

accuracy going to 85.1% [12]. Physionet EEG data records are 

used to determine stress levels for mental arithmetic tasks. 

Multichannel EEG signals (recorded from 19 channels) 

underwent denoising and were decomposed into four levels 

through the discrete wavelet transform (DWT). In addition, the 

neural organization (NN) as ANN deep learning model has 

been put forward associating fractal aspects with measurable 

elements where four levels of stress can be perceived with a 

typical accuracy of 96.06% [13]. Whereas, RNN models 

including LSTM have been implemented to classify stressed 

and no stressed reaching a maximum of accuracy equal to 

93.17% in the study [14]. Subsequently, the classification of 

stress levels was performed using Bidirectional Long Short-

Term Memory (BiLSTM) as a Recurrent Neural Network 

(RNN) model. The accuracy of the proposed model is 

evaluated in comparison to a CNN-based Long Short-Term 

Memory (LSTM) model and previous studies. The findings 

demonstrated that the hybrid model outperformed others, 

achieving a higher classification accuracy of 99.20%. In 

addition, authors [15] have combined a convolutional neural 

network CNN with Bilateral Long Shot term Memory 

(BiLSTM) model getting the highest emotion detection 

accuracy of 88.03% and outperformed the conventional 

shallow learning approaches [16].  

Table 1. State of the art works for stress detection 

Neural Network 

Model 
EEG Database Accuracy 

CNN-based LSTM 

[12] 

Physionet EEG 

data records 
85.1% 

CONVlD+BiLSTM 

[13] 
DEAP dataset 88.03% 

BiLSTM [8, 9] 
Physionet EEG 

data records 
99.20% 

ANN model [10] -EEG Dataset 86.8% 

Fractal aspects with 

NN [13] 
-EEG Data 96.06% 

StressNet [11] -EEG Data 97.8% 

MLP and LSTM 

[14] 
-EEG Data 93.17% 

State of the works, has significantly proved the importance 

of RNN in the detection of stress with high accuracies results, 

high F1-score, excellent sensitivities and specificities. It has 

been explained by the light weighted architecture of such RNN 

model and then less complexity and less computational 

operations. Moreover, RNN models have the advantages to be. 
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The RNN performances achieved by state of the art has been 

explained by its specificity which lies in the fact that weights 

are equal for all layers. This reduces the number of parameters 

in the model, and thus its complexity. In this context and given 

the crucial role played by RNN models, we opt through this 

work to propose a RNN light weighted architecture base GRU 

for early stress detection. 

3. PROPOSED CNN METHOD

The proposed solution for ECG classification as illustrated 

by Figure 1, to detect stress signals. We have put forward a 

preprocessing step combined with a RNN algorithm based 

GRU model Two experiments have been done. The first 

consists of the implementation of the proposed RNN 

architecture using SGD optimizer network. The second consist 

of the implementation of RNN based Adam optimizer. 

Figure 1. Synoptic flow of the proposed method 

3.1 Dataset preparation 

DEAP stands as a benchmark affective EEG database 

utilized for the examination of spontaneous emotions, curated 

by Queen Mary University of London as depicted in Table 2. 

The database comprises physiological signals gathered from 

32 participants and was curated with the goal of establishing 

an adaptive music video recommendation system that takes 

into account the user's present emotional state. The DEAP 

database has been utilized in various studies, proving its 

suitability for testing novel algorithms. In assessing our 

proposed classification method, we employed the pre-

processed EEG dataset from the DEAP database. The original 

recorded data, with a sampling rate of 5 Hz, underwent 

downsampling to 128 Hz. Additionally, a frequency filter 

bandwidth of 4.0 to 45.0 Hz was applied, and EEG artifacts 

were meticulously removed from the signals. 

Table 2. Dataset preparation 

Dataset Number of Samples 

Train 

Stress class: 141 

Positive class: 145 

Neutral class: 161 

Validation 

Stress class: 40 

Positive class: 41 

Neutral class: 46 

Test 

Stress class: 20 

Positive class: 20 

Neutral class: 23 

3.2 FFT application 

However, EEG is challenged by limited spatial resolution, 

as the electric fields produced by the brain are obscured by 

intervening tissues, such as the skull, situated between the 

sources and the sensors. Consequently, EEG channels 

frequently exhibit high spatial correlation. Within the domain 

of stress detection using EEG signals, a crucial technique 

involves incorporating the Fast Fourier Transform (FFT) into 

a Recurrent Neural Network (RNN) model based on Deep 

Learning. FFT plays a crucial role in unveiling the frequency 

characteristics embedded in EEG signals, allowing for a more 

nuanced understanding of the brain's response to stress. This 

integration enhances the model's capacity to capture intricate 

patterns in the frequency domain and effectively contributes to 

the development of robust stress detection models. Before 

delving into the role of FFT, the raw EEG signals undergo 

preprocessing. This step involves filtering, detrending, and 

normalization to ensure the removal of artifacts and enhance 

signal quality. Subsequently, the EEG signals are subjected to 

FFT, transforming them from the time domain to the 

frequency domain. This transformation is essential for 

extracting relevant frequency features that convey crucial 

information about stress states. 

The Fast Fourier Transform is a computational algorithm 

that efficiently calculates the discrete Fourier transform (DFT) 

of a sequence. In the context of stress detection in EEG signals, 

FFT plays a central role in decomposing the signals into their 

constituent frequency components. This transformation 

enables the extraction of features such as power spectral 

density (PSD) and dominant frequencies, providing a 

comprehensive representation of the frequency content 

inherent in stress-related EEG patterns. The equation for the 

Fast Fourier Transform (FFT) algorithm can be expressed as 

follows: 

𝑋[𝑘] =  ∑ 𝑥[𝑛]𝑁−1
𝑛=0 ∗  𝑒−𝑗

2𝜋

𝑁
𝑘𝑛 (1) 

where: 

• X[k] is the complex value representing the frequency.

content at the k-th discrete frequency.

• x[n] is the discrete signal in the time domain.

• N is the length of the signal.

• j is the imaginary unit.

The performance of the integrated FFT and RNN model is 

rigorously evaluated using standard metrics such as accuracy, 

precision, recall, and F1 score. This evaluation assesses the 

model's ability to accurately classify stress levels based on the 

intricate patterns revealed through FFT. The integrated 

approach proves valuable in providing a holistic and detailed 

analysis of EEG signals, showcasing its potential for real-
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world applications in stress detection and management. The 

integration of FFT within a Deep Learning-based RNN model 

establishes a synergistic approach for stress detection in EEG 

signals, combining the strengths of frequency analysis and 

temporal modeling to achieve enhanced accuracy and 

interpretability in stress-related pattern recognition as 

presented by Figure 2. 

 

 
 

Figure 2. FFT application 

 

3.3 Proposed RNN architecture 

 

3.3.1 GRU architecture  

The proposed RNN architecture is as depicted in Table 3. 

As presented in Figure 3, The Gated Recurrent Unit (GRU) 

Network architecture involves vectors, representative of 

weights and biases. It consists of a reset gate, an update gate. 

The reset gate decides how much information to be forgotten, 

however the update gate decides how much of future 

information should be passed. Compared to LSTM, GRU is 

simpler to implement, requires fewer parameters, and exhibits 

superior performance in many scenarios. As illustrated by 

Figure 3, the input EEG dataset raw has been fed-up through 

the reset gate, as inputs defined by (Xt) at time t, where we 

have applied an activation function represented by (σ, tanh). 

Using various input weights such as Wα, WZ and output 

weights of the model such Wĥ, Wo. Then passing through the 

update gate, where αt update (Zt) and output (ht) at time t. The 

outputs of gates ĥt and ĥt−1 represent the EEG outputs at times 

t and t-1 respectively using yt to denote the training sample 

output at time t. Following the GRU layer, the output features 

undergo processing through a flatten layer. Subsequently, 

prior to entering the fully connected layer, the data undergo 

softmax activation, and all activation functions are reset. For 

optimization, the Adam technique is employed with 10 epochs 

and 38 iterations. A learning rate of 0.0001 is set to expedite 

the training of the neural network as depicted in Table 4. 

 

Table 3. Proposed neural network structure 

 
Layer (Type) Output Shape Parameters 

Input-1 (None, 2548) 0 

Tf.expand_dims (None, 2548,1) 0 

GRU  (None, 2548, 256) 198912 

Flatten (None, 652288) 0 

Dense (None, 3) 1956867 

 

Total parameters: 2.155.779 

Trainable parameters: 2.155.779 

Non-Trainable parameters: 0 

 

 
 

Figure 3. GRU architecture 

 

3.3.2 Experimental parameters 

To implement our proposed RNN algorithm, python, Keras 

and tensor flow library have been used with 4GBRAM, i7 

processor, Geforce 250 GPU. The EEG dataset, available for 

free from Kaggle, has been split into three sets: 70% for the 

train, 20% for the validation and 10% for the test, using a batch 

size equal to 32. 

Adam is an adaptive algorithm designed to expedite the 

learning phase of various parameters [9]. It utilizes the mean 

and variance of the data to dynamically adjust the learning rate 

for each weight in the neural network. 

SGD optimizer: The stochastic gradient algorithm is an 

iterative gradient descent method used to minimize an 

objective function written as a sum of differentiable functions. 

 

Table 4. Training parameters 

 
Parameters Number 

Learning rate 0.0001 

Optimizer Adam/SGD 

Loss function Softmax 

Epochs 10 

Iterations 38 

 

3.3.3 Loss functions  

Every neural network design must comprise a loss function 

that computes the mistake percentage during the training and 

validation stages. The widely used loss functions are binary 

and sparse categorical cross entropy functions, where the 

former is appropriate for two-class classification problems and 

the latter for multiclass problems. In our RNN implementation, 

we have used the categorical cross entropy function given the 

classification of EEG into three classes. The categorical cross 

entropy function is outlined by Eq. (1). It evaluates the 

effectiveness of the neural network in modeling the training 

data. Our objective during training is to curtail this loss 

between the predicted and target outputs. 
 

 

4. RESULTS  

 

4.1 Experimental results  

 

To implement our proposed RNN algorithm based GRU 

model, python, Keras and tensor flow library have been used 

with 4GBRAM, i7 processor, Geforce 250GPU. The EEG 
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dataset has been split into three sets: 70%for the train, 20% for 

the validation and 10%for the test, using a batch size equal to 

32. The obtained results demonstrate outstanding accuracies in 

both the training and validation phases, reaching 99.53% and 

99.54%, respectively, when utilizing different optimizers like 

Adam. Table 4 and Table 5 provide a detailed overview of the 

performance, including an accuracy of 97.23% with the SGD 

optimizer. Table 4 represents precision and F1 score results, 

described by the following Eqs. (2) and (3), that have proven 

to be excellent parameters for the proposed model evaluation, 

where precision results are going to 98%, 99% and 75% for 

the three classes respectively stress, neutral and positive. 

 

Precision = TP/ (TP+FP) (2) 

 

F1 score = 2 ×
(précision×recall)

(précision +recall)
  (3) 

 

Tables 6 and 7 have demonstrated the achieved results in 

terms of accuracies and loss, presented by the following Eq. 

(4) through the implementation of the proposed GRU model 

based Adam and SGD optimizers.  

 

Accuracy = (TP+TN)/Total (4) 

 

4.2 Confusion matrix through test results  

 

 
 

Figure 4. Confusion matrix 

 

The evaluation of a classification system's performance 

often involves utilizing a confusion matrix, which categorizes 

outcomes into four groups: True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN). In Figure 

4, the confusion matrix highlights FP results in the last row 

and FN results in the last column. This matrix offers a 

comprehensive overview of prediction outcomes in a 

classification task, specifically in assigning each signal to a 

particular class. Represented by an n x n matrix associated 

with a classifier, it illustrates the predicted and actual 

classifications, with n denoting the number of distinct classes. 

Figure 4 represents the confusion matrix results for stress 

detection in EEG signals. As illustrated in the images below, 

our GRU model achieved outstanding confusion matrices for 

the test sets. On the test set, the model accurately classified 

201 EEG stress signals, 231 positive signals, and 208 neutral 

with a total of 566 well classified signals against 71 false 

classified signals. These results, which are represented in the 

matrices in Figure 4, confirm the accuracy and reliability of 

the model in distinguishing between stress, neutral and 

positive EEG signals. 

 

4.3 Accuracy and loss curves results 

 

Furthermore, the utilization of GPU for RNN 

implementation has significantly accelerated the processing 

speed during training epochs, influencing the direction in 

which the networks learn. The loss curves as depicted in 

Figure 5, employing Adam and Adadelta optimizers for both 

the validation and training processes, depict outstanding 

accuracy results. The accuracy curves as depicted in Figure 6, 

during the training and validation processes as presented in 

Figure 6 reveal a minimal gap between training and validation 

across epochs. The two curves have demonstrated. 

 

4.4. Processing time 

 

The experimental findings from the EEG database indicate 

a substantial enhancement in system processing time 

efficiency when employing a GPU over a conventional CPU. 

The real-time classification of EEG signals using the CPU-

based algorithm took 0.015 seconds per signal. However, the 

implementation on a GPU demonstrated further refinement, 

achieving higher accuracy with shorter processing times, 

reducing it to 0.002 seconds per EEG signal during the test 

process. 

 

Table 5. Precision and F1 scores results 

 

 Precision 
F1-

Score 

Number of 

Samples 

Stress (Class1) 98% 80% 201 

Neutral 

(Classe2) 
99% 99% 231 

Positive (Class3) 75% 85% 208 

 

 
 

Figure 5. Loss curves through train and validation processing 
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Table 6. Accuracy and validation with SGD optimizer 

 
 Train Validation Test 

Accuracy 97.23% 93.68% 88.86% 

Loss 0.036 0.056 0.092 

 

Table 7. Accuracy and validation with Adam optimizer 

 
 Train Validation Test 

Accuracy 99.53% 94.98% 89% 

Loss 0.018 0.046 0.11 

 

 
 

Figure 6. Accuracy curves through train and validation 

processing 

 

 

5. DISCUSSIONS 

 

5.1 Comparative study GRU-Adam vs GRU-SGD 

 

 
 

Figure 7. Histogram accuracy results 

 

As depicted by the following histogram by Figure 7, the 

implementation of GRU Recurrent Neural Network has shown 

promising accuracies for both GRU using Adam and SGD 

optimizers. However, GRU-Adam has outperformed GRU-

SGD with a small gap equal to 0.2%. This phenomenon has 

been explained by the huge role that plays Adam to eliminate 

fluctuations. However, SGD can exhibit noise, implying that it 

may not consistently move towards the optimal direction for 

reaching the global minimum of the loss function and 

improving accuracies. Moreover, the GRU with its light 

weighted architecture has proved to be efficient in terms of 

achieved classification results. Therefore, there is a potential 

risk of becoming trapped in local minima instead of converging 

to the actual global minimum. The choice of optimizer depends 

on the specific dataset we work with, and experiments using 

different optimizers leads us to find the best for our proposed 

model network. 

 

5.2 Comparative study with the related works 

 

Furthermore, the confusion matrix results highlight the 

superior classification accuracy of our proposed RNN 

compared to previous studies employing similar approaches. 

In a related study, Liao et al. introduced an ontological model 

for representing and integrating EEG data [12]. Their approach 

involved utilizing an ontology to model low-level biometric 

features and mapping them to high-level human emotions, 

evaluated using the DEAP database. Despite employing the 

same dataset and extracted features, their model achieved an 

average recognition rate of 75.19% for valence and 81.74% for 

arousal across eight selected participants, indicating the 

enhanced performance of our proposed RNN classification 

method. Phutela et al in the study [17], have used the BLSTM 

to classify stress levels. The results indicate that the hybrid 

model we propose attained a superior classification accuracy 

of 99.20% compared to others models. Temporal Attention 

module has been implemented for stress detection achieving 

an accuracy going to 85.1% [12]. Moreover, we have 

surpassed deep neural networks state of the art models by a 

gain in terms of accuracy, sensitivity and specificity [18-20] 

with a gain more than 2.5%. 

 

 

6. CONCLUSIONS  

 

In this paper, a RNN based GRU model has been 

implemented for stress from EEG signals, where we used the 

preprocessed DEAP Dataset. Two optimizers networks 

including Adam and SGD have been introduced for accuracy 

results improvement. Furthermore, excellent F1 score, 

precision and accuracy have been achieved. The outcomes of 

our study indicate superior classification performance with the 

RNN method compared to other state-of-the-art approaches. 

This suggests the successful applicability of this method to 

2D-RNN-based EEG systems dealing with large datasets. 

Finally, our application can be a good candidate to be used in 

hospitals and clinics. As future work, we think to more speed 

up time execution process by the implementation of our 

application on embedded system such as Pynq-FPGA, using 

more EEG dataset. 
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