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The increasing use of cloud services in several areas has led to the growth of data-intensive 

applications. It is necessary to find ways to enhance the efficiency of communications 

within the networks of data centers to improve the performance of cloud environments. 

Explicit Congestion Notification (ECN) is used by Data Center TCP (DCTCP) to enhance 

congestion control in data center networks. The DCTCP uses ECN to assess the amount of 

congestion, whereas normal TCP congestion management can simply detect its presence. 

This paper examines DCTCP using the Random Early Detection (RED) queue management 

strategy. The evaluation reveals that employing Random Early Detection incurs certain 

costs. The RED is criticized on the one hand for both short- and medium-term connections 

due to longer completion time delays compared to typical DCTCP techniques. Because of 

ECN, DCTCP may maintain small queue sizes. However, because RED uses the average 

queue size, it penalizes short-lived traffic because it does not reach the bottleneck quickly. 

An intelligent queue management mechanism with ECN is believed to enhance DCTCP's 

performance in a cloud-computing environment by predicting sending rates and providing 

fast feedback on queue length. 
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1. INTRODUCTION

The concept of cloud computing is expected to affect the 

future of the Internet significantly. It has emerged because of 

the Internet's quick development and the rise of client-server 

computing. Data centers are recognized as the center’s hubs 

and hosts of various applications that are the Internet's 

foundational configuration. Reliability is frequently referred 

to as a mission-critical system in data centers, where it must 

be attained at all costs [1]. Users of popular Social Medias and 

Websites such as Facebook, and Yahoo rely on timely access 

to services provided by cloud data centers [2]. The difficulties 

in scaling and distributing data in cloud data centers are caused 

by a variety of factors [3] namely: Data growth that is 

exploding growth without specific localization poses 

challenges in effectively managing and distributing data across 

cloud data centers; Legal necessity for geographically distinct 

data backup sites that are regulatory requirements often 

mandate the establishment of geographically distributed data 

backup and replication sites to ensure integrity, availability 

and reliability of data; the development of mobile and cloud 

computing for storing or processing date necessitates efficient 

data scaling and distribution mechanisms [4]. Massive 

interactive web application requires real-time interactivity and 

data processing that adds complexity to data distribution 

across multiple servers and data centers and Constraints on 

energy are a significant factor in reducing environmental 

impact poses to scale and distributing data in cloud data 

centers.  

In cloud data centers networks accommodate three different 

types of traffic [5]. 

The first type is short-lived traffic that includes transmitting 

connections at less than 100 KB/per second such as Google 

searches and Facebook updates [6]. These connections require 

short response times and emphasize the need for quick data 

transmission. The second type is medium lifespan traffic. It 

involves connections that have medium lifespan, such as 

Facebook photographs and small-to- medium-sized files from 

YouTube [7]. These connections typically demand low latency 

and ensuring minimal delay in data transfer for example 

typically range from 100 KB to 5 MB. The last one is long-

lasting traffic that encompasses long-duration task 

connections such as antivirus upgrades and video-on-demand 

services [8]. These connections typically involve data transfers 

exceeding 5 MB and emphasize the importance of strong 

throughput, ensuring efficient and reliable data transmission 

over an extended period.  

The Round-Trip Time (RTT) in a cloud environment, 

disregarding queuing delay, can be less than 255 microseconds 

in certain cases due to the emphasis on achieving high 

throughput and minimizing latency [9]. In order to optimize 

costs and performance, usually, the cost and performance 

levels of data centers are used to categorize them. Requests 

from incoming users are divided across the various data 

centers to ensure efficient utilization. The coexistence of 

various traffic types within cloud networks imposes three 

fundamental requirements namely: high throughput, low delay, 

and robust tolerance for bursty traffic. These requirements 
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play a critical role in determining the quality of service needed 

for various applications depending on the specific type of 

traffic [10]. The extent to which cloud data center networks 

perform successfully is influenced by how well these 

requirements are met [11]. 

Transmission Control Protocol (TCP)/Internet Protocol (IP) 

usage in cloud data center networks that is standard and 

unmodified, without taking into account the varying demands 

of multiple coexisting traffic kinds, can lead to performance 

challenges. The various qualities of the networks in cloud data 

centers and diverse requirements of applications that TCP fails 

to meet the three prerequisites described above [12]. 

Consequently, TCP's congestion control systems encounter 

difficulties, resulting in several flaws such as TCP, and impact 

of queue accumulation, buffer stress, as well as phony 

congestion. In cloud computing environments the 

partition/aggregate, as shown in Figure 1, is a commonly 

structure. However, the configuration can lead to TCP missing 

deadlines and delivering subpar results that violate Service-

Level Agreements (SLAs). 

 

 
 

Figure 1. Structure for partition/aggregation in a cloud 

environment [13] 

 

To prevent packet loss brought to reduce end-to-end latency, 

the Data Center Transmission Control Protocol (DCTCP) was 

created as a result of issues using queue building, TCP Incast, 

and TCP outcast. It the crucial for transient connections over 

TCP, achieving a high-through, needed for persistent TCP 

connections, and successfully handling high burst traffic 

tolerance [14]. 

Data centers host diverse applications, from batch 

processing to user-driven workloads. The rise of data-

intensive applications and cloud computing have made it 

necessary to look for alternate strategies to increase the 

effectiveness of communication in data center networks. Data 

centers in the cloud coordinate hundreds of thousands of 

heterogeneous tasks daily, and meeting everyone's 

requirements in various aspects becomes a very complex 

problem. To enhance TCP congestion control in data center 

networks, Data Center TCP (DCTCP) makes use of Explicit 

Congestion Notification (ECN). DCTCP uses ECN to assess 

the amount of congestion, whereas normal TCP congestion 

management can simply detect its presence. With the 

increasing growth of cloud services in several areas, more and 

more research is focusing on the performance improvement of 

cloud environments. 

 

 

2. TCP ISSUES IN CLOUD NETWORKS 

 

The majority of traffic in cloud data center networks is 

carried through the widely adopted Transmission Control 

protocol (TCP) which is a popular transport layer protocol for 

Internet applications [15].  TCP is known for its, scalable, 

reliable, and adaptable congestion control methods that can 

handle variety of network scenarios [16]. However, it has 

become evident that TCP falls short in meeting the three 

fundamental requirements mentioned earlier due to the diverse 

nature of cloud data center networks and the wide range of 

application demands. These diversities and demands have led 

numerous difficulties challenges for TCP's congestion control 

techniques, resulting in several flaws, including TCP Incast 

TCP Outcast, queue expansion, and the appearance of 

overcrowding [17]. The subsections that follow highlight the 

causes of these issues and present suggested remedies. 

Issues such as TCP Incast, TCP Outcast, buffer compression, 

queue backlog, and congestion impact severely influence the 

performance of traditional TCP variants in cloud environments. 

As cloud environments become an essential part of the near 

future, controlling or mitigating these problems is important. 

 

2.1 TCP Incast  

 

In the cloud computing environment, TCP Incast can occur 

due to the aggregate/partition network architecture of cloud 

data centers. When a query is made requests are sent by the 

aggregator to various servers that have the required data. 

One’s a query is answered servers immediately respond with 

a significant amount of data [18]. This data is then transmitted 

over a bottleneck connection to the appropriate aggregator as 

shown in Figures 2 and 3. This cloud aggregate/partition 

structure communication pattern exemplifies how TCP Incast 

can occur.  

 

 
 

Figure 2. Application partition/aggregate model [19] 

 

 
 

Figure 3. TCP Incast in cloud computing environment [20] 
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The environment's short, constrained reaction time 

requirement is the reason behind   coordinated and 

synchronous responses to the demands. Without a use from 

cloud switches or routers, the resulting data packets would 

probably overload the queues, leading to packet damage [21]. 

As shown in Figure 4 this effect illustrates the impact of 

synchronized and simultaneous fulfillment of aggregator 

requests. This condition, where servers pause and the 

coordinated transmission are hindered by something. 

Broadcasting of upcoming data block while awaiting the 

provision of the most recent data from all servers is commonly 

referred to as synchronized mice colliding [22]. Due to the 

frequent packet losses in such a scenario, significantly 

decreases as the number of simultaneous servers increases [23]. 

 

 

 
 

Figure 4. Response to aggregator requests in synchronous 

 

When a Re-Transmission Timeout (RTO) which represents 

the duration of the transmitting server waits for 

acknowledgements for previously delivered sent packets 

expires the lost packets are simply retransmitted [24]. 

Consequently, the TCP Incast's recurring timeouts have a 

significantly impact on the effectiveness of transient traffic 

especially those with stringent delay requirements and the 

need for quick and precise response time as shown in Figure 5. 

 

2.2 TCP Outcast 

 

The TCP Outcast phenomenon occurs when multiple 

incoming flows compete with a few flows at a switch's or 

routers two ports. In a cloud environment, this phenomenon is 

caused by the Tail-Drop (TD) operation implemented by data 

center routers and switches [25]. The TD is a simpler and more 

efficient computational mechanism compared to other queue 

management systems. It does not, however, ensure that each 

flow's packet drop rate is proportionate to its bandwidth share. 

Upon reaching the queue's maximum length, TD removes 

packets from the end of the queue [26]. This can lead to 

consecutive packet from a port's queue increases the likelihood 

of timeouts and adverse global synchronization events. In this 

situation, known as a port blackout, the performance of small 

flows is significantly reduced due to the substantial delays 

caused by numerous timeouts. Data packets arrive to input 

ports (A and B) in the port blackout scenario shown in Figure 

6, where they compete with one output port at (C). Data 

packets coming at port B are appropriately buffered, as shown 

in Figure 6, whereas packets arriving at port are lost one after 

the other. 

 

 
 

 
 

Figure 5. After timeout expiration retransmission 

 

 
 

Figure 6. Case of the port blackout [27] 

 

The Round-Trip Tim (RTT) bias can arise from the inverse 

relationship between a TCP connection's throughput and RTT. 

This relationship implies that TCP connections with lower 

RTT can use a greater portion of the available bandwidth than 
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connections with higher RTT. However, it is observed that 

TCP Outcast that is caused by the TD queue management 

mechanism employed in data center routers and switches leads 

to an inverted RTT Bias. As a result, TCP connections with 

high RTT tend to overwhelm those with low RTT. The many-

to-one communication model servers are the foundation for 

various applications in a cloud computing environment. The 

TCP Outcast becomes a major problem in cloud computing 

because data center networks frequently use TD queue 

management. 

 

 

3. QUEUE BUILD-UP PROBLEM 

 

 
 

 
 

 
 

Figure 7. Long-lasting traffic causes queue building 

 

Due to the coexistence of long-lived traffic with variety data 

center types and traffic patterns for cloud computing the 

network is compelled to prioritize overflow queues and reduce 

congestion [28]. Consequently, when short-lived traffic uses 

the same link as long-lived traffic its performance suffers 

dramatically. This impact can be observed in Figure 7, where 

the presence of long-lived traffic consumes as considerable 

amount of queue space leading to adverse consequences for 

short-lived traffic. It is highly likely that a larger number of 

packets from transient traffic will experience drops under such 

circumstances. This situation bears similarities to challenges 

posed by TCP Incast as frequent packet loss-induced timeouts 

have a notable impact on the effectiveness of transient traffic. 

Furthermore, in situations where the long-lived traffic's 

packets must first stay digested the queued short-lived traffic 

packets that arrive later encounter longer queuing times, even 

in the absence of packet losses which is the typical situation.  

The queue building phenomena is what causes it [29] and it 

can be diminished by intentionally reducing the sending rate 

of TCP senders within cloud networks, at routers and switches. 

By using packet drops as a congestion notification signal, TCP 

senders can be informed of the congestion issue. If the TCP 

sender only relies on receiving three duplicate 

Acknowledgements (ACKs) or waits for timeouts, the queue 

occupancy may not decrease to an acceptable level.  Therefore, 

to solve the issue, proactive action is needed to address the 

issue of queue accumulation and shorten the backlog's 

duration, as shown in Figure 7. 

 

 

4. DATA CENTER TCP 

 

A transport-optimized protocol called DCTCP is 

specifically designed for networks with early and aggressive 

Explicit Congestion Notification ECN marking in cloud data 

centers. This protocol aims to provide low latency and high 

throughput by enabling TCP senders to generate multi-bit 

feedback. Moreover, DCTCP is designed to TCP senders 

should have burst tolerance so they can respond quickly before 

discarding packets, and the buffer has sufficient available 

capacity to accommodate bursts. 

DCTCP is considered a progressive advancement over TCP 

aiming to address the issues of TCP Incast and queue 

accumulating in networks of cloud data centers. To achieve 

satisfactory performance DCTCP requires minor’s 

modification to the standard Explicit Congestion Notification 

mechanism used the TCP protocol. ECN serves a purpose of 

indicating network congestion, thereby helping to maintain a 

controlled decrease in packet retransmissions and buffers 

utilization [30]. Packet loss is typically an indication of 

network congestion caused by buffer overflow. Unlike classic 

TCP which halves the congestion windows DCTCP senders 

gradually reduce their capacity window (cwnd) in response to 

measured congestion levels [31]. By taking a proactive packet 

loss can be reduced. DCTCP possesses notable such as 

convergence, equity, and stability making it an ideal protocol 

for requirements of the cloud environment. The utilization of 

ECN in DCTCP involves establishing a connection between 

the DCTCP sender and a compatible receiver, using specific 

code point in the IP and TCP headers that allocate two for ECN. 

ECN is triggered where negotiation is done based on certain 

code points that employ bits from the TCP and IP headers, 

respectively. Figure 8 demonstrates functioning of ECN and 

how the knowledge of the network status is leveraged to 

prevent and manage congestion. 

Data centers for cloud computing host a variety of 
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applications, combining workloads that demand high 

sustained throughput with workloads that require tiny, 

predictable latency. In this context, the performance of 

latency-delivered communication is impacted by the current 

TCP protocol's failure to meet latency constraints [32]. To 

solve these problems, we suggest DCTCP; a TCP-like protocol 

for data center networks. Using the network's explicit 

congestion notification (ECN), DCTCP gives end hosts multi-

bit feedback. Additionally, DCTCP offers low latency and 

great burst tolerance for brief flows. 

 

 
 

Figure 8. ECN in DCTCP [32] 

 

 

5. QUEUE MANAGEMENT MECHANISMS IN CLOUD 

NETWORKS 

 

The networks of cloud data centres employ both reactive 

and proactive mechanisms for queue size management and 

congestion control. The commonly used conventional queue 

management mechanism in cloud networks is Tail-Drop (TD), 

which is categorized as reactive mechanism. It does not take 

any action until the buffer becomes flooded, at which point all 

incoming packets are dropped [33]. 

 In contrast, proactive devices such as Random Early 

Detection control a queue size by pre-emptively dropping 

packets before the buffer reaches full capacity, thus protecting 

against congestion. 

Reactive queue management mechanisms suffer from two 

critical issues [34]: 

Lockout: it occurs when certain TCP flows consume a 

significant portion of the buffer space due to their high 

transmission rates, leading to excessive packet loss for other 

TCP flows and unfairness. 

Full Queues: they arise when the queue size reaches the 

maximum buffer capacity without any preventive measures 

being implemented by the reactive queue management 

mechanism to control its growth. This situation can persist for 

extended periods, resulting in significant queuing delays. 

The subsequent subsections discuss the advantages and 

disadvantages of Tail-Drop and Random Early Detection (RED) 

in addressing these challenges. 

 

5.1 Tail-Drop (TD) 

 

TD (Tail-Drop) employs a packet-dropping strategy where 

packets are discarded from the tail end of the queue when the 

defence becomes full, as shown in Figure 9. New incoming 

packets are only accepted if sufficient space is available in the 

buffer to accommodate them. However, if the queue is 

complete, all arriving packets are dropped until packets 

departing from the queue's head cause the queue to decrease. 

One advantage from TD is its reduced computational overhead 

and implementation complexity compared to other queue 

management mechanisms. 

When the line is as full as it can get, the tail drops, it drops 

newly arrived packets until it has adequate room to take in the 

incoming traffic [35, 36]. The policy's effect on incoming 

packets—reducing packet loss by absorbing transient flows of 

data when routers are unable to handle them—gives origin to 

its name to send them at that precise moment. 

 

 
 

Figure 9. Tail-Drop mechanism 

 

5.2 Random Early Detection (RED) 

 

The Internet Engineering Task Force (IETF) has 

recommended the use of RED for the Internet routers. Figure 

10 illustrates how RED utilizes two thresholds (Min th, Max 

th) to distinguish between various levels of network 

congestion. 

 

 
 

Figure 10. RED mechanism 

 

In case of RED, incoming packets are permitted into the 

buffer until the queue size reaches the Min th threshold value. 

At this point, RED randomly drops a portion of the incoming 

packets using a linear distribution function until the queue size 

reaches the Max th threshold value, all incoming packets are 

dropped. 

The RED utilizes the average queue size to inform its 

congestion control decisions, enabling it to differentiate 

between temporary and persistent increases in the queue size 

and accurately detect network congestion. However, while 

RED effectively addresses the worldwide synchronization 

issue by discarding packets at regular intervals of time, its 

reliance on the average queue size results in a slower 

congestion response. This is because the average queue size is 

collected over a long period. Consequently, this can lead to 

significant fluctuation in the queue size, untimely congestion 

detection and notification, and ultimately reduce the network 

performance due to high packet loss and prolonged queuing 

delays. 

Proposed a RED mechanism to manage congestion at an 

early stage and overcome the drawbacks and limitations of 

Tail-Drop. One common method for preventing network 

congestion in networks is the RED mechanism. 

Certain network conditions and requirements are addressed 
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by TCP congestion control protocols including Data Center 

TCP (DCTCP) and ECN Stream Control Transfer Protocol 

(SCTP). Additionally, the goal of the RED system's network 

traffic load monitoring is to foresee and prevent congestion. 

Packet loss monitoring can help identify areas of congestion 

and troubleshoot network performance issues. 

 

 

6. METHODOLOGY AND EVALUATION OF DCTCP 

 

Congestion control improves the current performance of 

flows by maximizing their throughput while maintaining 

queues in the network. Having small queues is important 

because it reduces the latency of short flows by reducing the 

queue delay. It also reduces packet drops and this improves 

network performance. 

The DCTCP is a solution to maintain small queues for data 

centre switches and reduce dropped packets. The methodology 

of this paper evaluates DCTCP using Random Early Detection 

(RED) queue management strategy to improve efficiency in 

data centre networks to improve the performance of cloud 

environments.  Using Explicit Congestion Notification (ECN) 

allows DCTCP to keep queue sizes short. It is believed that an 

intelligent queue management mechanism with ECN can 

improve the performance of DCTCP in a cloud computing 

environment by predicting transmission rates and providing 

quick feedback on the queue length. 

Data Centers TCP host a diverse mix of applications 

ranging from batch processing to user-driven workloads. The 

former creates large tail flows that require high-sustained 

throughput while the latter creates short-latency critical traces 

with strict completion time requirements. The performance 

and efficiency of these two types of traffic is extremely 

important in determining the feasibility of a service in a cloud 

environment. 

To give a clear understanding of how the DCTCP operates 

effectively in the cloud computing environment the authors 

demonstrate the requirements for maintaining a short line 

length while achieving high or respectable throughput. To 

achieve this goal, it is necessary to multiply the bandwidth and 

round-trip time of bottleneck connection B by the buffer size 

E. The buffer size has to equal to otherwise greater than this 

value the generalization for determining the buffer size is 

based on the bandwidth delay product, represented by E=RTT. 

Figure 11 demonstrates that a single connection needs a buffer 

of size E=RTT×B to achieve accuracy 100% throughput. The 

buffer size needs to be adjusted to E=(RTT×B)/n. It is evident 

that insufficient buffer size can result in suboptimal 

performance. F=Amount of marked ACKs/Total amount of 

marked ACKs (1). 

 

𝐹 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑟𝑘𝑒𝑑 𝐴𝐶𝐾𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑟𝑘𝑒𝑑 𝐴𝐶𝐾𝑠
 (1) 

 

For transmission rate differences, a small buffer size might 

be adequate. 

As a result, the first fundamental principle guiding the 

Sender’s response in DCTCP's congestion-based architecture, 

as illustrated in Table 1 is that should be proportional to the 

congestion level. This approach aims to minimize queuing 

requirements by requirements by reducing transmission rates 

and mitigating volatility. The second fundamental concept is 

that the actual queue length should be used to implement the 

ECN pattern. This provides rapid feedback, allowing for 

improved management of burst traffic. 

 
(a) Only one lasting link 

 

 
(b) Two enduring links 

 

Figure 11. Queue size and cwnd are affected by long-lived 

connections 

 

Table 1. Response of TCP-ECN senders against DCTCP-

ECN 

 
ECN DCTCP TCP 

1010110111 Reduce cwnd by 40% Reduce cwnd by 50% 

0000000001 Reduce cwnd by 5% Reduce cwnd by 50% 

 

In DCTCP, data packets are labeled for transmission only if 

the true queue size is q in a switch or router exceeds the 

threshold K (when q>K). It is important to observe K>1/7(B 

Round-Trip Time). 

The average fraction F from tagged packets is kept for 

Round-Trip Time (RTT) at the DCTCP sender. 

 

α←(1−w)×α+w×F (2) 

 

Eq. (3) shows that the (cwnd) window adaptably loses by a 

factor between 1 and 2. 

 

cwnd←(1−(α/2))×cwnd (3) 

 

The DCTCP sender utilizes a stream of marked ACKs to 

evaluate the percentage of marked packets. When the 

transmission rate fluctuates smoothly, DCTCP demonstrates 

effective performance even with small buffers. The fraction F 

can be obtained from the previous RTT since TCP's self-

clocking mechanism aids in determining the next (RTT) based 

on (cwnd). 

Switches use a queue management system to assign 

congestion to an incoming packet if the queue is long. The 

ECN sets the ACK packets it sends to the sender for each 

packet flagged as congested by the router. The sender keeps a 
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continuous estimate of the percentage of packets lost, and each 

time, it needs to reduce the size of the congestion window 

according to the standard TCP protocol. Thus, only a few 

packets encounter long queues. 

 

 

7. RESULT AND DISCUSSION 

 

This presents a significant challenge to innovation and 

limits evaluation to simulation tools because, to conduct 

practical tests in cloud data centers, there are no available 

experimental facilities where it is necessary to modify internal 

mechanisms. To assess the effectiveness of DCTCP in a 

network setting for cloud computing, Network Simulator 2 

(ns-2) was employed. The simulation involved a bottleneck of 

20 servers responding to random queries with a 10 Gbps 

link.The cushion contained 200 packets of 1500-byte size. 

TCP Newreno and DCTCP were selected with an RTT of 1 ms 

and a Retransmission Timeout (RTO) of 10 ms . The traffic 

size and arrival follow a Poisson distribution. For regular 

DCTCP, the thresholds (K) were set at 40, while for DCTCP 

over RED; the thresholds were commonly set to a minimum 

of 5 and a maximum of 15. In Figure 12 the connection 

durations are depicted for TCP Newnero and DCTCP about 

their respective traffic sizes. 

As depicted in the graphic, DCTCP exhibits lower latency 

than TCP Newreno -RED for short- and medium-lived 

connections. However, when coupled with RED and relying 

on typical queue size for decisions, DCTCP performs worse, 

resulting in increased delay for such traffic types. The figure 

also demonstrates that DCTCP achieves its ability to 

understand and effectively handle burst traffic. Moreover, 

when RED is utilized, a lower delay can be achieved. However, 

it is worth noting that when the bottleneck link is primarily 

congested, TCP-related issues may still arise, making the 

performance of DCTCP comparable to that of traditional TCP 

with their fair share of throughput well on short and medium-

lived connections with short and medium-lived queue lengths, 

although DCTCP over RED provides acceptable delay on 

long-lived connections in comparison. 

 

 
 

Figure 12. Time to finish DCTCP, TCP Newnero-RED 

 

We repeated this test with up to 500 flows and found that 

DCTCP was fast enough to check all flows. 

Limiting the ACK before the timer expires unless the 

occurrence of network congestion is received reduces the 

congestion window size to a minimum and the threshold. 

Figure 12 showed that DCTCP flows converge quickly with 

their fair share of throughput well on short—and medium-

lived connections with short—and medium-lived queue 

lengths, although DCTCP over RED provides acceptable 

delay on long-lived connections in comparison. 

 

 

8. CONCLUSIONS 

 

The DCTCP is a popular cloud transport protocol capable 

of dealing with TCP queue backlog issues. However, its 

performance deteriorates significantly when dozens of servers 

respond to one cluster simultaneously. DCTCP is based on 

Explicit Congestion Notification (ECN), a feature now 

available on commodity switches. We designed DCTCP to 

address TCP queue build-up issues. With multiple reactions, 

DCTCP prepares the traffic volume derived from a series of 

ECN tags, allowing it to react early to congestion. 

Experimental results showed different capacities in five 

experiments: 10-100MB, 100KB - 1MB, 1MB - 5MB, 5MB - 

10MB and the largest 10MB. Evaluation results showed that 

there is a trade-off between using DCTCP and RED. On the 

one hand, DCTCP over RED is unsuitable for short and 

medium-lived connections because it introduces a longer delay 

in completion time than the regular DCTCP mechanism. On 

the other hand, it represents an acceptable delay for long-lived 

connections, but at the expense of throughput, DCTCP 

achieves its design goals. 

The DCTCP is evaluated independently and compared to 

the Random Early Detection (RED) queue management 

system and TCP Newreno. Due to its low delays, the 

evaluation findings demonstrate that DCTCP effectively 

manages Incast issues and meets deadlines for short- and 

medium-lived traffic. Furthermore, DCTCP provides high 

throughput for persistent traffic, albeit with slightly higher 

latency, compared to when used in conjunction with RED, 

which significantly reduces delay. DCTCP maintains small 

queue sizes by utilizing Explicit Congestion Notification 

(ECN). On the other hand, RED penalizes transient traffic as 

it cannot quickly and promptly alleviate congestion since it 

relies on average queue lengths. To enhance DCTCP and the 

cloud computing environment's performance, an intelligent 

queue management system capable of anticipating the sending 

rate should be used in conjunction with ECN. 
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