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The rise in agricultural innovation has led to the use of sustainable farming practices, such
as aeroponics, which increase crop production. Aeroponics, a soil-free indoor precision
farming system, cultivates crops using vertical towers, garnering global attention for its
environmentally friendly and productive cultivation methods. Aeroponic systems can grow
lettuce, a popular green-leafy vegetable, quickly and with minimal water usage. However,
yield prediction is a tedious task in real-world scenarios. To efficiently predict lettuce yield,
various scientific experiments have integrated loT and machine-learning techniques. This
research work utilized various machine-learning regression models, including linear,
support vector, random forest, and XGBoost, to estimate lettuce yield based on specific
growth parameters such as pH, EC, temperature, total dissolved salts (TDS), turbidity,
humidity and light. After implementation, the results showed a high prediction accuracy of
93% and minimal error rates produced by the XGBoost regression model when compared
with the other regression models. Further, fine-tuning the model parameters enhanced the
XGBoost model's performance, enhancing its generalization capability to handle new real-
time data. This indicates that optimizing the lettuce yield involves not only using indoor
aeroponic farming methods but also utilizing advanced sustainable food production

systems.

1. INTRODUCTION

The increasing population, climate change, and food
constraints have led to a growing interest in alternative
farming methods like hydroponics and aeroponics. These
methods offer year-round harvests, weather protection, easy
transportation, support for various crop cultivars, and disease-
free practices, making them crucial for addressing food
security concerns in the global economy. Aeroponics, a
soilless method with an innovative tower structure, has shown
significant improvements in crop yields ranging from 7% to
65%, accelerated crop maturation rates, and optimized water,
pesticide and fertilizer consumption patterns when compared
to the traditional farming techniques [1, 2].

Soil-free cultivation uses hydroponic or aeroponic systems
to grow plants without soil. Hydroponics involves submerging
roots in nutrient solutions, while aeroponics aerosolizes the
solution. These systems offer a controlled environment and
easy nutrient manipulation, making them ideal for genetic
studies and screening mutant phenotypes. Aeroponic systems
are more efficient due to their ability to suspend roots in mist,
improve oxygen exposure, and produce fine particles [3-5].

Artificial Intelligence (Al) has shown potential for
improving crop yield predictions in fields like healthcare,
robotics, and meteorology. It can enhance efficiency and
accuracy in agricultural yield prediction by optimizing
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parameters like light exposure, nutrient supply, and
temperature [2, 6-8]. In aeroponic systems, the utilization of
Al techniques like machine learning algorithms plays a vital
role, especially in data analysis, real-time growth monitoring,
resource management and predictive modeling.

The study stresses how important it is to accurately predict
aeroponic crop yields in modern farming. This lets farmers use
advanced machine learning algorithms to make the best use of
their resources, come up with effective farming strategies, and
cut down on losses [9, 10]. Accurate yield prediction in
aeroponic systems is crucial for food production and resource
management. It optimizes factors like yields, crop appearance,
nutritional content, quality, and taste while minimizing
resource usage like nutrients, water, and energy, leading to
effective cost utilization and optimized resource utilization.

Real-time aeroponics systems require improved decision-
making processes and accuracy in yield prediction models to
address the aforementioned factors, which have been
elaborated on in this research work. The structure of this
document comprises four sections: Section 2 provides an
overview of existing works, while Section 3 details the
methods used to collect and analyze data, including the
implementation of machine learning models and
interpretability techniques. Section 4 presents the findings and
their implications, while Section 5 summarizes key takeaways
and potential areas for further research.
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2. SURVEY OF LITERATURE

The literature survey on lettuce yield predictions in
aeroponic vertical farming systems using machine learning
regression algorithms is a critical examination of precision
agriculture research. The survey focuses on lettuce cultivation
in aeroponic vertical farming and aims to identify trends,
methodologies, and key findings in predictive modeling for
yield outcomes. The comprehensive exploration not only
establishes the theoretical foundation for future research but
also contributes insights for developing robust predictive
models tailored to the unique challenges and opportunities
presented by aeroponic vertical farming in lettuce cultivation.

Nutrient sensors detect and measure plant environment and
data transmitted through wireless networks, determining the
necessary nutrients for plant growth, such as nitrogen,
phosphorus, and potassium, which are crucial for vertical or
closed crop cultivation [11].

The study introduces the Lettuce Crop Development
Monitoring-Boost (LCGM-Boost) regression model, which
improves lettuce crop monitoring and predicts yield in
aeroponic vertical farming systems. The model considers pH,
EC, PPM, turbidity, and temperature parameters. It shows
robustness against outliers, superior prediction accuracy, and
reduced error rates. This model is suitable for automating
lettuce crop growing settings and predicting yield [12].

Aeroponics, a soilless farming technique, has been
significantly ~ transformed by  technology, offering
environmental control, automated nutrient delivery, and plant
health monitoring. The most common technology is sensing
technology and Industry 4.0, offering sustainability and time
efficiency. However, technical complexity and power
dependency pose challenges. The Technology Adoption and
Integration in Sustainable Agriculture (TAISA) model
assesses technology integration in sustainable agriculture
systems. Asia leads in technology integration, with Indonesia
being the most studied country. As technology advances,
careful consideration of benefits and limitations will lead to
more efficient, productive, and resilient aeroponic cultivation
systems [13].

The study assesses the use of Support Vector Regression
(SVR) in estimating crop yields using the LCGMS Regression
model, revealing environmental factors affecting crop growth.
It suggests future research should focus on improving
evaluation indices and data features for evidence-based
decision-making, food security, and sustainable agricultural
practices [14].

The authors have developed a meta-heuristic optimization
technique for diagnosing heart disease using sound waves. The
method uses Particle Swarm Optimization, the Firefly
approach, and the Cuckoo Search Algorithm to find the most
optimal feature vector. The approach is evaluated on the
Pascal dataset, which is divided into separate sets for testing
and training. Machine learning methods like Random Forest,
K-Nearest Neighbors, Support Vector Machines, and Naive
Bayes are used. The model achieved the highest classification
accuracy of 90.32% using CSA and Naive Bayes [15].

The article suggests using shape curvature and multi-feature
fusion for weed identification in crops. Shape curvature is
useful for shape-based identification, while texture features
provide discriminatory information. Combining both is
advantageous. The SVM classifier outperformed other
classifiers with 99.33% classification accuracy, potentially
benefiting autonomous weed management systems by
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reducing false negative rates [16].

The study presents a high-throughput architecture for
detecting anomalies in streaming data using the Apache-
Kafka-powered model. The RF algorithm achieves average
accuracy, precision, recall, f-score, and computation time
values of 98.6%, 91.8%, 90.4%, 91.09%, and 38.5ms,
respectively. However, it exhibits over-fitting tendencies
when dealing with small-sized data. The architecture's ability
to channel data without data loss and consistent accuracy make
it feasible for real-life applications [17].

A machine learning framework has been developed to
assess students' satisfaction with online admissions counseling.
The framework uses a Decision Tree Classifier without
SMOTE and SVC-linear using SMOTE to estimate
satisfaction rates. The accuracy was achieved at 48% in the
Decision Tree Classifier without and 88% in SVC-linear using
SMOTE, allowing for the optimization of students' choices
based on their strengths, weaknesses, and related parameters
[18].

Franchetti et al. [19] used 3D plant modeling and deep
segmentation techniques to forecast the plant growth of Basil
phenotyping with the help of features plant height, leaf area,
and leaf weight where the accuracy was moderate. In another
article, the authors used random forest and SVM for predicting
rosette phenotyping with the help of plant leaves as a feature
[20]. The LSSVM machine learning framework was proposed
to find the water stress of the wheat crop. Here, the plant leaf
was used as an essential feature [21]. Techniques like Self-
Organizing Maps (SOM), hierarchical clustering, and k-means
algorithm were utilized for lettuce crop growth prediction with
the extracted feature plant leaf and achieved higher accuracy
rates [22]. Data visualization and Logistic regression
approaches were used for analyzing the distribution of the
dataset of the lettuce crop and produced the average error rates
while predicting the lettuce yield [23]. In Mamatha and
Kavitha [24], K nearest neighbors were implemented for
predicting the yield of leafy vegetables which used the plant
growth as the feature vector and produced a higher prediction
accuracy. Reinforcement learning has been adopted by the
authors for finding the phenotyping of the crops chili, beans,
potatoes, and onions with a prediction accuracy of 83.563%.
This work extracted plant leaves as the observed features for
learning purposes [25]. The authors in the article [26] analyzed
the effectiveness of the random forest regression model in
predicting the aeroponic lettuce crop yield.

So, from all these previous researches, it is inferred that
most of the authors have utilized the applications of integrated
IoT and ML algorithms without any doubts. Hence, the
comparatives of those ML algorithms with their specific
advantages have been carried out by the authors in this
manuscript to provide which model is better for predicting
aeroponic lettuce crop yield.

3. AEROPONIC LETTUCE YIELD PREDICTION

This section deals with the prediction of growth stages and
harvesting of the Lactuca Sativa i.e. botanical name of lettuce
crop. The vyield prediction usually involves two different
methodologies, 1) manual and 2) technology-driven approach.
Both techniques are explained in brief in the following sub-
sections. To increase lettuce crop production through vertical
aeroponic systems, this research examines a twofold
methodology that blends conventional techniques (manual or
traditional) with advanced technology (technology-driven



applications) to accurately predict yields. Given the distinctive
features of aeroponic systems, it is crucial to adopt an

integrated approach that combines tried-and-true agricultural
practices with state-of-the-art tools to achieve optimal results.

Table 1. Comparison between manual and technological approaches in yield prediction

Parameters Manual Approach

Technology-Driven Approach

Conventional methods involve collecting data through
visual evaluations of plant health, nutrient availability,
and growth patterns, allowing researchers to identify and

Data Collection

document key factors for qualitative analysis.

Prediction models are enhanced by the addition of
experts' subject knowledge. In building models, leaf
color, size, and general health of plants are taken into

account along with information gathered manually.

Agricultural specialists conduct qualitative analysis to
evaluate model effectiveness, based on their extensive
expertise, to evaluate the models' usefulness and

Model
Developments

Performance
Evaluation
applicability.

Sensor technology like Internet of Things devices and
environmental sensors provide real-time quantitative data
on crop growth variables, ensuring continuous observation

and increased accuracy in information gathering.

ML algorithms process sensor data to identify complex
patterns, and analyze ensemble techniques, neural
networks, or regression models, providing lettuce yield
estimates as a quantitative framework.

ML models' accuracy and efficacy are evaluated using
quantitative measures like mean squared error and R-
squared values, providing a basis for identifying reliable
prediction algorithms.

3.1 Predicting the yield of aeroponic lettuce-manual and
technology-driven methods

The basic comparison of predicting yield using manual and
with the help of technology is presented in the form of Table
1.

3.2 Machine learning in lettuce yield prediction

With their advanced analytical ability to cope with the
complexity of agricultural systems, machine learning (ML)
algorithms have become a potent tool in the prediction of
lettuce crop yields. Here, in this work, we have utilized
different machine-learning regression models that provide a
greater impact on the yield prediction of the lettuce crop.

3.2.1 Utilized machine learning models

Linear Regression. Linear regression is the fundamental and
interpretable machine learning regression model used for
predicting numerical values with the help of the linear
equation. In an aeroponic lettuce crop yield prediction system,
the model estimates the linear relationship between the one
input variable and the output variable. It is mathematically
represented as:

y=mx+b»b @)
where, y is the dependent variable (crop yield), x is the
independent variable (input parameters), m is the slope and b
is the intercept term.

Multiple Linear Regression Model. Linear regression
models are simple approaches used to find the relationships
between two variables, the input, and the output variable. But
for more complex relationships that require more
consideration, the multiple linear regression models were
highly utilized to find the relationships between the multiple
input variables and the output variable i.e. the situation where
multiple independent variables are used to estimate the
outcome of the single dependent variable. There are two main
uses of this regression analysis: 1) to determine the dependent
variable based on the multiple independent variables and 2) to
determine how strong the relationship is between the variables.

Multiple linear regression is often used when forecasting
more complex relationships. In an aeroponic lettuce crop yield
prediction system, multiple regression models can make
effective predictions on the new and unseen data. The
coefficients of the feature variables are determined which
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allows the growers to make informed decisions about the crop
behavior and vyields. Equation 2 is the mathematical
representation of the MLR:

y = by + by x1+by x5+ + by xp, 2)
where, y is the dependent variable (crop yield), [X1, X2, ..., Xn]
is the independent variable (input parameters) and [bo, b1, b
2, ..., bn] are the coefficients.

Support Vector Regression. Support Vector regression is a
type of supervised machine learning algorithm that works
similarly to that of the SVM algorithm. The model aims to
minimize the errors in the actual and predicted values which
fit the hyper plane into the data points. In an aeroponic lettuce
yield prediction system, the dependent variable lettuce yield is
predicted using the independent variables which are the
environmental factors for growing the lettuce crop with the
help of different kernel functions to fix the non-linearities into
linear problems. It deals with the complex relationship
between the environmental factors and the yield. SVR allows
hyper-parameter tuning which improves the accuracy of the
prediction model to better fit into the dataset. Like other
regression models, SVR can be iteratively improved by
incorporating the new and the unseen data.

The mathematical formulation of the SVR objective
function involves defining a hyperplane that finds the
relationship between the input parameters and the output
(yield). The data points n concerning the input parameters X;
and the corresponding output (yields) yi, where, i=1, 2, 3, ...,
n the SVR objective function could be written as two different
equations as represented below.

i) In the case of linear kernel

n
1
My 00 5WW+C )G+ ) ®)

i=1

subject to the constraints=(y,—w’X; — b < e + () (WTX; +
b—y, <e+{) where, {;,{i = 0.
ii) In the case of a non-linear kernel

n
1
MiNy, p e ot EWTW + Cz G +4) “4)

i=1

subject to the constraints= (y;—¢pX)Tw—b<e+
(X)W +b —y; < e+ ) where, §, {7 = 0.



where, #(Xi) is the transformation of X; into a high-
dimensional space.

In these equations, w and b are the parameters to be
learned from the training data, ¢ and ¢;" are slack variables
allowing for deviations from the actual output and C is a
regularization parameter controlling the trade-off between
model simplicity and accuracy.

Random Forest Regression. The Random Forest (RF) is the
collection and utilization of multiple decision trees for output
predictions. It is the ensemble learning approach that combines
the output of multiple weak learners to improve the accuracy
and robustness of the model. Each decision tree deals with the
subset of random features that promotes the diversity leading
to the chances of better predictions. It has the capability of
handling missing values which does not require any external
preprocessing techniques. Also, the model could effectively
handle larger datasets. In an aeroponic vertical farming
system, the RF supports the complex interaction between the
dependent and the independent features. One of the main
advantages of RF regression is that it handles the overfitting
problem due to the randomness in the feature selection. With
the help of feature importance, the growers were able to gain
insights into the input parameters that have the most
significant impact on the lettuce yield.

Itis represented as the average of individual tree predictions
which is given below:

1 N
900 == D Fi(X) )

where, y(X) is the predicted output (yield) for the given set of
input parameters (X), N is the number of trees in the random
forest, Fi(X) is the prediction output from it decision tree.

Here, each tree Fi(X) is constructed based on the random
subset of features at each split. The final prediction is an
average of these individual tree predictions.

XGBoost Regression. The Extreme Gradient Boosting-
XGBoost model is a powerful machine learning algorithm that
excels in real-world prediction tasks. It uses a decision-tree-
based ensemble model to reduce errors and improve accuracy.
The learning rate is used to control the behavior of each
decision tree, affecting the overall model's accuracy. The
model is effective in aeroponic lettuce crop yield prediction,
handling missing values, non-linearities, and complex
relationships, and preventing overfitting. It also focuses on
feature importance, identifying environmental factors, and

ensuring sufficient resource allocation and decision-making
by growers. The model learns patterns and predicts outcomes
effectively with new data.

Assuming the dataset with n observations and m features
and predicting a continuous output variable y based on the
input features X, the XGBoost regression model is given by:

Ti= 9 = ) filxd) ©
k=1

where, ¥, is the predicted output for observation i, ¢(x;) =
YK_. fr(x;) is the ensemble prediction for observation i, fi(xi)
is the prediction of the k™ regression tree.

The individual regression tree prediction, fi(x) is
constructed based on the sum of predictions from each tree
node along with the path that observation i takes down the tree.

fie(x) = Waiik

(7

where, wq(ik)is the weight associated with the terminal node

Qi that observation i reaches in the k™ regression tree.

Hence, the overall objective function for the XGBoost
regression model is the sum of a regularized training loss and
the regularization term:

n K
0bj(0) = Y LU + ) O ®)
i=1 k=1

where, 6 represents the parameter of the model; L(y;#)
represents the training loss of the observation i and Qfy is the
regularization term for the k™ regression tree. Here, important
to note that is, the training loss is often MSE for the regression
trees.

3.3 Systematic representation of lettuce yield prediction

The systematic representation or the workflow diagram is
represented in Figure 1. It is the collection of different modules
used to describe the stepwise implementation of the proposed
system. In other words, it is the encapsulation of the workflow
that provides a clear-cut graphical illustration of the
implementation procedure. It improves communication and
provides an easy understanding of the underlying mechanism.
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Figure 1. Lettuce crop yield prediction system
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From Figure 1, it is clear that the implementation procedure
starts with data collection and proceeds with the series of
processes towards the yield prediction as the outcome. The
detailed description of the various processes is explained
below.

3.3.1 Data collection and data visualization

The first and foremost step in the implementation procedure
is the data collection. Here, sensors such as pH sensor, EC
sensor, temperature sensor, total dissolved salts (TDS) sensor,
turbidity sensor, humidity sensor, and light sensor were
deployed in the aeroponic lettuce growth tower. The data were
collected from the growth tower at regular intervals of time,
sample data is represented in the Figure 2. To easily
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understand the data distributions, data visualization techniques
like bar charts (univariate data representation technique),
correlogram (bivariate data analysis technique), and Andrews
curve were utilized and implemented using the Python
packages with the help of Python programming language.

From Figure 2 (a-j), the input parameters are represented
individually with the help of bar plots.

Correlogram of the input dataset highlights the correlation
between the input variables. Here, in Figure 2(l), the
considered lettuce growth parameters were less correlated with
the other parameters. This showcases that the parameters are
independent of each other i.e. one cultivation parameter will
not affect another parameter which is necessary for efficient
lettuce growth and yield prediction.
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Figure 2. Sample dataset and dataset visualization techniques

3.3.2 Data preprocessing

One of the most important steps in the machine learning
implementation is the pre-processing of the dataset for
efficient prediction output. Here, in the aeroponic lettuce crop
yield prediction system, the outliers are the major cause of
higher error rates and low prediction accuracy. Hence, the
removal of the outlier’s mechanism is incorporated for
effective prediction by the regression models. The dataset size
is represented below before pre-processing as the old shape
and after pre-processing as the new shape of the dataset.
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Figure 3. Data preprocessing

The boxplot represents the dataset after pre-processing. The
x-axis provides the different features of the lettuce growth
dataset i.e. [0-8] is [pH to Yield] collected from the aeroponic
vertical farming tower which is highlighted in Figure 3 (a) and

(b).

3.3.3 Dataset splitting
Once the data is collected, pre-processed and ready for the
implementation process, there is a necessary step called data
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partitioning or splitting of the data, before the data is fed into
the ML model. In the case of the efficient implementation of
the classification or regression model, the data has to be split
into two: training data and testing data as shown in Figure 4.

Dataset Splitting

y

Training data =319320
samples

Testing data = 79380
1 samples

Figure 4. Dataset splitting

3.3.4 Machine learning implementation: Model training and
model testing

The actual work of the implementation phase begins now.
A structured methodology is used to train and evaluate
machine learning regression models for predicting aeroponic
lettuce crop yields. The collected, analyzed and pre-processed
datasets were fed into all four machine-learning models for
training purposes. Once, the training of the models is done,
next comes the testing phase. The test dataset is supplied to the
trained machine learning models for testing the performance
of the models. The testing scores were recorded and based on
the produced results, the process called hyper-parameter
tuning is carried out to achieve better results further. The
detailed description of the results produced by the models was
described in the results and discussions section.

4. RESULTS AND DISCUSSIONS
4.1 System requirements

The system requirements that are essential to carry out the
result analysis were the Anaconda Navigator, Jupyter
Notebook with the Python programming language, and the
desktop system or the personal computer or the laptop with the
storage provided in the system or the laptop.

In this section, the detailed notes on the performance of
different machine learning models were described elaborately.
The best model was chosen based on the error rates and the
prediction accuracy produced by the model, i.e. how
accurately the regression model predicts the yield of the lettuce



crop in the aeroponic environment.

4.2 Evaluation of the ML models using the performance
metrics along with performance analysis

Performance metrics are the fundamentals used for
assessing the performance of the machine learning regression
models based on the produced prediction output from the
actual values and interpreting the accuracy of the predictions.
The most commonly used evaluation metrics in lettuce yield
prediction analysis are listed below.

4.2.1 Mean squared error (MSE)

It is the average of the squared differences between the
predicted values (x;) and the actual values (yi). It penalizes
larger errors more heavily.

1 n
MSE = E;(yi —x;)? )

The MSE score of the implemented models is given in Table
2 and Figure 5.

Table 2. MSE scores

Regression Type MSE
Linear (Multiple) 204
Support Vector Slgggld ig;
Regressor Li '
Kernels inear 125
Poly 9.8
Random forest 8.5
XGBoost 6.3

Evaluahon of Regression models using MSE score
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Figure 5. Graph for MSE score

All these regression models produce different error rates
and linear regression shows less performance accuracy when
compared to other regression algorithms.

4.2.2 Root mean squared error (RMSE)

It is the square root of the MSE. It provides the measure of
the average magnitude of the errors in the predicted values, in
the same units as the response variable.

RMSE = VMSE (10)
The RMSE score of the implemented models is given in
Table 3 and Figure 6.
The XGBoost regression algorithm produced a minimum
rmse score than the other regression algorithms. Next random
forest regression algorithm produces an error rate less than the
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other five regression algorithms. The maximum rmse score is
produced by the linear regression model.

Table 3. RMSE scores

Regression Type RMSE

Linear (Multiple) 4516

Support Vector Slgglc:nd ggi?
Rég;ﬁzslgr Linear 3.535
Poly 3.13

Random forest 2.915

XGBoost 2.509

Evaluation of Regression models using RMSE score
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Regression Algorthms

[ X800

Figure 6. Graph for RMSE score of the utilized models

4.2.3 Mean absolute error (MAE)

It computes the average absolute differences between the
predicted (x;) and the actual values (yi), providing the measure
of the average magnitude of errors. The MAE score is
highlighted in Table 4 and Figure 7.

1 n
MAE =;;(yi —x) (11

Table 4. MAE scores

Regression Type MAE

Linear (Multiple) 4.765

Support Vector Slgrg'c:nd ggié
Rég;f]zslgr Linear 2.867
Poly 2.353

Random forest 2.107

XGBoost 1.906

Evaluation of Ragression models using MAE score
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Figure 7. MAE Scores of the utilized models

4.2.4 Mean absolute percentage error (MAPE)

The MAPE expresses the errors as a percentage of the actual
values, providing a relative measure of accuracy. Below
presented Table 5 and Figure 8 highlights the obtained MAPE



scores of the model.

n

1 Vi — X
MAPE = — X 100 (12)
g Vi

Table 5. MAPE scores

Regression Type MAPE
Linear (Multiple) 155
Support Vector S|grlra1'c:>|d igg
Regressor Linear 9 2
Kernels Poly 8.1
Random forest 7.89

XGBoost 7.581

Evaluation of Regrassion models using MAFPE score
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Figure 8. MAPE Scores of the utilized models
4.2.5 Median absolute percentage error (MedAPE)

It is the median of the absolute percentage errors, making it
less sensitive to outliers than MAPE.

. Vi — Xi
MedAPE = median {—— ) X 100 (13)
i

The MedAPE score of the implemented models is given in
Table 6 and Figure 9:

Table 6. MedAPE scores

Regression Type MedAPE
Linear (Multiple) 14.2
Support Vector S'ggg'd 192'71
R}ig:ﬁseslgr Linear 8.5
Poly 6.9
Random forest 6.3
XGBoost 4.8

Evaluation of Regressian models uwing MedAPE scorm
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Figure 9. MedAPE scores of the utilized models

4.2.6 Root mean square logarithmic error (RMSLE)
It is the measure of the average difference between the
logarithm of the predicted (x;) and the actual values (y;). It is

particularly useful when the target variable has a wide range.

RMSLE =

SI'—*

DIty —log @+l (14)
i=1

Table 7. RMSLE scores

Regression Type RMSLE
Linear (Multiple) 1.876
Support Vector Slgrggld 132
Regressor Li )
Kernels inear 14
Poly 1.253
Random forest 1.176
XGBoost 1.03

The RMSLE score of the implemented models was given in
Table 7 and Figure 10:
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Figure 10. RMSLE scores of the utilized models

4.2.7 R-squared metrics (Coefficient of determination)

R-squared metrics represent the proportion of the variance
in the independent variable that is predictable from the
independent variable. Usually, this metric ranges between 0
and 1. A higher R-squared value indicates a better fit of the
model to the data.

R2 _ Y = 9)?

=1 (15)
o (- z)z

Table 8. R-squared scores

Regression Type R-Squared

Linear (Multiple) 0.574
Support Vector Slgrggld 82;8
Regressor . ’
Kernels Linear 0.768
Poly 0.792
Random forest 0.8154
XGBoost 0.8948

Evaluation of Ragression models using R Squared score
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Figure 11. R-squared scores of the utilized models
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The R-squared score of the implemented models is given in
Table 8 and Figure 11.

4.3 Comparative analysis of the performance metrics

The performance analysis of all the utilized ML models has
been done in this sub-section. Various results produced were
depicted in the Table 9 and Figures 12, 13.

Performance Analys< of Regression Mooals
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Figure 12. Performance graph of the utilized regression
models

All these models are compared individually only with my
collected dataset. Based on the results produced (refer Table 9,
Figure 12 and Figure 13) by linear regression, Support Vector
Regressor with their kernels: sigmoid, linear, radial basis
function (RBF) and polynomial, random forest and XGBoost
regression, it is observed that there is a consistent
improvement in the predictive performance and decrease in
the error metrics respectively. It should be noticed that a higher

value of 0.89 R-squared metrics is shown by the XGBoost
regression model.

Accuracy Comparison of Regression Models

o n
c o
k5

Accuracy Valuss
]

n-.L e
SVRABF  SVALinear SVR Foly Randem Forest XGBoost
Regressiaon Type

Unes  SVRSgmod

Figure 13. Accuracy of the utilized models
4.4 Prediction graphs

The graphs that showcase the predictive performance of the
supervised and unsupervised machine learning classification
and regression models by describing the complex relationships
between the original (actual) values and the predicted values
are termed prediction graphs. These graphs are used to
perform a comprehensive analysis of various prediction
algorithms to depict the efficacy of each algorithm separately.
These graphs, not only highlight the individual strengths of
each model but also contribute valuable insights for
understanding the applicability of each model in predicting the
complex relationships between the variables or parameters
within the dataset.

Table 9. Consolidated evaluation metrics of the ML models

Regression Type MSE RMSE MAE MAPE MedAPE RMSLE R-Squared Prediction Accuracy in %
Linear (Multiple) 204 4516 4.765 155 14.2 1.876 0.574 64.92
Support Vector Sigmoid  19.7  4.438  3.832 13.2 12.1 1.83 0.676 68.51
Regressor RBF 153 3.911 3.215 10.8 9.7 1.76 0.679 71.46
Kernels Linear 125 3.535 2.867 9.2 8.5 1.4 0.768 78.74
Poly 9.8 3.13  2.353 8.1 6.9 1.253 0.792 83.647
Random forest 85 2915 2107 7.89 6.3 1.176 0.8154 87.538
XGBoost 6.3 2509 1906 7.581 4.8 1.03 0.8948 92.865
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Figure 14. Prediction Graphs of the utilized models
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In this research work, Figure 14 (a) linear regression
prediction graph highlights the linear relationship between the
input parameters (actual values) and the output parameter
(predicted values). From Figure 14, it is clear that the
prediction accuracy gradually increases from support vector
kernel- sigmoid, rbf, linear to polynomial kernel. These
kernels exhibit distinctive patterns across each kernel which
represents the average fit of the dataset and enhances the
model’s ability to capture the non-linearities. Next comes the
random forest and the XGBoost regressors that showcase
remarkable accuracy, illustrating their robustness to outliers
and noise by capturing the complex relationships within the
dataset.

4.5 Choosing the best model using the training and
validation loss curves

In simple terms, both these curves: the training loss curve
and validation loss curves are crucial in machine learning
regression as these curves showcase the generalization ability
of the ML model on the unseen data i.e., the model should have
the capability to generate the same type of output produced on
the seen data (to predict the lettuce crop yield in our case)
when it is exposed to the unseen dataset from the external
environment.

Loss Curves
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Figure 15. Training and validation loss

5. CONCLUSION AND FUTURE SCOPE

In summary, the purpose of the study was to optimize
lettuce crop growth by integrating precision agriculture
practices with intelligent techniques. Also, the results
comprehensively analyzed the performance of several
machine learning regression models in the context of a vertical
aeroponic farming system to make accurate predictions of
lettuce production. We have gained valuable insights into their
effectiveness in handling the complex interactions between
environmental variables such as pH, EC, temperature, total
dissolved salts (TDS), turbidity, humidity, light and growth in
days that are inherent to aeroponic cultivation as a result of our
in-depth analysis and comparison of models such as linear
regression, support vector regression, and random forest
regression. This was accomplished through rigorous analysis
and comparison of these models.

According to the findings of our research, XGBoost
surpasses the others in terms of error rates, accuracy and
predictive power, demonstrating its potential as an excellent
option for the prediction of lettuce production in aeroponic
vertical farming. However, it is crucial to note that there are
multiple aspects of agricultural systems and the selection of
the most appropriate model may change depending on certain



environmental conditions. This is something that has to be
acknowledged.

This research work makes a significant contribution to the
expanding body of knowledge in the field of precision
agriculture, specifically the aeroponics indoor farming
systems by providing practical recommendations on the
application of machine learning regression models to the
problem of maximizing the output of lettuce grown in
aeroponic conditions. The research work enhances crop
prediction in vertical farming systems, paving the way for
future research and technology interventions to improve
agricultural practices, reduce environmental impact, and
enhance crop production. It also encourages competition in
crop markets by incorporating diversification and crop rotation
strategies, minimizing resource usage and promoting short-
term growth while minimizing pests, diseases, and climatic
variability.

The future development of the Aeroponic Lettuce Yield
Prediction System is focused on enhancing its accuracy and
reducing errors. This involves investigating various factors
such as environmental conditions, nutrient levels, plant growth
patterns, and more. In addition, the team plans to employ
advanced machine learning techniques like ensemble learning
and data augmentation to optimize model performance. Real-
time sensor data integration and leveraging pre-trained models
are also part of the roadmap to further boost prediction
capabilities. To make the system easy to use for farmers and
operators, an intuitive interface with clear visualizations and
actionable insights will be implemented.
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