
Enhancement of Data Center Transmission Control Protocol Performance in Network

Cloud Environments

Qusay Kanaan Kadhim , Atyaf Ismaeel Altameemi , Rasha Mahdi Abdulkader , Shaymaa Taha Ahmed*

Department of Computer Science, University of Diyala, Baqubah 32001, Iraq

Corresponding Author Email: ShaimaaAhmed@uodiyala.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290329 ABSTRACT

Received: 23 November 2023

Revised: 9 April 2024

Accepted: 16 May 2024

Available online: 20 June 2024

The increasing use of cloud services in several areas has led to the growth of data-intensive

applications. It is necessary to find ways to enhance the efficiency of communications

within the networks of data centers to improve the performance of cloud environments.

Explicit Congestion Notification (ECN) is used by Data Center TCP (DCTCP) to enhance

congestion control in data center networks. The DCTCP uses ECN to assess the amount of

congestion, whereas normal TCP congestion management can simply detect its presence.

This paper examines DCTCP using the Random Early Detection (RED) queue management

strategy. The evaluation reveals that employing Random Early Detection incurs certain

costs. The RED is criticized on the one hand for both short- and medium-term connections

due to longer completion time delays compared to typical DCTCP techniques. Because of

ECN, DCTCP may maintain small queue sizes. However, because RED uses the average

queue size, it penalizes short-lived traffic because it does not reach the bottleneck quickly.

An intelligent queue management mechanism with ECN is believed to enhance DCTCP's

performance in a cloud-computing environment by predicting sending rates and providing

fast feedback on queue length.

Keywords:

cloud computing, DCTCP, data center, TCP,

Random Early Detection (RED), explicit

congestion notification (ECN)

1. INTRODUCTION

The concept of cloud computing is expected to affect the

future of the Internet significantly. It has emerged because of

the Internet's quick development and the rise of client-server

computing. Data centers are recognized as the center’s hubs

and hosts of various applications that are the Internet's

foundational configuration. Reliability is frequently referred

to as a mission-critical system in data centers, where it must

be attained at all costs [1]. Users of popular Social Medias and

Websites such as Facebook, and Yahoo rely on timely access

to services provided by cloud data centers [2]. The difficulties

in scaling and distributing data in cloud data centers are caused

by a variety of factors [3] namely: Data growth that is

exploding growth without specific localization poses

challenges in effectively managing and distributing data across

cloud data centers; Legal necessity for geographically distinct

data backup sites that are regulatory requirements often

mandate the establishment of geographically distributed data

backup and replication sites to ensure integrity, availability

and reliability of data; the development of mobile and cloud

computing for storing or processing date necessitates efficient

data scaling and distribution mechanisms [4]. Massive

interactive web application requires real-time interactivity and

data processing that adds complexity to data distribution

across multiple servers and data centers and Constraints on

energy are a significant factor in reducing environmental

impact poses to scale and distributing data in cloud data

centers.

In cloud data centers networks accommodate three different

types of traffic [5].

The first type is short-lived traffic that includes transmitting

connections at less than 100 KB/per second such as Google

searches and Facebook updates [6]. These connections require

short response times and emphasize the need for quick data

transmission. The second type is medium lifespan traffic. It

involves connections that have medium lifespan, such as

Facebook photographs and small-to- medium-sized files from

YouTube [7]. These connections typically demand low latency

and ensuring minimal delay in data transfer for example

typically range from 100 KB to 5 MB. The last one is long-

lasting traffic that encompasses long-duration task

connections such as antivirus upgrades and video-on-demand

services [8]. These connections typically involve data transfers

exceeding 5 MB and emphasize the importance of strong

throughput, ensuring efficient and reliable data transmission

over an extended period.

The Round-Trip Time (RTT) in a cloud environment,

disregarding queuing delay, can be less than 255 microseconds

in certain cases due to the emphasis on achieving high

throughput and minimizing latency [9]. In order to optimize

costs and performance, usually, the cost and performance

levels of data centers are used to categorize them. Requests

from incoming users are divided across the various data

centers to ensure efficient utilization. The coexistence of

various traffic types within cloud networks imposes three

fundamental requirements namely: high throughput, low delay,

and robust tolerance for bursty traffic. These requirements

Ingénierie des Systèmes d’Information
Vol. 29, No. 3, June, 2024, pp. 1115-1123

Journal homepage: http://iieta.org/journals/isi

1115

https://orcid.org/0000-0003-2814-2409
https://orcid.org/0000-0003-0619-1592
https://orcid.org/0000-0001-5184-5837
https://orcid.org/0000-0002-4986-2475
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290329&domain=pdf

play a critical role in determining the quality of service needed

for various applications depending on the specific type of

traffic [10]. The extent to which cloud data center networks

perform successfully is influenced by how well these

requirements are met [11].

Transmission Control Protocol (TCP)/Internet Protocol (IP)

usage in cloud data center networks that is standard and

unmodified, without taking into account the varying demands

of multiple coexisting traffic kinds, can lead to performance

challenges. The various qualities of the networks in cloud data

centers and diverse requirements of applications that TCP fails

to meet the three prerequisites described above [12].

Consequently, TCP's congestion control systems encounter

difficulties, resulting in several flaws such as TCP, and impact

of queue accumulation, buffer stress, as well as phony

congestion. In cloud computing environments the

partition/aggregate, as shown in Figure 1, is a commonly

structure. However, the configuration can lead to TCP missing

deadlines and delivering subpar results that violate Service-

Level Agreements (SLAs).

Figure 1. Structure for partition/aggregation in a cloud

environment [13]

To prevent packet loss brought to reduce end-to-end latency,

the Data Center Transmission Control Protocol (DCTCP) was

created as a result of issues using queue building, TCP Incast,

and TCP outcast. It the crucial for transient connections over

TCP, achieving a high-through, needed for persistent TCP

connections, and successfully handling high burst traffic

tolerance [14].

Data centers host diverse applications, from batch

processing to user-driven workloads. The rise of data-

intensive applications and cloud computing have made it

necessary to look for alternate strategies to increase the

effectiveness of communication in data center networks. Data

centers in the cloud coordinate hundreds of thousands of

heterogeneous tasks daily, and meeting everyone's

requirements in various aspects becomes a very complex

problem. To enhance TCP congestion control in data center

networks, Data Center TCP (DCTCP) makes use of Explicit

Congestion Notification (ECN). DCTCP uses ECN to assess

the amount of congestion, whereas normal TCP congestion

management can simply detect its presence. With the

increasing growth of cloud services in several areas, more and

more research is focusing on the performance improvement of

cloud environments.

2. TCP ISSUES IN CLOUD NETWORKS

The majority of traffic in cloud data center networks is

carried through the widely adopted Transmission Control

protocol (TCP) which is a popular transport layer protocol for

Internet applications [15]. TCP is known for its, scalable,

reliable, and adaptable congestion control methods that can

handle variety of network scenarios [16]. However, it has

become evident that TCP falls short in meeting the three

fundamental requirements mentioned earlier due to the diverse

nature of cloud data center networks and the wide range of

application demands. These diversities and demands have led

numerous difficulties challenges for TCP's congestion control

techniques, resulting in several flaws, including TCP Incast

TCP Outcast, queue expansion, and the appearance of

overcrowding [17]. The subsections that follow highlight the

causes of these issues and present suggested remedies.

Issues such as TCP Incast, TCP Outcast, buffer compression,

queue backlog, and congestion impact severely influence the

performance of traditional TCP variants in cloud environments.

As cloud environments become an essential part of the near

future, controlling or mitigating these problems is important.

2.1 TCP Incast

In the cloud computing environment, TCP Incast can occur

due to the aggregate/partition network architecture of cloud

data centers. When a query is made requests are sent by the

aggregator to various servers that have the required data.

One’s a query is answered servers immediately respond with

a significant amount of data [18]. This data is then transmitted

over a bottleneck connection to the appropriate aggregator as

shown in Figures 2 and 3. This cloud aggregate/partition

structure communication pattern exemplifies how TCP Incast

can occur.

Figure 2. Application partition/aggregate model [19]

Figure 3. TCP Incast in cloud computing environment [20]

1116

The environment's short, constrained reaction time

requirement is the reason behind coordinated and

synchronous responses to the demands. Without a use from

cloud switches or routers, the resulting data packets would

probably overload the queues, leading to packet damage [21].

As shown in Figure 4 this effect illustrates the impact of

synchronized and simultaneous fulfillment of aggregator

requests. This condition, where servers pause and the

coordinated transmission are hindered by something.

Broadcasting of upcoming data block while awaiting the

provision of the most recent data from all servers is commonly

referred to as synchronized mice colliding [22]. Due to the

frequent packet losses in such a scenario, significantly

decreases as the number of simultaneous servers increases [23].

Figure 4. Response to aggregator requests in synchronous

When a Re-Transmission Timeout (RTO) which represents

the duration of the transmitting server waits for

acknowledgements for previously delivered sent packets

expires the lost packets are simply retransmitted [24].

Consequently, the TCP Incast's recurring timeouts have a

significantly impact on the effectiveness of transient traffic

especially those with stringent delay requirements and the

need for quick and precise response time as shown in Figure 5.

2.2 TCP Outcast

The TCP Outcast phenomenon occurs when multiple

incoming flows compete with a few flows at a switch's or

routers two ports. In a cloud environment, this phenomenon is

caused by the Tail-Drop (TD) operation implemented by data

center routers and switches [25]. The TD is a simpler and more

efficient computational mechanism compared to other queue

management systems. It does not, however, ensure that each

flow's packet drop rate is proportionate to its bandwidth share.

Upon reaching the queue's maximum length, TD removes

packets from the end of the queue [26]. This can lead to

consecutive packet from a port's queue increases the likelihood

of timeouts and adverse global synchronization events. In this

situation, known as a port blackout, the performance of small

flows is significantly reduced due to the substantial delays

caused by numerous timeouts. Data packets arrive to input

ports (A and B) in the port blackout scenario shown in Figure

6, where they compete with one output port at (C). Data

packets coming at port B are appropriately buffered, as shown

in Figure 6, whereas packets arriving at port are lost one after

the other.

Figure 5. After timeout expiration retransmission

Figure 6. Case of the port blackout [27]

The Round-Trip Tim (RTT) bias can arise from the inverse

relationship between a TCP connection's throughput and RTT.

This relationship implies that TCP connections with lower

RTT can use a greater portion of the available bandwidth than

1117

connections with higher RTT. However, it is observed that

TCP Outcast that is caused by the TD queue management

mechanism employed in data center routers and switches leads

to an inverted RTT Bias. As a result, TCP connections with

high RTT tend to overwhelm those with low RTT. The many-

to-one communication model servers are the foundation for

various applications in a cloud computing environment. The

TCP Outcast becomes a major problem in cloud computing

because data center networks frequently use TD queue

management.

3. QUEUE BUILD-UP PROBLEM

Figure 7. Long-lasting traffic causes queue building

Due to the coexistence of long-lived traffic with variety data

center types and traffic patterns for cloud computing the

network is compelled to prioritize overflow queues and reduce

congestion [28]. Consequently, when short-lived traffic uses

the same link as long-lived traffic its performance suffers

dramatically. This impact can be observed in Figure 7, where

the presence of long-lived traffic consumes as considerable

amount of queue space leading to adverse consequences for

short-lived traffic. It is highly likely that a larger number of

packets from transient traffic will experience drops under such

circumstances. This situation bears similarities to challenges

posed by TCP Incast as frequent packet loss-induced timeouts

have a notable impact on the effectiveness of transient traffic.

Furthermore, in situations where the long-lived traffic's

packets must first stay digested the queued short-lived traffic

packets that arrive later encounter longer queuing times, even

in the absence of packet losses which is the typical situation.

The queue building phenomena is what causes it [29] and it

can be diminished by intentionally reducing the sending rate

of TCP senders within cloud networks, at routers and switches.

By using packet drops as a congestion notification signal, TCP

senders can be informed of the congestion issue. If the TCP

sender only relies on receiving three duplicate

Acknowledgements (ACKs) or waits for timeouts, the queue

occupancy may not decrease to an acceptable level. Therefore,

to solve the issue, proactive action is needed to address the

issue of queue accumulation and shorten the backlog's

duration, as shown in Figure 7.

4. DATA CENTER TCP

A transport-optimized protocol called DCTCP is

specifically designed for networks with early and aggressive

Explicit Congestion Notification ECN marking in cloud data

centers. This protocol aims to provide low latency and high

throughput by enabling TCP senders to generate multi-bit

feedback. Moreover, DCTCP is designed to TCP senders

should have burst tolerance so they can respond quickly before

discarding packets, and the buffer has sufficient available

capacity to accommodate bursts.

DCTCP is considered a progressive advancement over TCP

aiming to address the issues of TCP Incast and queue

accumulating in networks of cloud data centers. To achieve

satisfactory performance DCTCP requires minor’s

modification to the standard Explicit Congestion Notification

mechanism used the TCP protocol. ECN serves a purpose of

indicating network congestion, thereby helping to maintain a

controlled decrease in packet retransmissions and buffers

utilization [30]. Packet loss is typically an indication of

network congestion caused by buffer overflow. Unlike classic

TCP which halves the congestion windows DCTCP senders

gradually reduce their capacity window (cwnd) in response to

measured congestion levels [31]. By taking a proactive packet

loss can be reduced. DCTCP possesses notable such as

convergence, equity, and stability making it an ideal protocol

for requirements of the cloud environment. The utilization of

ECN in DCTCP involves establishing a connection between

the DCTCP sender and a compatible receiver, using specific

code point in the IP and TCP headers that allocate two for ECN.

ECN is triggered where negotiation is done based on certain

code points that employ bits from the TCP and IP headers,

respectively. Figure 8 demonstrates functioning of ECN and

how the knowledge of the network status is leveraged to

prevent and manage congestion.

Data centers for cloud computing host a variety of

1118

applications, combining workloads that demand high

sustained throughput with workloads that require tiny,

predictable latency. In this context, the performance of

latency-delivered communication is impacted by the current

TCP protocol's failure to meet latency constraints [32]. To

solve these problems, we suggest DCTCP; a TCP-like protocol

for data center networks. Using the network's explicit

congestion notification (ECN), DCTCP gives end hosts multi-

bit feedback. Additionally, DCTCP offers low latency and

great burst tolerance for brief flows.

Figure 8. ECN in DCTCP [32]

5. QUEUE MANAGEMENT MECHANISMS IN CLOUD

NETWORKS

The networks of cloud data centres employ both reactive

and proactive mechanisms for queue size management and

congestion control. The commonly used conventional queue

management mechanism in cloud networks is Tail-Drop (TD),

which is categorized as reactive mechanism. It does not take

any action until the buffer becomes flooded, at which point all

incoming packets are dropped [33].

 In contrast, proactive devices such as Random Early

Detection control a queue size by pre-emptively dropping

packets before the buffer reaches full capacity, thus protecting

against congestion.

Reactive queue management mechanisms suffer from two

critical issues [34]:

Lockout: it occurs when certain TCP flows consume a

significant portion of the buffer space due to their high

transmission rates, leading to excessive packet loss for other

TCP flows and unfairness.

Full Queues: they arise when the queue size reaches the

maximum buffer capacity without any preventive measures

being implemented by the reactive queue management

mechanism to control its growth. This situation can persist for

extended periods, resulting in significant queuing delays.

The subsequent subsections discuss the advantages and

disadvantages of Tail-Drop and Random Early Detection (RED)

in addressing these challenges.

5.1 Tail-Drop (TD)

TD (Tail-Drop) employs a packet-dropping strategy where

packets are discarded from the tail end of the queue when the

defence becomes full, as shown in Figure 9. New incoming

packets are only accepted if sufficient space is available in the

buffer to accommodate them. However, if the queue is

complete, all arriving packets are dropped until packets

departing from the queue's head cause the queue to decrease.

One advantage from TD is its reduced computational overhead

and implementation complexity compared to other queue

management mechanisms.

When the line is as full as it can get, the tail drops, it drops

newly arrived packets until it has adequate room to take in the

incoming traffic [35, 36]. The policy's effect on incoming

packets—reducing packet loss by absorbing transient flows of

data when routers are unable to handle them—gives origin to

its name to send them at that precise moment.

Figure 9. Tail-Drop mechanism

5.2 Random Early Detection (RED)

The Internet Engineering Task Force (IETF) has

recommended the use of RED for the Internet routers. Figure

10 illustrates how RED utilizes two thresholds (Min th, Max

th) to distinguish between various levels of network

congestion.

Figure 10. RED mechanism

In case of RED, incoming packets are permitted into the

buffer until the queue size reaches the Min th threshold value.

At this point, RED randomly drops a portion of the incoming

packets using a linear distribution function until the queue size

reaches the Max th threshold value, all incoming packets are

dropped.

The RED utilizes the average queue size to inform its

congestion control decisions, enabling it to differentiate

between temporary and persistent increases in the queue size

and accurately detect network congestion. However, while

RED effectively addresses the worldwide synchronization

issue by discarding packets at regular intervals of time, its

reliance on the average queue size results in a slower

congestion response. This is because the average queue size is

collected over a long period. Consequently, this can lead to

significant fluctuation in the queue size, untimely congestion

detection and notification, and ultimately reduce the network

performance due to high packet loss and prolonged queuing

delays.

Proposed a RED mechanism to manage congestion at an

early stage and overcome the drawbacks and limitations of

Tail-Drop. One common method for preventing network

congestion in networks is the RED mechanism.

Certain network conditions and requirements are addressed

1119

by TCP congestion control protocols including Data Center

TCP (DCTCP) and ECN Stream Control Transfer Protocol

(SCTP). Additionally, the goal of the RED system's network

traffic load monitoring is to foresee and prevent congestion.

Packet loss monitoring can help identify areas of congestion

and troubleshoot network performance issues.

6. METHODOLOGY AND EVALUATION OF DCTCP

Congestion control improves the current performance of

flows by maximizing their throughput while maintaining

queues in the network. Having small queues is important

because it reduces the latency of short flows by reducing the

queue delay. It also reduces packet drops and this improves

network performance.

The DCTCP is a solution to maintain small queues for data

centre switches and reduce dropped packets. The methodology

of this paper evaluates DCTCP using Random Early Detection

(RED) queue management strategy to improve efficiency in

data centre networks to improve the performance of cloud

environments. Using Explicit Congestion Notification (ECN)

allows DCTCP to keep queue sizes short. It is believed that an

intelligent queue management mechanism with ECN can

improve the performance of DCTCP in a cloud computing

environment by predicting transmission rates and providing

quick feedback on the queue length.

Data Centers TCP host a diverse mix of applications

ranging from batch processing to user-driven workloads. The

former creates large tail flows that require high-sustained

throughput while the latter creates short-latency critical traces

with strict completion time requirements. The performance

and efficiency of these two types of traffic is extremely

important in determining the feasibility of a service in a cloud

environment.

To give a clear understanding of how the DCTCP operates

effectively in the cloud computing environment the authors

demonstrate the requirements for maintaining a short line

length while achieving high or respectable throughput. To

achieve this goal, it is necessary to multiply the bandwidth and

round-trip time of bottleneck connection B by the buffer size

E. The buffer size has to equal to otherwise greater than this

value the generalization for determining the buffer size is

based on the bandwidth delay product, represented by E=RTT.

Figure 11 demonstrates that a single connection needs a buffer

of size E=RTT×B to achieve accuracy 100% throughput. The

buffer size needs to be adjusted to E=(RTT×B)/n. It is evident

that insufficient buffer size can result in suboptimal

performance. F=Amount of marked ACKs/Total amount of

marked ACKs (1).

𝐹 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑟𝑘𝑒𝑑 𝐴𝐶𝐾𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑟𝑘𝑒𝑑 𝐴𝐶𝐾𝑠
 (1)

For transmission rate differences, a small buffer size might

be adequate.

As a result, the first fundamental principle guiding the

Sender’s response in DCTCP's congestion-based architecture,

as illustrated in Table 1 is that should be proportional to the

congestion level. This approach aims to minimize queuing

requirements by requirements by reducing transmission rates

and mitigating volatility. The second fundamental concept is

that the actual queue length should be used to implement the

ECN pattern. This provides rapid feedback, allowing for

improved management of burst traffic.

(a) Only one lasting link

(b) Two enduring links

Figure 11. Queue size and cwnd are affected by long-lived

connections

Table 1. Response of TCP-ECN senders against DCTCP-

ECN

ECN DCTCP TCP

1010110111 Reduce cwnd by 40% Reduce cwnd by 50%

0000000001 Reduce cwnd by 5% Reduce cwnd by 50%

In DCTCP, data packets are labeled for transmission only if

the true queue size is q in a switch or router exceeds the

threshold K (when q>K). It is important to observe K>1/7(B

Round-Trip Time).

The average fraction F from tagged packets is kept for

Round-Trip Time (RTT) at the DCTCP sender.

α←(1−w)×α+w×F (2)

Eq. (3) shows that the (cwnd) window adaptably loses by a

factor between 1 and 2.

cwnd←(1−(α/2))×cwnd (3)

The DCTCP sender utilizes a stream of marked ACKs to

evaluate the percentage of marked packets. When the

transmission rate fluctuates smoothly, DCTCP demonstrates

effective performance even with small buffers. The fraction F

can be obtained from the previous RTT since TCP's self-

clocking mechanism aids in determining the next (RTT) based

on (cwnd).

Switches use a queue management system to assign

congestion to an incoming packet if the queue is long. The

ECN sets the ACK packets it sends to the sender for each

packet flagged as congested by the router. The sender keeps a

1120

continuous estimate of the percentage of packets lost, and each

time, it needs to reduce the size of the congestion window

according to the standard TCP protocol. Thus, only a few

packets encounter long queues.

7. RESULT AND DISCUSSION

This presents a significant challenge to innovation and

limits evaluation to simulation tools because, to conduct

practical tests in cloud data centers, there are no available

experimental facilities where it is necessary to modify internal

mechanisms. To assess the effectiveness of DCTCP in a

network setting for cloud computing, Network Simulator 2

(ns-2) was employed. The simulation involved a bottleneck of

20 servers responding to random queries with a 10 Gbps

link.The cushion contained 200 packets of 1500-byte size.

TCP Newreno and DCTCP were selected with an RTT of 1 ms

and a Retransmission Timeout (RTO) of 10 ms . The traffic

size and arrival follow a Poisson distribution. For regular

DCTCP, the thresholds (K) were set at 40, while for DCTCP

over RED; the thresholds were commonly set to a minimum

of 5 and a maximum of 15. In Figure 12 the connection

durations are depicted for TCP Newnero and DCTCP about

their respective traffic sizes.

As depicted in the graphic, DCTCP exhibits lower latency

than TCP Newreno -RED for short- and medium-lived

connections. However, when coupled with RED and relying

on typical queue size for decisions, DCTCP performs worse,

resulting in increased delay for such traffic types. The figure

also demonstrates that DCTCP achieves its ability to

understand and effectively handle burst traffic. Moreover,

when RED is utilized, a lower delay can be achieved. However,

it is worth noting that when the bottleneck link is primarily

congested, TCP-related issues may still arise, making the

performance of DCTCP comparable to that of traditional TCP

with their fair share of throughput well on short and medium-

lived connections with short and medium-lived queue lengths,

although DCTCP over RED provides acceptable delay on

long-lived connections in comparison.

Figure 12. Time to finish DCTCP, TCP Newnero-RED

We repeated this test with up to 500 flows and found that

DCTCP was fast enough to check all flows.

Limiting the ACK before the timer expires unless the

occurrence of network congestion is received reduces the

congestion window size to a minimum and the threshold.

Figure 12 showed that DCTCP flows converge quickly with

their fair share of throughput well on short—and medium-

lived connections with short—and medium-lived queue

lengths, although DCTCP over RED provides acceptable

delay on long-lived connections in comparison.

8. CONCLUSIONS

The DCTCP is a popular cloud transport protocol capable

of dealing with TCP queue backlog issues. However, its

performance deteriorates significantly when dozens of servers

respond to one cluster simultaneously. DCTCP is based on

Explicit Congestion Notification (ECN), a feature now

available on commodity switches. We designed DCTCP to

address TCP queue build-up issues. With multiple reactions,

DCTCP prepares the traffic volume derived from a series of

ECN tags, allowing it to react early to congestion.

Experimental results showed different capacities in five

experiments: 10-100MB, 100KB - 1MB, 1MB - 5MB, 5MB -

10MB and the largest 10MB. Evaluation results showed that

there is a trade-off between using DCTCP and RED. On the

one hand, DCTCP over RED is unsuitable for short and

medium-lived connections because it introduces a longer delay

in completion time than the regular DCTCP mechanism. On

the other hand, it represents an acceptable delay for long-lived

connections, but at the expense of throughput, DCTCP

achieves its design goals.

The DCTCP is evaluated independently and compared to

the Random Early Detection (RED) queue management

system and TCP Newreno. Due to its low delays, the

evaluation findings demonstrate that DCTCP effectively

manages Incast issues and meets deadlines for short- and

medium-lived traffic. Furthermore, DCTCP provides high

throughput for persistent traffic, albeit with slightly higher

latency, compared to when used in conjunction with RED,

which significantly reduces delay. DCTCP maintains small

queue sizes by utilizing Explicit Congestion Notification

(ECN). On the other hand, RED penalizes transient traffic as

it cannot quickly and promptly alleviate congestion since it

relies on average queue lengths. To enhance DCTCP and the

cloud computing environment's performance, an intelligent

queue management system capable of anticipating the sending

rate should be used in conjunction with ECN.

REFERENCES

[1] Kanniga Devi, R., Gurusamy, M., Vijayakumar, P.

(2020). An efficient cloud data center allocation to the

source of requests. Journal of Organizational and End

User Computing, 32(3): 23-36.

https://doi.org/10.4018/JOEUC.2020070103

[2] Nazir, R., Ahmed, Z., Ahmad, Z., Shaikh, N., Laghari,

A., Kumar, K. (2020). Cloud computing applications: A

review. EAI Endorsed Transactions on Cloud Systems,

6(17): 164667. https://doi.org/10.4108/eai.22-5-

2020.164667

[3] Odun-Ayo, I., Eweoya, I., Toro-Abasi, W., Bogle, S.

(2019). Networking for cloud and data centre-A

systematic mapping study. International Journal of

1121

Engineering Research and Technology, 12(12): 2559-

2573.

[4] Katal, A., Dahiya, S., Choudhury, T. (2023). Energy

efficiency in cloud computing data centers: A survey on

software technologies. Cluster Computing, 26(3): 1845-

1875. https://doi.org/10.1007/s10586-022-03713-0

[5] Guo, Z., Liu, S., Zhang, Z.L. (2020). Traffic control for

RDMA-enabled data center networks: A survey. IEEE

Systems Journal, 14(1): 677-688.

https://doi.org/10.1109/JSYST.2019.2936519

[6] Noormohammadpour, M., Raghavendra, C.S. (2018).

Datacenter traffic control: understanding techniques and

tradeoffs. IEEE Communications Surveys and Tutorials,

20(2): 1492-1525.

https://doi.org/10.1109/COMST.2017.2782753

[7] Burgess, S., Sellitto, C., Cox, C., Buultjens, J., Bingley,

S. (2017). An innovation diffusion approach to

examining the adoption of social media by small

businesses: An Australian case study. Pacific Asia

Journal of the Association for Information Systems, 9(3):

1-24. https://doi.org/10.17705/1pais.09301

[8] Syed, A.S., Sierra-Sosa, D., Kumar, A., Elmaghraby, A.

(2021). Iot in smart cities: A survey of technologies,

practices and challenges. Smart Cities, 4(2): 429-475.

https://doi.org/10.3390/smartcities4020024

[9] Tamizhselvi, S.P., Muthuswamy, V. (2021). Delay -

aware bandwidth estimation and intelligent video

transcoder in mobile cloud. Peer-to-Peer Networking and

Applications, 14(4): 2038-2060.

https://doi.org/10.1007/s12083-021-01134-1

[10] AlZoman, R.M., Alenazi, M.J.F. (2021). A comparative

study of traffic classification techniques for smart city

networks. Sensors, 21(14): 4677.

https://doi.org/10.3390/s21144677

[11] Liang, Y., Lu, M., Shen, Z.J.M., Tang, R. (2021). Data

center network design for internet-related services and

cloud computing. Production and Operations

Management, 30(7): 2077-2101.

https://doi.org/10.1111/poms.13355

[12] Hadi, T.H., Kadum, J., Kadhim, Q.K., Ahmed, S.T.

(2024). An enhanced cloud storage auditing approach

using Boneh-Lynn- Shacham’s signature and automatic

blocker protocol. Ingénierie Des Systèmes d’Information,

29(1): 261–268.

https://doi.org/https://doi.org/10.18280/isi.290126

[13] Kadhim, Q.K., Yusof, R., Mahdi, H.S., Selamat, S.R.

(2017). The effectiveness of random early detection in

data center transmission control protocol - Based cloud

computing networks. International Journal on

Communications Antenna and Propagation (IRECAP),

7(October): 1-7.

https://doi.org/10.15866/irecap.v7i5.10104

[14] Shah, Z. (2018). Mitigating TCP incast issue in cloud

data centres using software-defined networking (SDN):

A survey. KSII Transactions on Internet and Information

Systems, 12(11): 5179-5202.

https://doi.org/10.3837/tiis.2018.11.001

[15] Polese, M., Chiariotti, F., Bonetto, E., Rigotto, F.,

Zanella, A., Zorzi, M. (2019). A survey on recent

advances in transport layer protocols. IEEE

Communications Surveys and Tutorials, 21(4): 3584-

3608. https://doi.org/10.1109/COMST.2019.2932905

[16] Alsultani, H.S.M., Kanaan, Q., Khudhair, I.Y. (2018).

Empirical investigation of TCP incast congestion in

Wireless cloud computing networks. Journal of

Computer Science, 14(5): 663-672.

https://doi.org/10.3844/jcssp.2018.663.672

[17] Ahmad, S.Z., Khalid, S. (2023). Optimizing data

transport efficiency in datacenters through traffic shaping

of BBR congestion control. Journal of Communications,

18(2): 97–108. https://doi.org/10.12720/jcm.18.2.97-108

[18] Alipio, M., Tiglao, N.M., Bokhari, F., Khalid, S. (2019).

TCP incast solutions in data center networks: A

classification and survey. Journal of Network and

Computer Applications, 146(15): 102421.

https://doi.org/10.1016/j.jnca.2019.102421

[19] Wang, H., Shen, H., Liu, G. (2017). Swarm-based incast

congestion control in datacenters serving web

applications. Annual ACM Symposium on Parallelism in

Algorithms and Architectures, Part F1293(September

2018): 217-226.

https://doi.org/10.1145/3087556.3087559

[20] Khadhiml, B.J., Ahmed, S.T., Abdulqader, R.M. (2019).

Transmission control protocol (TCP) incast and outcast

issues in cloud computing. Journal of Advanced

Research in Dynamical and Control Systems - JARDCS,

13(May): 2026-2032.

[21] Abdelmoniem, A.M., Bensaou, B., Barsoum, V. (2018).

IncastGuard: An efficient TCP-Incast mitigation

mechanism for cloud networks. 2018 IEEE Global

Communications Conference (GLOBECOM), Abu

Dhabi, United Arab Emirates, pp. 1-6.

https://doi.org/10.1109/GLOCOM.2018.8647878

[22] Kheirkhah, M., Lee, M. (2020). A solution to MPTCP’s

inefficiencies under the incast problem for Data Center

Networks. Computer Communications, 161: 238-247.

https://doi.org/10.1016/j.comcom.2020.07.034

[23] Arun Selvi, K., Kumar, K., Ramalakshmi, K., Sathiya, A.

(2019). A hybrid framework for TCP incast congestion

control in data center networks. International Journal of

Recent Technology and Engineering, 8(2): 798-806.

https://doi.org/10.35940/ijrte.F2701.078219

[24] Nikzad, M., Jamshidi, K., Bohlooli, A., Faqiry, F.M.

(2022). An accurate retransmission timeout estimator for

content-centric networking based on the Jacobson

algorithm. Digital Communications and Networks, 8(6):

1085–1093. https://doi.org/10.1016/j.dcan.2022.03.006

[25] Gomez, J., Kfoury, E.F., Crichigno, J., Srivastava, G.

(2022). A survey on TCP enhancements using P4-

programmable devices. Computer Networks, 212:

109030. https://doi.org/10.1016/j.comnet.2022.109030

[26] Addanki, V., Linguaglossa, L., Roberts, J., Rossi, D.

(2018). Controlling software router resource sharing by

fair packet dropping. 17th International IFIP TC6

Networking Conference, Networking, Zurich,

Switzerland, pp. A9-A10

[27] Sarkar, N.I., Ammann, R., Zabir, S.M.S. (2022).

Analyzing TCP performance in high bit error rate using

simulation and modeling. Electronics, 11(14): 1-20.

https://doi.org/10.3390/electronics11142254

[28] Menikkumbura, D., Taheri, P., Vanini, E., Fahmy, S.,

Eugster, P., Edsall, T. (2023). Congestion control for

datacenter networks: A control-theoretic approach. IEEE

Transactions on Parallel and Distributed Systems, 34(5):

1682-1696.

https://doi.org/10.1109/TPDS.2023.3259799

[29] Shan, D., Jiang, L., Zhang, P., Jiang, W., Li, H., Tang, Y.,

Ren, F. (2023). Enforcing fairness in the traffic policer

1122

https://doi.org/10.1016/j.comnet.2022.109030

among heterogeneous congestion control algorithms.

IEEE/ACM Transactions on Networking, 1-16.

https://doi.org/10.1109/TNET.2023.3276410

[30] Astudillo León, J.P., de la Cruz Llopis, L.J., Rico-

Novella, F.J. (2023). A machine learning based

Distributed congestion control protocol for multi-hop

wireless networks. Computer Networks, 231: 109813.

https://doi.org/10.1016/j.comnet.2023.109813

[31] Jowkarishasaltaneh, F., But, J. (2022). An analysis of

MPTCP congestion control. Telecom, 3(4): 581-609.

https://doi.org/10.3390/telecom3040033

[32] Nandhini, C., Gupta, G.P. (2023). Exploration and

evaluation of congestion control algorithms for data

center networks. SN Computer Science, 4(5): 5-19.

https://doi.org/10.1007/s42979-023-02016-4

[33] Bul’ajoul, W., James, A., Shaikh, S. (2019). A new

architecture for network intrusion detection and

prevention. IEEE Access, 7: 18558-18573.

https://doi.org/10.1109/ACCESS.2019.2895898

[34] Tawfeeg, T.M., Yousif, A., Hassan, A., Alqhtani, S.M.,

Hamza, R., Bashir, M.B., Ali, A. (2022). Cloud dynamic

load balancing and reactive fault tolerance techniques: A

systematic literature review (SLR). IEEE Access, 10:

71853-71873.

https://doi.org/10.1109/ACCESS.2022.3188645

[35] Baklizi, M. (2019). FLACC: Fuzzy logic approach for

congestion control. International Journal of Advanced

Computer Science and Applications, 10(7): 43-50.

https://doi.org/10.14569/ijacsa.2019.0100707

[36] Tsiknas, K.G., Aidinidis, P.I., Zoiros, K.E. (2021). On

the fairness of DCTCP and CUBIC in cloud data center

networks. 2021 10th International Conference on

Modern Circuits and Systems Technologies (MOCAST),

Thessaloniki, Greece, pp. 1-4.

https://doi.org/10.1109/MOCAST52088.2021.9493352

1123

