

Implementation of Entropy-based Distributed Denial of Service Attack Detection Method in

Multiple POX Controllers

Mahmood Z. Abdullah, Nasir A. Al-awad, Fatima W. Hussein*

Computer Engineering Department, College of Engineering, Al-Mustansiriyah University, Baghdad, 10001, Iraq

Corresponding Author Email: fatima.wadaa.hussein@gmail.com

https://doi.org/10.18280/rces.060201

ABSTRACT

Received: 26 March 2019

Accepted: 10 June 2019

 Software Defined Networks (SDN) differs from traditional networks, it splits the control from

the data plane. The controller is an essential and important part in SDN architecture; and it is

exposed to many potential security challenges, one of such critical challenges is the impact of

Distributed Denial of Service (DDoS) attack. The objective of this study is to implement an

Entropy-based detection algorithm for DDoS attacks in SDN networks using POX controller

to improve the network security, and to test the performance of this algorithm using POX

controller in different topologies and different number of controllers. In this paper the Entropy-

based detection algorithm was carried out in different tests that include connecting POX

controller to single topology with 64 hosts and then different number of POX controller had

been connected to linear topology with 64 hosts. Through this study, it was found that the

Entropy detection method works better in lightly loaded network and the results indicate that

increasing the number of controllers can improve the security of the network. This paper

introduces a new contribution in implementing a statistical DDoS detection method in multiple

POX controllers and in different topologies to improve the security of the SDN network.

Keywords:
attack traffic, DDoS, Mininet, normal

traffic, sFlow-RT, software defined

networking (SDN)

1. INTRODUCTION

Different from the traditional architecture of network

devices where data and control plane are joined in the same

device, a new networking architecture called SDN appeared in

the last ten years and separated the control plane from the data

plane. In SDN, network devices like switches and routers

reside in the data plane and they become simple packet

forwarding devices, and network intelligence in the form of

software control program, named the controller, reside in the

control plane [1]. Figure 1, shows the difference between the

architecture of SDN and traditional network.

Figure 1. Traditional network vs. SDN [2]

SDN is introduced to support the continuous evolutions of

current networking architectures and to achieve new

requirements. The big aim behind SDN is to give an open

interface to enable the development of software that controls

the connectivity among network resources and flow of

network traffic [3].

In SDN, network applications are not residing on the actual

devices, and must only interface with them through the

controller, for these centralized applications the network

appears to be one big switch/router, there could be 3 devices

on the network or 30,000, itôs all the same. This provides

simpler changes, upgrades, additions, and configurations than

before [4]. For all the properties that SDN offers, both industry

and academia have become interested in it [5].

However, the SDN suffers from problems that is common

to any new technology, SDN centralized controller have many

challenges that need to be addressed like scalability,

performance, and high availability [6]; in addition, SDN

introduces a new security challenges because of properties of

decoupling the planes and migrating the functionality of

control plane, and SDN may not mesh well with existing

network security approaches, one of these security challenges

is DDoS attack [2].

DDoS attacks is dangerous threat to network security, it is

disastrous and can bring down a server or network very fast,

and it forms a challenge to network availability [7-8]. In DDoS,

the victim is attacked by two or more compromised devices,

the goal of this attack is to make a machine or network

resource unreachable to its legitimate user [9-10]. As shown in

Figure 2, DDoS attack consists of four elements [11]:

(1) The attacker that is behind the attack.

(2) The master or handler that control multiple zombie

hosts and instruct them to perform malicious activities.

(3) The zombie hosts or agents or bots that run the attack

and generate packet streams destined for the victim.

(4) The targeted victim.

Review of Computer Engineering Studies
Vol. 6, No. 2, June, 2019, pp. 29-38

Journal homepage: http://iieta.org/journals/rces

Figure 2. DDoS attack [7]

In SDN, DDoS attack is a big security challenge [12], it

mainly occurs due to the flooding of traffic packets from the

attacker to the victim to either decrease its performance or stop

its service and it will be unavailable for future connection [13-

14]; usually, the source addresses of these incoming packets

are spoofed, in this case, the switch is not going to find a match

in the flow table, and therefore, it will send the packet to the

controller; the resources of the controller will be chained into

continuous processing by the combination of DDoS spoofed

and legitimate packets until they are completely exhausted;

this can bring down the controller causing the loss of the SDN

architecture and the newly arrived legitimate packets will not

be able to reach the controller [7].

There are different kinds of DDOS attacks, such as

Hypertext Transfer Protocol (HTTP) flood, Domain Name

System (DNS) reflection, ping of death, Transmission Control

Protocol (TCP) Synchronize (SYN) flood, and other attacks

[15-16]. However, among these DDoS attacks, User Datagram

Protocol (UDP), TCP SYN, ICMP, and HTTP flooding are

most commonly used [8]. All of these attacks have a mutual

aspect of sending large number of traffic loads to the victim

and exhausting its resources.

The remainder of this paper is organized as follows: Section

2 presents some previous related works, Section 3 shortly

reviews DDoS detection using Entropy, Section 4 shows the

methodology of the implementation of the detection method,

Section 5 presents the simulation results, and at last, in Section

6 conclusion is presented.

2. RELATED WORKS

A review of some related works that focuses on SDN

security against DDoS attacks is presented in this section.

S. Mousavi, in [17] proposed a lightweight and simple

DDoS detection mechanism based on Entropy variation of

destination Internet Protocol (IP) address for the new coming

Packet_In messages, in order to protect the SDN controller.

the proposed mechanism was implemented using Mininet and

POX controller that was connected to a tree topology and the

effectiveness of the method was showed through extensive test

cases. This method was able to detect DDoS in its early stages

within the first five hundred packets of the attack traffic.

M. Kia, in [13] proposed a method to detect and mitigate

DDoS attacks at its early stages by using the Entropy variation,

the rate of Flow initiation, and the Flow specifications. The

algorithm was implemented using Mininet and POX controller.

The high detection rates for different traffic patterns in the

results show that the algorithm was able to perform well under

different network conditions and it was not limited to a

specific network condition.

M. Badrinath et al., in [18] provided an approach to detect

DDoS attack using the concept of Entropy that was determined

using flow statistics from the switches, and implemented

multiple measures to prevent these attacks, like, Completely

Automated Public Turing Test to Tell Computers and Humans

Apart (CAPTCHA), installation of a drop entry for blacklisted

IPôs, and honeypots mechanism. The results showed that the

algorithm can detect the attack at early intervals and the attack

solution was scalable and optimal for a campus network.

P. Lin et al., in [19] applied Entropy-based DDoS attacks

detection method and presented a solution based on Network

Function Virtualization (NFV) and SDN, to leverage available

resources in a data center to mitigate these attacks. The

solution features a strategy to recognize anomalies packets and

allocate functions to minimize the latency and footprint of the

network. a proof-of-concept design was also simulated in

Mininet to demonstrate the feasibility of this solution.

B. Al-mafrachi, in [20] considered multiple forms of threats

against SDN controllers initiated from DDoS attacks and

conducted a made a comparison between a set of statistical

methods for the purpose of DDoS attack detection and

identification of switch interfaces that is involved in the attack,

and publicly available Defense Advanced Research Projects

Agency (DARPA) datasets were used to evaluate these

methods.

3. DDOS DETECTION USING ENTROPY

Entropy-based algorithms can be used for the detection of

attacks in communication networks. This statistical approach

can detect several types of attacks including DDoS, by

identifying the randomness of the incoming traffic [21]. The

higher the Entropy is, the higher the randomness of the traffic

flow; on the contrary, the lower the Entropy, the higher the

determinacy of the traffic flow [7].

This paper uses Entropy-based detection algorithm for

DDoS attack proposed by [17] and apply it on different test

cases. Entropy in this detection algorithm uses two

components to calculate the randomness of the incoming

packets; the first component is the window size, which

represent how many incoming new packets are used in

measuring Entropy and it is set to 50; and the second

component is the threshold which is set to 1, and it is compared

with the Entropy value to decide whether it is an attack or not.

For every new Packet_In message that arrive in the network

its header is parsed for the destination IP address; and a hash

table of this address and its number of occurrences is created.

The hash table can be represented by Eq. (1), where W

represents a window with n elements (n equals 50), x

represents the destination IP address, and y represents the

number of times it appeared. For each destination IP address,

the probability is measured using Eq. (2).

ὡ ὼȟώ ȟὼȟώ ȟὼȟώ ȟȣȟὼȟώ (1)

ὴ (2)

Then after a window of 50 packets, the Entropy (H) for that

window is calculated using Eq. (3).

Ὄ В ὴὰέὫὴ (3)

If each incoming packet had a distinct destination IP address,

the Entropy will be at its maximum; while in case the attack is

directed to a single host, massive number of packets is sent to

it, as a result the window will be filled by these packets and

the number of unique destination IPs in the window will be

reduced, and as a result the Entropy will be reduced.

The calculated Entropy is then compared to a threshold, if it

is lower than the threshold, a counter is incremented until it

reaches five consecutive lower-than threshold entropies,

which is considered as a DDoS attack. Otherwise, the counter

is cleared, and there is no attack. Detection within five Entropy

periods is 250 packets in the attack. These five consecutive

periods have the lowest false positive for early detection.

4. IMPLEMENTATION OF THE DETECTION

METHOD

In this paper the Entropy detection algorithm has been

implemented in 8 GB Laptop with installed Windows 8.1 (64-

bit); and Ubuntu 14.04 (64-bit) virtual machine were installed

in Virtual Box with 5000 MB base memory; and a package of

Mininet was installed in this virtual machine as the emulation

tool. Mininet is a network emulator, it has the advantage of

being simple, flexible, open source, and available for free.

Mininet is widely used in research where several topologies

that contains hosts, forwarding devices, and controllers, can be

created and customized, and apply different tests on them in a

simple manner. Also, the controller in which the algorithm was

run is POX; POX is an open source controller written in

python programming language and developed by Nicira, it is

used mainly in research by many developers and SDN

engineers, and it comes already included within the Mininet

VM.

Different tests have been done to implement the Entropy

detection algorithm, the setup of the network used in the first

test is shown in Figure 3 where POX controller (c0) was

connected to single topology with one switch (s1) and 64 hosts

(h1-h64).

Figure 3. Single topology with 64 hosts

Then, the setup of the network used in further tests is shown

in Figure 4 where each of (1, 2, 4, 8, and 16) POX controllers

was connected to linear topology with 64 hosts. The integer

(N) represents the number of controllers and the topology are

divided equally between these controllers, for example, if N=2

then two controllers (c0, c1) will be connected to 32 switches

for each one of them. The (j) in the figure represents the

reduplication of (64/N).

Figure 4. Setup of the designed network

In these tests, POX controller was modified to call the

detection algorithm in a new module called ñl3_editingò; also,

host (h1) was used to generate the normal traffic and host (h2)

was used to generate DDoS attack traffic. The idea behind

using these tests is to show the behavior of the networks when

it deals with normal and attack traffic and when different

networks and different number of controllers is used.

Normal and DDoS attack traffic are generated using Scapy

[22] which is a powerful tool for packet manipulation, Scapy

is started programmatically by two different python codes for

normal and attack traffic flows, these codes generate large

number of random spoofed source IP addresses, and these

codes are provided by [23]. In normal traffic, packets from

spoofed IP addresses are sent to all hosts in the network. While

in attack traffic, all packets from the spoofed IP addresses are

sent to victim host (h64) that has the IP (10.0.0.64). The attack

traffic has a higher rate than normal traffic and the type of all

traffic packets is UDP.

In all tests, both normal and attack traffic will run in the

same time, to see how the Entropy detection method handles

both traffic; and the network traffic is monitored using

sampled Flow-Real Time (sFlow-RT) [24], which is a tool for

traffic monitoring in SDN as shown in Figure 5; in this figure

it can be seen that the source IP addresses are all spoofed, and

packets are sent mostly to victim IP (10.0.0.64) in the

destination IP addresses.

Figure 5. Normal and attack traffic flow

5. SIMULATION RESULTS

The results of implementing the Entropy detection

algorithm in POX controller using different test is presented in

this section.

In all tests, when running normal and attack traffic, the

number of occurrences of destination IP (10.0.0.64) will be

higher than other destination IPs in the window, therefore the

Entropy value will decrease and when it is less than the

threshold for five consecutive times it is considered an attack

and the packets from h2 is blocked and only normal traffic

from h1 keeps running.

If the attack packets overcomes the normal traffic, there will

be 50 packets in the window with only one destination IP

(10.0.0.64) and the Entropy value for that window will be zero

because the probability of that destination IP will be (50/50)

which is 1 and since log(1) = 0, the Entropy in this case will

be zero which is less than the threshold and the port is blocked.

5.1 Results of first test

Figure 6, presents a combination of attack and normal traffic

captured by sFlow-RT, when the attack traffic is detected by

the algorithm, the number of bytes returns to the normal traffic

rate.

Figure 7, presents a window of 50 packets where destination

IP (10.0.0.64) has higher number of occurrences due to attack

traffic and as a result the Entropy value will be less than

threshold value.

5.2 Results of second test

In this test, POX controller is connected to linear topology,

Since the number of switches in linear topology is more than

in single topology, the load on the controller will increase, and

the detection of attack traffic will be slower than in single

topology as presented in Figure 8.

5.3 Results of third test

In this test, the load of the linear topology will be decreased

and distributed between the two POX controllers, thus the

detection of attack traffic will be faster than in previous section

as presented in Figure 9. The detection of attack traffic in the

window of 50 packets at the two POX controllers is shown in

Figure 10.

5.4 Results of fourth test

In this test, the load of the linear topology will be decreased

more than in the previous test as presented Figure 11. The

detection of attack traffic in the four POX controllers is shown

in Figure 12.

5.5 Results of fifth test

In this test, as presented in Figure 13, the load of the linear

topology will be decreased, and number of bytes is nearly less

than 2K. The detection of attack traffic in the eight POX

controllers is shown in Figure 14.

5.6 Results of sixth test

In this test, as presented in Figure 15, the load of the linear

topology will be decreased, and number of bytes is less than

1.5K. The detection of attack traffic in the sixteen POX

controllers is shown in Figure 16.

Finally, Figure 17 presents a comparison between the traffic

generated in each test that was captured by sFlow-RT.

Figure 6. Captured traffic of first test

Figure 7. Output of the detection function in first test

Figure 8. Captured traffic of second test

Figure 9. Captured traffic of third test

Figure 10. Output of the detection function in third test

Figure 11. Captured traffic of fourth test

Figure 12. Output of the detection function in fourth test

Figure 13. Captured traffic of fifth test

Figure 14. Output of the detection function in fifth test

Figure 15. Captured traffic of sixth test

Figure 16. Output of the detection function in sixth test

(a) Traffic of one POX connected to single topology

(b) Traffic of one POX connected to linear topology

