Vol. 6, No. 2, June, 2019, pp. 29-38

International Information and
Engineering Technology Association

% Review of Computer Engineering Studies
TETA

Journal homepage: http://iieta.org/journals/rces

Implementation of Entropy-based Distributed Denial of Service Attack Detection Method in
Multiple POX Controllers

Mahmood Z. Abdullah, Nasir A. Ahwad Fatima W. Hussein
Computer Engineering Department, College of Engineeringflédtansiriyah University, Baghdad, 10001, Iraq

Corresponding Author Emaifatima.wadaa.hussein@gmail.com

https://doi.orgl0.18280/rce§60201 ABSTRACT

Received:26 March 2019 Software Defined Networks (SDN) differs from traditional netwoiksplitsthe controlfrom
Accepted: 10 June 2019 the datgplane The controller isanessential and important part in SDN architecture; and
exposed to many potential security challenges, one of such critical challenges is the in
Keywords: Distributed Denial of .Service (DDOS) attadkhe opjectiveof this study i; tamplementan
attack traffic, DDoS,Mininet, normal Entropybased detection algorithm for DDoS attagk$§SDN networks using POX controlle
traffic, SFlowRT, software definec to improve the network security, and to test the performance of this algariimg POX
networking(SDN) controller in differentopologies and different numberadntrdlers. In this papetheEntropy:

baseddetection algorithmwas carried outn different tests that include connectiRX
controller to single topology with 64 hosts and then different number of POX controlle
been connected to linear topology with 64 ho$twough this study, it was found theite
Entropy detection method works better in lightly loaded networktlaecesults indicate tha
increasing the number of controllers can improve the security of the netWuigk paper
introduces a new contributioniimplemening a statistical DDoS detection method in multiy
POX controllers and in different topologiesitaprove the security of thEDN network.

1. INTRODUCTION the connectivity among netwo resources and flow of
network traffic B].
Different from the traditional architecture of network In SDN, network applications are not residing on the actual

devices where data and control plane are joined in the samalevices, and must only interface with them through the
device, a new networking architecture called SDN appeared incontroller, for these centralized applications the network
the lastten years and separated the control plane from the dateappears to be one big switch/roytirere could be 3 devices
plane.In SDN, network devices like switches and routers on t he network or 30,000, it
reside inthe data plane and they become simple packet simpler changes, upgrades, additions, and configurations than
forwarding devices, and network intelligence in the form of before fi]. For all the properties that SDN offers, both industry
software control program, named the controller, reside in the and academia have become interested[B].it
control plang1]. Figurel1, shows the difference between the However, the SDN suffers from problems that is common
architecture of SDN and traditional network. to any new technology, SDN centralized controller have many
challenges that need to be addressed like scalability,
- performance, and high availabilitys][in addition, SDN
controller introduces a newecurity challenges because of properties of

R decoupling the planes and migrating the functionality of
A, Control plane H s, . ..
: Y P control plane, and SDN may not mesh well with existing
caepiene [EHRY——HAR network security approaches, one of these security challenges
; is DDoS attack].
DDoS attacks islangerous threat to network security, it is
v disastrous and can bring down a server or network very fast,
BEHE) Programmatie and it forms a challenge to network availabilifyd]. In DDoS,
TR the victim is attacked by two or more compromised devices,
----- Packet-forwarding rules the goal of this attack i$o make a machine or network

resource unreachable to its legitimate uSetQ]. As shown in
_ N Figure2, DDoS attack consists of four elemerit§]{
Figure 1. Traditionalnetwork vs. SDN2] (1) The attacker that is behind the attack.
o _) (2) The master or handler that control multiple zombie
SDN is introduced to support the continuous evolutions of pgsts and instet them to perform malicious activities.
current networking architectures and to achieve new (3) The zombie hosts or agents or bots that run the attack

requirements. The big aim behind SDN is to give an open anq generate packet streams destined for the victim.
interface to enable the development of software that controls (4) The targeted victim.

Figure 2. DDoS attack 7]

In SDN, DDoS attack is a big securithallenge 172], it
mainly occurs due to the flooding of traffic packets from the
attacker to the victim to either decrease its performance or sto
its service and it will be unavailable for future connectid [1
14]; usually, the source addresses of theseming packets

are spoofed, in this case, the switch is not going to find a match

in the flow table, and therefore, it will send the packet to the
controller; the resources of the controller will be chained into
continuous processing by the combinatidrD®oS spoofed
and legitimate packets until they are completely exhausted;
this can bring down the controller causing the loss of the SDN
architecture and the newly arrived legitimate packets will not
be able to reach the controlléf.

There are differen kinds of DDOS attacks, such as
Hypertext Transfer Protocol (HTTP) flood, Domain Name
System (DNS) reflection, ping of deaffransmission Control
Protocol (TCP)Synchronize (SYN) flood, and other attacks
[15-16]. However,among these DDoS attacks, Usat&gram
Protocol (UDP),TCP SYN, ICMP, and HTTP flooding are
most commonly used]. All of these attacks have a mutual
aspect of sending large number of traffic loads to the victim
and exhausting its resources.

The remainder of this paper is organized as follows: Section
2 presents some previous related works, Section 3 shortly
reviews DDoS detection using Entropy, Section 4 shows the
methodology of the implementation of the detection method,
Section 5 presenthé simulation results, and at last, in Section
6 conclusion is presented.

2. RELATED WORKS

A review of some related works that focuses on SDN
security against DDoS attacks is presented in this section.

S. Mousavi,in [17] proposed a lightweight and simple
DDoS detection mechanism based on Entropy variation of
destination Internet Protocol (IP) address for the new coming
Packet_In messages, in order to protect the SDN controller.
the proposed mechanism was implementedguiiminet and
POX controller that was connected to a tree topology and the

effectiveness of the method was showed through extensive tes
cases. This method was able to detect DDoS in its early stages

within the first five hundred packets of the attackficaf

M. Kia, in [13] proposed a method to detect and mitigate
DDosS attacks at its early stages by using the Entropy variation,
the rate of Flow initiation, and the Flow specifications. The
algorithm was implemented using Mininet and POX controller.
The hidh detection rates for different traffic patterns in the
results show that the algorithm was able to perform well under
different network conditions and it was not limited to a
specific network condition.

M. Badrinath et al.in [18] provided an approach tietect
DDoS attack using the concept of Entropy that was determined
using flow statistics from the switches, and implemented
multiple measures to prevent these attacks, like, Completely
Automated Public Turing Test to Tell Computers and Humans
Apart (CAPTCHA), installation of a drop entry for blacklisted
| P&s, and honeypots mechani st
algorithm can detect the attack at early intervals and the attack
solution was scalable and optimal for a campus network.

P. Lin et al.,in [19] applied Entropybased DDoS attacks
detection method and presented a solution based on Network
Function Virtualization (NFV) and SDN, to leverage available
resources in a data center to mitigate these attacks. The
solution features a strategy to recognizeraalies packets and
allocate functions to minimize the latency and footprint of the

Pretwork. a proebf-concept design was also simulated in

Mininet to demonstrate the feasibility of this solution.

B. Al-mafrachi,in [20] considered multiple forms of thats
against SDN controllers initiated from DDoS attacks and
conducted a made a comparison between a set of statistical
methods for the purpose of DDoS attack detection and
identification of switch interfaces that is involved in the attack,
and publicly avdable Defense Advanced Research Projects
Agency (DARPA) datasets were used to evaluate these
methods.

3. DDOS DETECTION USING ENTROPY

Entropybased algorithms can be used for the detection of
attacks in communication networks. This statistagproach
can detect several types of attacks including DDoS, by
identifying the randomness of the incoming traffdd]f The
higher the Entropy is, the higher the randomness of the traffic
flow; on the contrary, the lower the Entropy, the higher the
deterninacy of the traffic flow 7].

This paper uses Entrofpased detection algorithm for
DDoS attack proposed by {Land apply it on different test
cases. Entropy in this detection algorithm uses two
components to calculate the randomness of the incoming
paclets; the first component is the window size, which
represent how many incoming new packets are used in
measuring Entropy and it is set to 50; and the second
component is the threshold which is set to 1, and it is compared
with the Entropy value to decidehether it is an attack or not.

For every new Packet_In message that arrive in the network
its header is parsed for the destination IP address; and a hash
table of this address and its number of occurrences is created.
The hash table can be representedBay (1), whereW
representsa window with n elements 1f equals 50),x
represents the destination IP address, wandpresents the
number of times it appeared. For each destination IP address,
%he probability is measured using Eq. (2).
® whd hohd haohd B hoho

1)

I (2) run is POX; POX is an open source controller written in
python programming language and developgdicira, it is

Then after a window of 50 packets, the Entragyfor that used mainly in research by many developers and SDN

window is calculated using Eq. (3) engineers, and it comes already included within the Mininet
e VM.

0 B 1 & éAQ 3) Different tests have been done to implement the Entropy

detection algorithm, the setup of the network used in the first

If each incoming packet had a distinct destination IP addressfest is shown inFigure 3 where POX controllercQ) was

the Entropy will be at its maximum; while in case the attack is tonnected to single topology with one switet)(and 64 hosts

directed to a single host, massive number of packets is sent tc(hl'h64)'

it, as a result the window wibe filled by these packets and

the number of unique destination IPs in the window will be

reduced, and as a result the Entropy will be reduced. co
The calculated Entropy is then compared to a threshold, if it

is lower than the threshold, a counter is increteeéruntil it

reaches five consecutive lowtttan threshold entropies,

which is considered as a DDoS attack. Otherwise, the counter Ss1

is cleared, and there is no attack. Detection within five Entropy

periods is 250 packets in the attack. These five consecutiv

periods have the lowest false positive for early detection.

4. IMPLEMENTATION OF THE DETECTION H1 H2 [| ... H64
METHOD

In this paper the Entropy detection algorithm has been
implemented in 8 GB Laptop with installed Windows 8.1-(64
bit); and Ubuntu 14.04 (64it) virtual machine were installed
in Virtual Box with 5000 MB base memory; and a package of
Mininet was installedn this virtual machine as the emulation
tool. Mininet is a network emulator, it has the advantage of
being simple, flexible, open source, and available for free.
Mininet is widely used in research where several topologies . k
that contains hosts, forwardingwces, and controllers, can be ';hen twﬁ controlfletrﬁco, ClT)hW'” _be_ cot?]nefc_ted to 32 SW'tCthe?h
created and customized, and apply different tests on them in gor €ach one of theém. The () in the figure represents the
simple manner. Also, the controller in which the algorithm was reduplication of (64/N).

co c1 C(N-1)

51 5(64/N) S(6a/Nxj) S(64/N*j+1) 564

@ - @SWH)_ @ @ : @

H Sy . H(64/N H(64/N+ ______ H(64/N* H(64/N*J+ ,,,,,,, H6

Figure 3. Single topology with 64 hosts

Then, the setup of the network used in further tests is shown
in Figure4 where each of (1, 2, 4, 8, and 16) POX controllers
was connected to linear topology with 64 hosts. The integer
(N) represents the number of controllers and the topology are
divided gqually between these controllers, for example, if N=2

Figure 4. Setup of the designed network

In these tests, POX controller was modified to call the number of random spoofed source IP addresses, reas t
detection algorithm in a ne wodesoaleupltodded 2.l Irerbrmal ltraffic, packets ifrang 0O ;
host (h1) was used to generate the normal traffic and host (h2)spoofed IP addresses are sent to all hosts in the network. While
was used to gnerate DDoS attack traffic. The idea behind in attack traffic, all packets from the spoofed IP addresses are
using these tests is to show the behavior of the networks whersent to victim host (h64) that has the IP (10.0.0.64). Ttaelat
it deals with normal and attack traffic and when different traffic has a higher rate than normal traffic and the type of all
networks and different number of controllers is used. traffic packets is UDP.

Normal and DDoS attack traffic ageenerated using Scapy In all tests, both normal and attack traffic will run in the
[22] which is a powerful tool for packet manipulation, Scapy same time, to see how the Entropy detection method handles
is started programmatically by two different python codes for both traffic; and the network traffic isnonitored using
normal and attack traffic flows, these codes generate largesampled FlonReal Time (sFlIowRT) [24], which is a tool for

traffic monitoring in SDN as shown irigure5; in this figure packets are sent mostly to victim IP (10.0.0.64) tlhe
it can be seen that the source IP addresses are all spoofed, amtistination IP addresses.

@D sFlow-RT

Apps Agents Metrics Keys Flows Thresholds Events About

ipsource ipdestination ipprotocol or:tcpsourceport:udpsourceportiicmptype or:tcpdestinationport:udpdestinationport:icmpcode bytes
251.92.160.63 10.0.0.64 17 80 1 140.581
138.177.219.86 10.0.0.20 17 2 80 140.581
155.208.8.206 10.0.0.16 17 2 80 133.170
105.79.139.186 10.0.0.64 17 80 1 133.170
234.75.236.187 10.0.0.64 17 80 1 133.170
47.87.146.114 10.0.0.39 17 2 80 133.170
193.60.212.45 10.0.0.64 17 80 1 133.170
7.36.97.74 10.0.0.64 17 80 1 86.305
44.96.201.106 10.0.0.64 17 80 1 86.305
165.29.126.136 10.0.0.26 17 2 80 86.305
187.214.195.57 10.0.0.64 17 80 1 57.293
78.23.81.33 10.0.0.64 17 80 1 52.958
226.169.54.148 10.0.0.64 17 80 1 52.958
195.120.183.185 10.0.0.15 17 2 80 52.958
189.97.224.126 10.0.0.64 17 80 1 52.958

Figure 5. Normal and attack traffic flow

5. SIMULATION RESULTS the detection of attack traffic will be slower than in single
topology as presented kigure8.

The results of implementing the Entropy detection
algorithm in POX controller using different test is presented in 5.3 Results of third test
this section.

In all tests, when running normal and attack traffic, the In this test, the load of the linear topology will be decreased
number of occurrences of destination IP (10.0.0.64) will be and dstributed between the two POX controllers, thus the
higher han other destination IPs in the window, therefore the detection of attack traffic will be faster than in previous section
Entropy value will decrease and when it is less than the as presented iRigure9. The detection of attack traffic in the
threshold for five consecutive times it is considered an attack window of 50 packets at the two POX controllers is shown in
and the packets from h2 is blocked and only normal traffic FigurelO.
from h1l keeps running

If the attack packets overcomes the normal traffic, there will 5.4 Results of fourth test
be 50 packets in the window with only one destination IP
(10.0.0.64) and the Entropy value for that window will be zero In this test, the load of the linear topology will be decreased
because the probability of that destination IP will be (50/50) more than in the previous test as presefftigaire 11. The
which is1 and since log(1) = 0, the Entropy in this case will detection of attack traffic in the four POX controllers is shown
be zero which is less than the threshold and the port is blockedin Figure12.

5.1 Results of first test 5.5 Results of fifth test

Figure6, presents a combination of attack and normal traffic In this test, as presentedfigure 13, the load of the linear
captured by sFlovRT, when the attack traffic idetected by topology will be decreased, and number of bytes is nearly less
the algorithm, the number of bytes returns to the normal traffic than 2K. The detection of attack traffic in the eight POX
rate. controllers is shown ifigure14.

Figure7, presents a window of 50 packets where destination
IP (10.0.0.64) has higher number of occurrences due to attacks.6 Results of sixth test
traffic and as a result the Entropy value will less than

threshold value. In this test, apresented ifrigure 15, the load of the linear
topology will be decreased, and number of bytes is less than
5.2 Results of second test 1.5K. The detection of attack traffic in the sixteen POX

controllers is shown ifigure16.
In this test, POX controller is connected to linear topology, Finally, Figurel7 presents a comparison between the traffic
Since the number of switches in linear topology is more than generated in each test that was captured by sRidw
in single topology, the load on the controller will increase, and

Apps | Agents P ™™ Keys Flows Thresholds = Events = About

ax | @ mn_bytes
35K
3K
25K Ether ¢ ot st=['10,0,0,64'] 1<
%
15k F o <Ether Frag=0 proto=u t=[10,0,0.64']
1K I'
500 : 4 Frag=0 proto=ut 3 dst=["10,0,0,64'] 1<Ul
0 . :
15:37:00 15:40:00 15:41:00

1 I<IP frag=0 pi =['10.0,0,64'] |
t=1 1>

Figure 6. Captured traffic of first test

[forwarding.detection Entropy =

[forwarding.detection B.385729140054

[forwarding.detection Entropy =

[forwarding.detection 6.41970854014

[forwarding.detection Entropy =

[forwarding.detection 6.453687940227

[forwarding.detection Entropy =

[forwarding.detection B.487667340314

[forwarding.detection Entropy =

[forwarding.detection 8.5216467404

[foerwarding.detection Entropy =

[forwarding.detection 6.555626140487

[forwarding.detection Entropy =

[forwarding.detection 8.5896855408574

[forwarding.detection Entropy =

[forwarding.detection 8.623584940661

[foerwarding.detection Entropy =

[forwarding.detection 6.657564340747

[forwarding.detection {IPAddr('10.8.8.9"'): 1, TPAdur('10.0.6.42'): 1, IPAddr('10.08.8.44")

: 1, IPAddr('10.6.06.15"): 1, IPAddr('19.6.0.17'): 1, IPAddr('18.8.8.23'): 1, IPAddr('16.0.08.3
: 1, IPAddr('10.8.9.38'): 1, IPAddr('19.08.0.64'): 34, IPAddr('10.0.0.33'): 1, IPAddr('le.0.

: 1, IPAddr('10.8.8.43'): 1, IPAddr('19.08.08.12'): 1, IPAddr('10.90.9.49"'): 1, IPAddr('l@
: 1, IPAddr('10.8.0.61'): 1, IPAddr('10.08.8.55'): 1}

*++4% Entropy Walue = 0.657

Figure 7. Output of the detection function in first test

3> sFlow-RT

Apps | Agents | """ Keys Flows Thresholds | Events About

W mn_bytes

2K
15K
1K

500

06:02:00 06:03:00 06:04:00 06:05:00 06:06:00

Figure 8. Capturedraffic of second test

500

KnMon)

0
09:37:00

Keys Flows Thresholds Events

About

*=+** Entropy Value

919-02-15 09:50:02.453902

{2
9},

26}, 1
27: {2:

p

T L P
2: {2:

detection
detection
detection
detection
detection

[forwarding.
[forwarding.
[forwarding.
[forwarding.
[forwarding.

***** Entropy Value =

Edit View

«x*+¥ Entropy Value =

('Enpty diction

2019-02-15 09:49:59.946140

[forwarding.detection
[forwarding.detection
[forwarding.detection

«*s** Entropy Value =

6}}

Terminal

09:40:00 09:41:00 q

Figure 9. Captured traffic othird test

-k

6.0

{32:
15},

{2: 2}, 4:
17§23

printing diction
12=-422:23), 15::{2:

{2:
13},

4}y, 5%
20: {2:

{2: 34

7}, 20}, 2

Entropy
©.00859844582136
Entropy =
©.0425778459081
{IPAddr('10.0.0.64"): 49,

IPAddr(°'10.0.0.51"'): 1}

e

0.0425778459081

Tabs Help

-

0.0

2627 ;1 *2")

printing diction {62: {2: 1}}

] Entropy
1 0.0

] {IPAddr('10.0.0.64"'): 50}

Figure 10. Output of the detection function in third test

sFlow-RT

Apps Agents

Keys Flows Thresholds

I mn_bytes

Events

About

-+ 9

"10,0,0,64'] 1<

10:18:00 10:19:00

Figure 11. Captured traffic ofourth test

2019-02-15 16 y Value = 0.9 *
}, 5: {2: 6}, 14: {2: 22}] *kkkk Entropy Value = 0.0 *+x* *kkk Entropy Value = 0.0 #keex

2019-82-15 10:26:
* Entropy Value = . 7842019-02-15 10:26:40.986016 : 2019-02-15 10:26 242904 : printing diction {53:

[forwarding.detection) & E .0 *#*x¢x |[forwarding.detection
2019-02-15 10:26 : prilforwarding.detection N [forwarding.detection
5: {2: 6}, 14: {2: 22}} [forwarding.detection [forwarding.detection
2019-02-15 10:26:43. in
[forwarding.detection | Entroj***** Entropy Value B.0 *HEE *krk Entropy Value = 0.0 #+eex
[forwarding.detection | 0.008! [forwarding.detection
[forwarding.detection | Entroj [forwarding.detection .
[forwarding.detection | 0.04242019-02-15 10:26:40.989761 : prii[forwarding.detection 2019-02- : 271099 : printing diction {53:
[forwarding.detection 1 {IPAd(
*
**xk* Entropy Value = 0.04257 #* Entropy Value = 0.0 #xeex Rk ropy Value = 0.0
('Enpty diction

2019-02-15 10:26 6:40.997182 : prij2019-02-15 10:26:43. :43.277453 : printing diction
5: {2: 6}, H

* Entropy Value = 0. **%* [xsssx Entropy Value = 0.0 4

Figure 12. Output of the detection function in fourth test

\LETDS sFlow-RT

Agenis . Metrics | Keys

Apps Flows Thresholds Events About

2.5 | W mn_bytes

500 |

11:00:00 11.01:.00 11:02:00

Figure 13. Captured traffic ofifth test

File Edit View Terminal | File Edit View Terminal Tabs Hg File Edit View Terminal Tabs Help File Edit View Terminal Tabs Help

18}, 12: {2: 14}, 13: { s 13}, 27: {2: 8}, 28: {2: 6}, 29: {2: 4}, 30:
#+xkk Entropy Value = 8.12] #+xk Entropy Value = 0.0425778459081 *+*

[forwarding.detection] Entropy = [forwarding.detection] Entropy =

[forwarding.detection] @. [forwarding.detection] o.

forwarding.detection] {IPAddr(']2019-82-15 10 ; printing dict|[forwarding.detection] {IPAddr('10.0.0.64'): 50}

7}, 200 |) { }o22: o 1
** Entropy Value = 0.8 *¥¥+x ##rkk Entropy Value = 0.9 *#x

[forwarding.detection [forwarding.detection 1 Entropy =
[forwarding.detection [forwarding.detection |
[forwarding.detection IEEIU Eu 15 10:56: : printirn[forwarding.detection | I 'Addr('10.0.0. ml 2-15 10:56:55 L pr t{2: 4} : {2: 10}, 26: {2:
[forwarding.detection 10}, 12: {2: 14}, {2: 14}, 14: { , 27: {2: 9}, 2 9: { 1 { } { 1}
[forwarding.detection #aoex Entropy Value = 0.0 *xx*x

#+44% Entrop o 677 niro 8 4 ropy Value = 0.8

F\\e Edlt View Terminal File Edit View Terminal Tabs - - .
2: 5} File Edit View Terminal Tabs Help File Edit View Terminal Tabs Help
Lo i .U 1
2019-02-15 10:56:57.414067 : printi ("Enpty diction ', '60', '2')
#rxt Entropy Value = 0.0 #+eek
* Entropy Value = 0.0 * 2019-02-15 10:56:58.825945 : printing diction {
i wxwkk Entropy Value = 0.2008089

y1
2019-62-15 10 3 ¢ printing di
5}, 55: {2: <« Entropy Value ,327836611289 *xx+x

2019-02-15 10:56:57.419787 : printi
[forwarding.detection 1 Entropy =

[forwarding.detection Entropy =|[forwarding.detection 1] 2019-02-15 10:56:58 : printing diction

wkekk Entropy Value = 0.0 + [forwarding.detection 0.0 [forwarding.detection | I Addr('10.0.0, . .
: [forwarding.detection {IPAddr(" [forwarding.detection] Entropy =
#xoex Entropy Value = 8.0 *#xe*x [forwarding.detection 1 0.
57.287747 :|***** Entropy Value = 0.0 *%+x [forwarding.detection] {IPAddr('10.0.0.64'): 58}

1

2019-02-15 10:56:58.401301 : printing dici***** Entropy Value 0.0 *hErd
n[2019-02-15 10:56:57.427744 : printi 54: {2: 5}, 55:
2}}
I 2019-82-15 10:56:58.852601 : printing
g Entropy Value &

[forwarding.detection] E
[forwarding.detection] 0.
[forwarding.detection 1 {

#kekt Entropy Value = 8.0 ****** Entropy Value = 0.0 *+¥#x HRkE Ent val 0.0 ke
ntropy Value = 8.

Figure 14. Output of the detection function in fifth test

15K

"Node: h2"

11:59:00

Caopyright © 2012-2018 InMon Corp. ALL RIGHTS

Figure 15. Captured traffic oixth test

Figure 16. Output of the detection function in sixth test

(a) Traffic of one POX connected to singbgology (b) Traffic of one POX connected to linear topology

