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 Software Defined Networks (SDN) differs from traditional networks, it splits the control from 

the data plane. The controller is an essential and important part in SDN architecture; and it is 

exposed to many potential security challenges, one of such critical challenges is the impact of 

Distributed Denial of Service (DDoS) attack. The objective of this study is to implement an 

Entropy-based detection algorithm for DDoS attacks in SDN networks using POX controller 

to improve the network security, and to test the performance of this algorithm using POX 

controller in different topologies and different number of controllers. In this paper the Entropy-

based detection algorithm was carried out in different tests that include connecting POX 

controller to single topology with 64 hosts and then different number of POX controller had 

been connected to linear topology with 64 hosts. Through this study, it was found that the 

Entropy detection method works better in lightly loaded network and the results indicate that 

increasing the number of controllers can improve the security of the network. This paper 

introduces a new contribution in implementing a statistical DDoS detection method in multiple 

POX controllers and in different topologies to improve the security of the SDN network. 
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1. INTRODUCTION  

 

Different from the traditional architecture of network 

devices where data and control plane are joined in the same 

device, a new networking architecture called SDN appeared in 

the last ten years and separated the control plane from the data 

plane. In SDN, network devices like switches and routers 

reside in the data plane and they become simple packet 

forwarding devices, and network intelligence in the form of 

software control program, named the controller, reside in the 

control plane [1]. Figure 1, shows the difference between the 

architecture of SDN and traditional network. 

 

 
 

Figure 1. Traditional network vs. SDN [2] 

 

SDN is introduced to support the continuous evolutions of 

current networking architectures and to achieve new 

requirements. The big aim behind SDN is to give an open 

interface to enable the development of software that controls 

the connectivity among network resources and flow of 

network traffic [3].  

In SDN, network applications are not residing on the actual 

devices, and must only interface with them through the 

controller, for these centralized applications the network 

appears to be one big switch/router, there could be 3 devices 

on the network or 30,000, itôs all the same. This provides 

simpler changes, upgrades, additions, and configurations than 

before [4]. For all the properties that SDN offers, both industry 

and academia have become interested in it [5]. 

However, the SDN suffers from problems that is common 

to any new technology, SDN centralized controller have many 

challenges that need to be addressed like scalability, 

performance, and high availability [6]; in addition, SDN 

introduces a new security challenges because of properties of 

decoupling the planes and migrating the functionality of 

control plane, and SDN may not mesh well with existing 

network security approaches, one of these security challenges 

is DDoS attack [2].  

DDoS attacks is dangerous threat to network security, it is 

disastrous and can bring down a server or network very fast, 

and it forms a challenge to network availability [7-8]. In DDoS, 

the victim is attacked by two or more compromised devices, 

the goal of this attack is to make a machine or network 

resource unreachable to its legitimate user [9-10]. As shown in 

Figure 2, DDoS attack consists of four elements [11]:  

(1) The attacker that is behind the attack.  

(2) The master or handler that control multiple zombie 

hosts and instruct them to perform malicious activities. 

(3) The zombie hosts or agents or bots that run the attack 

and generate packet streams destined for the victim. 

(4) The targeted victim. 
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Figure 2. DDoS attack [7] 

 

In SDN, DDoS attack is a big security challenge [12], it 

mainly occurs due to the flooding of traffic packets from the 

attacker to the victim to either decrease its performance or stop 

its service and it will be unavailable for future connection [13-

14]; usually, the source addresses of these incoming packets 

are spoofed, in this case, the switch is not going to find a match 

in the flow table, and therefore, it will send the packet to the 

controller; the resources of the controller will be chained into 

continuous processing by the combination of DDoS spoofed 

and legitimate packets until they are completely exhausted; 

this can bring down the controller causing the loss of the SDN 

architecture and the newly arrived legitimate packets will not 

be able to reach the controller [7]. 

There are different kinds of DDOS attacks, such as 

Hypertext Transfer Protocol (HTTP) flood, Domain Name 

System (DNS) reflection, ping of death, Transmission Control 

Protocol (TCP) Synchronize (SYN) flood, and other attacks 

[15-16]. However, among these DDoS attacks, User Datagram 

Protocol (UDP), TCP SYN, ICMP, and HTTP flooding are 

most commonly used [8]. All of these attacks have a mutual 

aspect of sending large number of traffic loads to the victim 

and exhausting its resources. 

The remainder of this paper is organized as follows: Section 

2 presents some previous related works, Section 3 shortly 

reviews DDoS detection using Entropy, Section 4 shows the 

methodology of the implementation of the detection method, 

Section 5 presents the simulation results, and at last, in Section 

6 conclusion is presented. 

 

 

2. RELATED WORKS  
 

A review of some related works that focuses on SDN 

security against DDoS attacks is presented in this section. 

S. Mousavi, in [17] proposed a lightweight and simple 

DDoS detection mechanism based on Entropy variation of 

destination Internet Protocol (IP) address for the new coming 

Packet_In messages, in order to protect the SDN controller. 

the proposed mechanism was implemented using Mininet and 

POX controller that was connected to a tree topology and the 

effectiveness of the method was showed through extensive test 

cases. This method was able to detect DDoS in its early stages 

within the first five hundred packets of the attack traffic. 

M. Kia, in [13] proposed a method to detect and mitigate 

DDoS attacks at its early stages by using the Entropy variation, 

the rate of Flow initiation, and the Flow specifications. The 

algorithm was implemented using Mininet and POX controller. 

The high detection rates for different traffic patterns in the 

results show that the algorithm was able to perform well under 

different network conditions and it was not limited to a 

specific network condition. 

M. Badrinath et al., in [18] provided an approach to detect 

DDoS attack using the concept of Entropy that was determined 

using flow statistics from the switches, and implemented 

multiple measures to prevent these attacks, like, Completely 

Automated Public Turing Test to Tell Computers and Humans 

Apart (CAPTCHA), installation of a drop entry for blacklisted 

IPôs, and honeypots mechanism. The results showed that the 

algorithm can detect the attack at early intervals and the attack 

solution was scalable and optimal for a campus network. 

P. Lin et al., in [19] applied Entropy-based DDoS attacks 

detection method and presented a solution based on Network 

Function Virtualization (NFV) and SDN, to leverage available 

resources in a data center to mitigate these attacks. The 

solution features a strategy to recognize anomalies packets and 

allocate functions to minimize the latency and footprint of the 

network. a proof-of-concept design was also simulated in 

Mininet to demonstrate the feasibility of this solution.  

B. Al-mafrachi, in [20] considered multiple forms of threats 

against SDN controllers initiated from DDoS attacks and 

conducted a made a comparison between a set of statistical 

methods for the purpose of DDoS attack detection and 

identification of switch interfaces that is involved in the attack, 

and publicly available Defense Advanced Research Projects 

Agency (DARPA) datasets were used to evaluate these 

methods. 

 

 

3. DDOS DETECTION USING ENTROPY 
 

Entropy-based algorithms can be used for the detection of 

attacks in communication networks. This statistical approach 

can detect several types of attacks including DDoS, by 

identifying the randomness of the incoming traffic [21]. The 

higher the Entropy is, the higher the randomness of the traffic 

flow; on the contrary, the lower the Entropy, the higher the 

determinacy of the traffic flow [7]. 

This paper uses Entropy-based detection algorithm for 

DDoS attack proposed by [17] and apply it on different test 

cases. Entropy in this detection algorithm uses two 

components to calculate the randomness of the incoming 

packets; the first component is the window size, which 

represent how many incoming new packets are used in 

measuring Entropy and it is set to 50; and the second 

component is the threshold which is set to 1, and it is compared 

with the Entropy value to decide whether it is an attack or not.  

For every new Packet_In message that arrive in the network 

its header is parsed for the destination IP address; and a hash 

table of this address and its number of occurrences is created. 

The hash table can be represented by Eq. (1), where W 

represents a window with n elements (n equals 50), x 

represents the destination IP address, and y represents the 

number of times it appeared. For each destination IP address, 

the probability is measured using Eq. (2). 

 

ὡ ὼȟώ ȟὼȟώ ȟὼȟώ ȟȣȟὼȟώ           (1)  

 



 

ὴ                                        (2) 

 

Then after a window of 50 packets, the Entropy (H) for that 

window is calculated using Eq. (3). 

 

Ὄ В ὴὰέὫὴ                             (3) 

 

If each incoming packet had a distinct destination IP address, 

the Entropy will be at its maximum; while in case the attack is 

directed to a single host, massive number of packets is sent to 

it, as a result the window will be filled by these packets and 

the number of unique destination IPs in the window will be 

reduced, and as a result the Entropy will be reduced. 

The calculated Entropy is then compared to a threshold, if it 

is lower than the threshold, a counter is incremented until it 

reaches five consecutive lower-than threshold entropies, 

which is considered as a DDoS attack. Otherwise, the counter 

is cleared, and there is no attack. Detection within five Entropy 

periods is 250 packets in the attack. These five consecutive 

periods have the lowest false positive for early detection. 

 

 

4. IMPLEMENTATION OF THE DETECTION 

METHOD  

 

In this paper the Entropy detection algorithm has been 

implemented in 8 GB Laptop with installed Windows 8.1 (64-

bit); and Ubuntu 14.04 (64-bit) virtual machine were installed 

in Virtual Box with 5000 MB base memory; and a package of 

Mininet was installed in this virtual machine as the emulation 

tool. Mininet is a network emulator, it has the advantage of 

being simple, flexible, open source, and available for free. 

Mininet is widely used in research where several topologies 

that contains hosts, forwarding devices, and controllers, can be 

created and customized, and apply different tests on them in a 

simple manner. Also, the controller in which the algorithm was 

run is POX; POX is an open source controller written in 

python programming language and developed by Nicira, it is 

used mainly in research by many developers and SDN 

engineers, and it comes already included within the Mininet 

VM. 

Different tests have been done to implement the Entropy 

detection algorithm, the setup of the network used in the first 

test is shown in Figure 3 where POX controller (c0) was 

connected to single topology with one switch (s1) and 64 hosts 

(h1-h64). 

 

 
 

Figure 3. Single topology with 64 hosts 

 

Then, the setup of the network used in further tests is shown 

in Figure 4 where each of (1, 2, 4, 8, and 16) POX controllers 

was connected to linear topology with 64 hosts. The integer 

(N) represents the number of controllers and the topology are 

divided equally between these controllers, for example, if N=2 

then two controllers (c0, c1) will be connected to 32 switches 

for each one of them. The (j) in the figure represents the 

reduplication of (64/N). 

 

 
 

Figure 4. Setup of the designed network 

 

In these tests, POX controller was modified to call the 

detection algorithm in a new module called ñl3_editingò; also, 

host (h1) was used to generate the normal traffic and host (h2) 

was used to generate DDoS attack traffic. The idea behind 

using these tests is to show the behavior of the networks when 

it deals with normal and attack traffic and when different 

networks and different number of controllers is used. 

Normal and DDoS attack traffic are generated using Scapy 

[22] which is a powerful tool for packet manipulation, Scapy 

is started programmatically by two different python codes for 

normal and attack traffic flows, these codes generate large 

number of random spoofed source IP addresses, and these 

codes are provided by [23]. In normal traffic, packets from 

spoofed IP addresses are sent to all hosts in the network. While 

in attack traffic, all packets from the spoofed IP addresses are 

sent to victim host (h64) that has the IP (10.0.0.64). The attack 

traffic has a higher rate than normal traffic and the type of all 

traffic packets is UDP.  

In all tests, both normal and attack traffic will run in the 

same time, to see how the Entropy detection method handles 

both traffic; and the network traffic is monitored using 

sampled Flow-Real Time (sFlow-RT) [24], which is a tool for 



 

traffic monitoring in SDN as shown in Figure 5; in this figure 

it can be seen that the source IP addresses are all spoofed, and 

packets are sent mostly to victim IP (10.0.0.64) in the 

destination IP addresses. 

 

 
 

Figure 5. Normal and attack traffic flow 

 

 

5. SIMULATION RESULTS  

 

The results of implementing the Entropy detection 

algorithm in POX controller using different test is presented in 

this section.  

In all tests, when running normal and attack traffic, the 

number of occurrences of destination IP (10.0.0.64) will be 

higher than other destination IPs in the window, therefore the 

Entropy value will decrease and when it is less than the 

threshold for five consecutive times it is considered an attack 

and the packets from h2 is blocked and only normal traffic 

from h1 keeps running. 

If the attack packets overcomes the normal traffic, there will 

be 50 packets in the window with only one destination IP 

(10.0.0.64) and the Entropy value for that window will be zero 

because the probability of that destination IP will be (50/50) 

which is 1 and since log(1) = 0, the Entropy in this case will 

be zero which is less than the threshold and the port is blocked. 

 

5.1 Results of first test 

 

Figure 6, presents a combination of attack and normal traffic 

captured by sFlow-RT, when the attack traffic is detected by 

the algorithm, the number of bytes returns to the normal traffic 

rate.  

Figure 7, presents a window of 50 packets where destination 

IP (10.0.0.64) has higher number of occurrences due to attack 

traffic and as a result the Entropy value will be less than 

threshold value. 

 

5.2 Results of second test 

 

In this test, POX controller is connected to linear topology, 

Since the number of switches in linear topology is more than 

in single topology, the load on the controller will increase, and 

the detection of attack traffic will be slower than in single 

topology as presented in Figure 8. 

 

5.3 Results of third test 

 

In this test, the load of the linear topology will be decreased 

and distributed between the two POX controllers, thus the 

detection of attack traffic will be faster than in previous section 

as presented in Figure 9. The detection of attack traffic in the 

window of 50 packets at the two POX controllers is shown in 

Figure 10. 

 

5.4 Results of fourth test 

 

In this test, the load of the linear topology will be decreased 

more than in the previous test as presented Figure 11. The 

detection of attack traffic in the four POX controllers is shown 

in Figure 12. 

 

5.5 Results of fifth test 

 

In this test, as presented in Figure 13, the load of the linear 

topology will be decreased, and number of bytes is nearly less 

than 2K. The detection of attack traffic in the eight POX 

controllers is shown in Figure 14. 

 

5.6 Results of sixth test 

 

In this test, as presented in Figure 15, the load of the linear 

topology will be decreased, and number of bytes is less than 

1.5K. The detection of attack traffic in the sixteen POX 

controllers is shown in Figure 16. 

Finally, Figure 17 presents a comparison between the traffic 

generated in each test that was captured by sFlow-RT.

 

 

 

 

 



 

 
 

Figure 6. Captured traffic of first test 

 

 
 

Figure 7. Output of the detection function in first test 

 

 
 

Figure 8. Captured traffic of second test 



 

 
 

Figure 9. Captured traffic of third test 

 

 
 

Figure 10. Output of the detection function in third test 

 

 
 

Figure 11. Captured traffic of fourth test 



 

 
 

Figure 12. Output of the detection function in fourth test 

 

 
 

Figure 13. Captured traffic of fifth test 

 

 
 

Figure 14. Output of the detection function in fifth test 



 

 
 

Figure 15. Captured traffic of sixth test 

 

 
 

Figure 16. Output of the detection function in sixth test 

 

 
(a) Traffic of one POX connected to single topology 

 
(b) Traffic of one POX connected to linear topology 


