
Block of Data Encryption Using the Modified XTEA Algorithm

Ahmed Abd Ali Abdulkadhim* , Ali Shakir Mahmood , Mohanad Ridha Ghanim

College of Education, Computer Science Department, Mustansiriyah University, Baghdad 964, Iraq

Corresponding Author Email: ahmed_198@uomustansiriyah.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290325 ABSTRACT

Received: 6 November 2023
Revised: 7 March 2024
Accepted: 25 March 2024
Available online: 20 June 2024

The Internet of Things (IoT) employs various devices with varying hardware capabilities,
including those with restricted resources like wireless sensor networks and those with ample
resources like satellites. One of the primary hurdles is developing a streamlined encryption
algorithm suitable for IoT devices with limited hardware capabilities. This paper introduces
an enhanced lightweight algorithm that not only addresses side-channel vulnerabilities but
also guards against nonce misuse attacks In this work, we present a design that generates
encryption keys using chaotic systems, thereby increasing their unpredictability and
randomness. The primary objective of this research is to fortify security measures against a
range of novel attack techniques, guaranteeing comprehensive defense, unpredictability,
and resilience. The aim of putting strategic defenses and tactics into place is to shield
valuable assets from possible threats.

Keywords:
data encryption, XTEA algorithm, rossler
system

1. INTRODUCTION

The Internet of Things (IoT) is often described as a system
of devices that connect with cloud nodes to share data. Unlike
computers these devices have high capacities when it comes
to RAM, memory and processing power [1-3].

Many IoT devices have security vulnerabilities that make
them vulnerable to cyber attacks and unauthorized access. This
expose data security and personal privacy. The absence of
communication protocols among devices leads to
compatibility issues posing a major obstacle. This slow down
their ability to interact and exchange information across
platforms and devices. Additionally several IoT devices are
reserved by power, storage capacity and energy resources
impacting directly on their performance, in handling tasks and
processing substantial data volumes. Their overall
functionalities and capabilities are typically restricted by these
limitations [4, 5].

These restrictions are mostly motivated by security
concerns. Because many encryption techniques are complex,
implementing encryption on Internet of Things devices can be
difficult. Nonetheless, a number of encryption algorithms are
available that are especially made for these limited settings.
These algorithms are renowned for their straightforward
design, rapid speed, and effective memory management [6].

Encryption algorithms are completely immune to attacks,
even algorithms like XTEA have vulnerabilities that can be
exploited under certain conditions. It's important to note that
XTEA is not considered a highly secure encryption algorithm
by today's standards due to its vulnerability to certain attacks
because of these vulnerabilities and other weaknesses, called
the need to make a combination with chaotic systems. Chaotic
signals exhibit several features that align with the prerequisites
of cryptography, including their pseudo-randomness, extreme

sensitivity to initial conditions and system parameters, and
high degree of nonlinearity-all essential qualities in the field
of cryptography.

Consequently, chaotic systems have gained extensive
utilization in the construction of cryptographic systems in
recent times. In this paper, we propose an architecture based
on the chaotic system of generating keys and obtaining
unpredictable randomness. The remaining structure of this
paper is as follows: An overview of Related Works is
presented in Section 2. Section 3 describes Rossler System.
Section 4 comprises XTEA algorithm. Section 5 contains
Modified XTEA Algorithm. Evaluation parameters are
discussed in Section 6. Conclusions are presented in Section 7.

2. RELATED WORK

Many works in the literature focus on improving
performance of XTEA algorithm for better productivity. We
now present some recent, closely related work.

Kotel et al. [7] offered a block cypher algorithm that is
lightweight. This update modifies the key obstetrics function
present in the XTEA1 algorithm by use of a linear feedback
shift register. The objective evaluation of lightweight
cryptographic systems metric, which computes metrics like
RAM usage, ROM usage, and execution time to measure
performance across three commonly used embedded devices:
32-bit ARM, 8-bit MSP, and 32-bit AVR microcontrollers,
was used to perform a code analysis of this XTEA variant
using the same benchmarks. The implementation results are
shown that this modified version imposes fewer software
demands in comparison to the original XTEA. Furthermore,
the Software performance and security have been notably
improved.

Ingénierie des Systèmes d’Information
Vol. 29, No. 3, June, 2024, pp. 1075-1083

Journal homepage: http://iieta.org/journals/isi

1075

https://orcid.org/0000-0003-0653-5754
https://orcid.org/0000-0001-5907-1223
https://orcid.org/0000-0001-8256-3031
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290325&domain=pdf

Acholli and Ningappa [8] enhance the security and privacy
of information. It focuses on communication systems. The
researchers focus on encryption and decryption techniques.
They stress the importance of key generation for encryption
security. Keys are vulnerable to modern computers. So, a
hybrid crypto algorithm is proposed. It combines XTEA with
IDEA. The researchers use a method called ID-XT-EA-LFSR.
It is based on the International Data - Extended Tiny
Encryption Algorithm. They use it to boost the security of real-
time apps, especially for online streaming data. They
recognize that a large key size adds randomness. But it also
makes the network busier and more complex. To fix this,
generate random numbers using an LFSR scheme for the key.
It improves FPGA performance by up to 50.43% compared to
other algorithms. These include QTL, DROM-CSLA-QTL,
and XTEA. The research highlights the usefulness of the
proposed hybrid cryptographic algorithm. It improves security
for real-time applications.

Anusha et al. [9] introduce a pipelined architecture that
utilizes parallel computation to enhance throughput while
simultaneously bolstering security measures. Our proposed
XTEA cipher is designed with configurability, allowing for the
adjustment of its mode to either encryption or decryption as
needed. Simulations for TEA and XTEA on an FPGA platform,
specifically Artix-7, taking into account resource limitations
such as area, time, and power, and have presented the results
in tabular form.

Mishra and Acharya [10] introduced a hybrid model
featuring a pipelined architecture that emulates all three
lightweight ciphers: TEA, XTEA, and XXTEA, within a
single framework tailored for high-speed IoT and RFID
applications. The pipelined implementation of these ciphers
was undertaken to enhance the computational throughput of

the encryption This was accomplished by parallelizing the
computation, which led to a significant increase in throughput
at the expense of increased resource consumption.
Additionally, they combined the TEA architecture to
incorporate a hybrid approach. These specially created
encoders were used with both FPGA and ASIC platforms.

A simplified sequential design for the XXTEA-192 block
cipher specifically intended for use in RFID applications was
proposed by Kella et al. [11]. RFID tags usually have very
strict limitations on the amount of power and space they can
use. Among the TEA family of ciphers, XXTEA is the
strongest member. It is notable for its ability to handle
messages of varying lengths; messages must be at least 62 bits
long and multiples of 32-bit word sizes. This special
characteristic enables the cipher to encrypt larger data blocks
more effectively. Every clock cycle, the XXTEA-192's
proposed serial architecture performs 32-bit operations like
addition, XOR, and shifting.

Nagarajan et al. [12] introduced an upgraded architecture
known as RXTEA (Renovated XTEA), along with a secure
mutual authentication protocol termed RXMAP (RXTEA-
based Mutual Authentication Protocol). In the revised XTEA
design, various modifications have been implemented to
enhance computational efficiency and bolster resistance
against related key attacks and meet-in-the-middle attacks. A
novel delta value is computed for each successful
authentication using random numbers, increasing security.
Additionally, only half of the ciphered text is employed for
server and tag authentication, rendering key value prediction
nearly impossible. Furthermore, key values are dynamically
updated at both the server and tag sides through internal
computations, enhancing security by making the prediction of
the new key highly improbable.

Table 1. Summary of previous work

Year Authors Methodology Key Features Measurements and Results

2017 [7]
A Linear Feedback Shift Register is used to
replace the key generation function in the

XTEA1 Algorithm.

Using the same evaluation
conditions, analyzed the software
implementation of the modified

XTEA using FELICS (Fair
Evaluation of Lightweight
Cryptographic Systems) a

benchmarking framework which
calculates RAM footprint, ROM
occupation and execution time on

three largely used embedded
devices: 8-bit AVR

microcontroller, 16-bit MSP
microcontroller and 32-bit ARM

microcontroller.

Implementation results show that it
provides less software requirements

compared to original XTEA.
Enhanced the security level and the

software performance.

2019 [8]

The research's main method is to enhance the
security and privacy of information. It focuses
on communication systems. The researchers

focus on encryption and decryption
techniques. They stress the importance of key
generation for encryption security. Keys are

vulnerable to modern computers. So, a hybrid
crypto algorithm is proposed. It combines

XTEA with IDEA.

The researchers use a method
called ID-XT-EA-LFSR. It is based

on the International Data -
Extended Tiny Encryption

Algorithm. They use it to boost the
security of real-time apps,

especially for online streaming
data. They recognize that a large
key size adds randomness. But it

also makes the network busier and
more complex. To fix this, generate

random numbers using an LFSR
scheme for the key.

It improves FPGA performance by up
to 50.43% compared to other

algorithms. These include QTL,
DROM-CSLA-QTL, and XTEA. The
research highlights the usefulness of
the proposed hybrid cryptographic
algorithm. It improves security for

real-time applications.

2019 [9]
This article introduces a Lightweight Block
cipher method. The hardware layout of Tiny

Encryption Algorithm (TEA) has been

The suggested XTEA is
reconfigurable, allowing it to

conduct encryption or decryption

Similar previous research efforts, such
as AES-8bit, TinyXTEA1, and Tiny
XTEA-3, with improvements in area,

1076

developed to be straightforward, adaptable
requiring computations and with a key
scheduling process. To address security

vulnerabilities, in the scheduling of TEA, an
Enhanced TEA (XTEA) has been created with
a structure that enables parallel processing to

enhance efficiency and enhance security
measures.

by switching modes. The Xilinx
ISE tool on the Model Sim 6.5f
simulator yielded the TEA and

XTEA simulation results, which
were then implemented on the
FPGA Platform-Artix-7 with
tabulated resource limitations,

including area, time, and power.

throughput, and efficiency on the
same FPGA platform, are compared
with the suggested XTEA. With a

high throughput of 81 Mbps and an
efficiency of 0.34 Mbps/slice, the

suggested XTEA operates.

2021 [10]

TEA, XTEA and XXTEA encryption methods
were utilized to achieve the specified goal.
They were developed, put into practice and

enhanced using hardware technologies such, as
platforms for Application Specific Integrated

Circuits (ASIC) and Field Programmable Gate
Arrays (FPGA). Block sizes, implementation
rounds, and important scheduling techniques

were among the attributes that the designs
were put into practice to evaluate.

Utilizing T1, T2 and T3 through a
sequential approach to boost
performance measures like

occurrence and size. Introducing a
blended model (T4) that merges

TEA family codes into one
blueprint employing a sequential

structure.

This research paper introduces four
different hardware architectures
named TEA (T1), XTEA (T2),

XXTEA (T3) and a hybrid model
(T4). T1, T2 and T3 were developed
using a pipelined approach, resulting

in significant frequency
improvements of 75.9%, 162% and

89% respectively. Additionally, there
were notable area enhancements of

85.43%, 57.08% and 90.79% for each
architecture. The hybrid model T4

combines the TEA family designs into
a single pipelined architecture,

showing a gate equivalent
improvement of 47.50% for T2

specifically. Despite having similar
throughput to T1, T2 and T3, the
hybrid model (T4) requires fewer

gates compared to the combined total
of the three individual architectures.

The efficiency enhancement achieved
by these new designs surpasses that of

existing literature by more than
eighteen times.

2021 [11]

This paper introduces a design for the XXTEA
192 block cipher suitable for RFID

applications. RFID tags face limitations in
terms of space and power. XXTEA is

considered the cipher, within the TEA family.
It operates on messages of varying lengths

with a message size of 62 bits, which must be
multiples of 32-bit words.

This feature enables the cipher to
encrypt larger block sizes. Serial
architecture of XXTEA-192 has

been proposed that performs 32-bit
operations like addition, XOR and

shifting in each clock cycle.

The suggested plan has been put into
action using verilog. Evaluation of
performance measures such as size,

speed, effectiveness, power, and
energy has been conducted on types

of FPGA devices like Spartan 6
Virtex 6 and Virtex 7. The proposed
layout has attained 45 slices and a

data transfer rate of 498.44 Mbps on
Spartan 6 making the design compact

and fast, for RFID uses.

2021 [15]

This article presents an updated and more
secure iteration of the XXTEA algorithm by

incorporating an S-box to bolster security
against various attacks. Additionally, the M

XXTEA algorithm is combined with a
generation system providing an additional

layer of security that aligns with the concept of
a onetime pad. The encryption keys change for
each block of plaintext during the encryption

process.

As a result, it offers a stronger
security system than both the AES

and the original XXTEA. In
addition to improving data security,

the M-XXTEA can work with
various text block and key widths.

To compare the M-XXTEA's
performance with that of the AES
and the original XXTEA, several

experiments are conducted.

The encryption and decryption time
efficiencies of M-XXTEA surpass

AES by 60%, according to the results.
Additionally, the M-XXTEA
outperforms the AES in speed
efficiency by 57%. It can be

effectively applied to safeguard e-
health systems, smart cities, and

industrial IoT smart device security.

2022 [12]

The research's main method is to address
security challenges in wireless sensor

networks. It focuses on Radio Frequency
Identification (RFID) and green solutions.

Chose the Extended Tiny Encryption
Algorithm (XTEA) as a lightweight encryption

scheme. But fixed its vulnerabilities with
domain-specific customization. Employ
random numbers and secret key renewal.

The researchers propose two
Renovated XTEA Mutual

Authentication Protocol (RXMAP)
encoder architectures. They are

RXMAP-1 and RXMAP-2. They
replace precise blocks with rough

ones to boost security. The
evaluation process includes

assessing two things:
computational and storage

overhead. It also includes verifying
against various security threats.

Verification uses BAN logic formal
and informal methods.

For functional verification, Simulate
the proposed encoders, also make an

Application-Specific Integrated
Circuit (ASIC). It has a 132 nm

process node. The results show that
RXMAP-1 and RXMAP-2 designs

take up much less space. They take up
53.11% to 53.31% less space than

XTEA I and XTEA II
implementations. Also, RXMAP-1

and RXMAP-2 use much less power
(68.76% to 71.64% less) than XTEA

II. But they have the same throughput.

1077

Shailaja [13] proposed a hybrid encryption approach that
combines the Extended Encryption Algorithm (XTEA) and
the IDEA algorithm to increase security in real-time
applications. While a larger key size ensures randomness, it
also increases network load and complexity proportionally. To
tackle this issue, generate keys by generating random numbers
using the Linear Feedback Shift Register system. This
algorithm proved suitable for encrypting and decrypting online
streaming data, leading to the method's designation as the
International Data-XTEA-LFSR (ID-XT-EA-LFSR). Notably,
the ID-XT-EA-LFSR method significantly improved FPGA
performance, demonstrating a 50.43% enhancement compared
to QTL, DROM-CSLA-QTL, and XTEA algorithms.

Ragab et al. [14] to improved its defences against different
types of attacks, added an improved S-box to the original
XXTEA cypher, making it a more robust version. Furthermore,
a chaotic key generating system is integrated with the M-
XXTEA, adding an extra degree of security consistent with the
idea of a one-time pad. In contrast to the original XXTEA, the
cypher keys are dynamically changed for every plaintext block
during the encryption process, resulting in a more adaptable
security architecture. M-XXTEA is flexible enough to work
with a variety of text block sizes and key sizes, enhancing data
security.

Researchers stated in Table 1 describe their previous works
were studied ways to improve XTEA's productivity. They
have showcased recent progress. Nagarajan and colleagues
introduced RXTEA, a new XTEA structure. They also
introduced RXMAP, a secure mutual authentication protocol.
It offers better speed and more resilience against attacks.
Shailaja proposed ID XT EA LFSR. It is a hybrid encryption
technique that combines XTEA and IDEA. It shows better
FPGA performance for real time apps. Mishra and Acharya
presented a hybrid model. It uses pipelined architecture for
TEA, XTEA, and XXTEA. This speeds up computation in
high speed IoT and RFID applications. Kella et al. I devised a
sequential XXTEA 192 block cipher for RFID systems. It
handles variable length messages well and boosts security.
Kotel et al. made a lightweight version of XTEA1. It had
reduced software needs and better performance on embedded
devices. Anusha and her team introduced a configurable
pipelined XTEA cipher. It has better throughput and security
due to parallel computation techniques. Ahmed Ab M.
Ragaband et al. Strengthened XXTEA. That was done by
adding an improved S box and by adding dynamic key changes.
These changes provide adaptable security against diverse
attacks. They make M XXTEA a versatile solution for various
data security needs.

3. ROSSLER SYSTEM

The Rossler system was discovered by Otto Rossler when

he was conducting research in the field of chemical kinetics
[16, 17]. Mathematically, the Rossler system is characterized
by three interconnected nonlinear differential equations,
which are explained by the following Eq. (1):

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = −𝑦𝑦– 𝑧𝑧, 𝑑𝑑𝑦𝑦/𝑑𝑑𝑑𝑑 = 𝑑𝑑 + 𝑎𝑎 × 𝑦𝑦
𝑑𝑑𝑧𝑧/𝑑𝑑𝑑𝑑 = 𝑏𝑏 + 𝑧𝑧 × (𝑑𝑑– 𝑐𝑐) (1)

where, a=0.2, b= 0.2, c=5.7.

By studying the Rossler system, it is often used as a simple
example to illustrate chaotic behavior and explore the

properties of chaotic systems and the system's butterfly-
shaped attractor, using techniques such as numerical
simulations. The bifurcation diagrams and Lyapunov
exponents can analyze its dynamics, shown in Figure 1.

The Rossler system serves as a foundational model for
understanding the concepts of chaos, attractors, and complex
behavior in dynamical systems. Because of its visually
appealing patterns, it has uses in physics, engineering, biology,
and even the arts and aesthetics [18].

The chaotic character of the Rössler systemits and great
sensitivity to initial conditions, which offers a great degree of
complexity and randomness, is one of the reasons it was
chosen for encryption. Because of this, even if an attacker
knows the equations and parameters of the system, it will be
challenging for them to forecast the key stream. Furthermore,
the Rössler system is computationally efficient for encryption
applications because to its comparatively basic structure when
compared to other chaotic systems.

Figure 1. Rossler system bifurcation diagrams when a=0.2,
b=0.2, c=5.7

The Rössler system is superior to other encryption

techniques in several ways. Firstly, it offers a high level of
security due to its chaotic behavior and resilience to attacks.
Second, because of its simplicity of implementation and high
computational efficiency, it is suitable for real-time encryption
applications. In the end, a range of important stream sequences
can be generated by merely altering the Rössler system's
parameters. which makes it a strong option for encryption
algorithms that require a high level of unpredictability and
security [17, 19].

4. EXTENDED TINY ENCRYPTION ALGORITHM
(XTEA)

The cryptographic algorithm is simple, lightweight, and has

a tiny code size. It is therefore suitable for small applications.
The block size of XTEA is 64 bits, with a key size of 128 bits.
It also made use of the Feistel network for N rounds. Where N
is usually 32. XTEA uses the following operations (Exclusive
OR, Additions & Shifts). With a 128-bit key size, 64 rounds
of operations, and 64 bits of block data, the XTEA is the most
potent and quickest light-weight cryptographic block cipher
(LCBC) with a basic Feistel structure. Most real-time
cryptography applications make advantage of it [20].

For microcontrollers with limited memory, the clear key

1078

schedule and dynamic scheduling of the rounds' keys optimize
memory consumption [21].

XTEA it was described as a valuable and advanced
alternative for enhancing security by the same scholars who
developed it. Although XTEA is widely regarded as one of the
most significant lightweight algorithms, it suffers from a low-
round security vulnerability, and high-security applications
should be able to handle 32 rounds [22].

As depicted in Figure 2, The XTEA encrypts data by
dividing it into two halves, Li and Ri, which are subsequently
applied to a regular function for N rounds (usually 32). First,
the Ri half is shifted four times, then five times. The outcomes
of these two processes are XORed together. Subsequently, the
Li portion is added to the result. All that is needed for
encryption in each round are additions, shifts, and exclusive-
or operations (modulo 232).

Figure 2. XTEA algorithm block diagram

The permutation functions are written as below.

𝑓𝑓(𝑑𝑑) = (𝑑𝑑 << 4) ⊕ (𝑑𝑑 >> 5) + 𝑑𝑑 (2)

The operation of XTEA's key scheduling is very simple

function: the 128-bit master key K is divided into four 32-bit
sub key blocks (K [0], K [1], K [2], and K [3]), and the subkey
generation functions are expressed as

𝐾𝐾𝐾𝐾 = 𝐾𝐾(𝐾𝐾 − 1/2. 𝛿𝛿 ≫ 11)&3, 𝑖𝑖𝑓𝑓 𝐾𝐾 𝑖𝑖𝑖𝑖 𝑜𝑜𝑑𝑑𝑑𝑑
𝐾𝐾𝐾𝐾 = 𝐾𝐾(𝐾𝐾/2. 𝛿𝛿 ≫ 11)&3, 𝑖𝑖𝑓𝑓 𝐾𝐾 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (3)

In above equation:
• 𝑘𝑘𝐾𝐾 round key, r round
• ≪ represents the bitwise left shift operation.

• ≫ represents the bitwise right shift operation.
• & represents the bitwise AND operation.
• δ and K assumed to be constants specific to your context.

In each round, sum is the incrementation value of the

constant number DELTA=0x9e3779b9. DELTA is derived
This constant number is used to guarantee that the sub keys are
different.

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = (√5 − 1) ∗ 231 = 9𝐷𝐷3779𝐵𝐵9ℎ
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] = (𝑖𝑖 + 1) ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖 = 0,1,2 … 31

5. MODIFIED XTEA ALGORITHM

In this section, the modifications are discussed that are

undertaken to elevate the algorithm's security against code
analysis. One of the most notable drawbacks of the XTEA
algorithm is the fixed key size of 128 bits. Although this
provides a reasonable level of security, it may be considered
limited compared to algorithms such as AES, which support a
range of key sizes (128, 192, and 256 bits). There is also no
built-in mechanism to extend or rotate the key. This means that
if the key is compromised, all data encrypted with that key is
potentially compromised. Related key attacks: XTEA is
vulnerable to related key attacks, where an attacker can exploit
the relationship between keys to decrypt data. Cryptanalysis:
Although XTEA is considered secure against many types of
attacks it is not immune to cryptanalysis. This vulnerability
can be mitigated by ensuring that keys are generated using a
secure random number generator such as a chaotic system.

Therefore, we propose to use the Rossler system
(Mentioned in Section 3) to generate keys, where the
parameters of the system a, b, and c are initialized in the first
stage to generate 64 random keys with a size of 32 bits. Where
each round has two different keys. The keys generated for each
round are different from the next, giving the system a high
level of security. As shown in the Eq. (4).

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = −𝑦𝑦– 𝑧𝑧, 𝑑𝑑𝑦𝑦/𝑑𝑑𝑑𝑑 = 𝑑𝑑 + 𝑎𝑎 × 𝑦𝑦
𝑑𝑑𝑧𝑧/𝑑𝑑𝑑𝑑 = 𝑏𝑏 + 𝑧𝑧 × (𝑑𝑑 − 𝑐𝑐)

𝐾𝐾𝑥𝑥𝑥𝑥 = 𝑑𝑑𝑥𝑥 , 𝐾𝐾𝑦𝑦𝑥𝑥 = 𝑦𝑦𝑥𝑥
(4)

The stage of modifying the algorithm architecture. The

algorithm is expanded to operate on a 128-bit block instead of
a 64-bit block, using 64 different random keys generated from
the chaotic system (each key is 32 bits), where each round has
two different keys. Each input block is then divided into four
partitions (𝐷𝐷1𝑛𝑛,𝑅𝑅1𝑛𝑛 ,𝐷𝐷2𝑛𝑛and 𝑅𝑅2𝑛𝑛), which are then applied to a
routine like the Feistel network for N rounds, where N is
usually 32. The partitions are swapped between them, as
explained in Figure 3. The proposed architecture in the process
of exchanging four partitions (32 bits) created from a 128-bit
block increases the strength of the encryption and reduces the
time taken for encryption and decryption by half.
𝐷𝐷1𝑛𝑛+1 =𝑅𝑅2𝑛𝑛 , 𝐷𝐷2𝑛𝑛+1 = 𝑅𝑅1𝑛𝑛 and 𝑅𝑅1𝑛𝑛+1 ,𝑅𝑅2𝑛𝑛+1 is computed

using following:

𝑅𝑅1𝑛𝑛+1 = 𝐷𝐷2𝑛𝑛 ⊞ (�(𝑅𝑅2𝑛𝑛 ≪ 4⨁𝑅𝑅2𝑛𝑛 ≫ 5) ⊞𝑅𝑅2𝑛𝑛�⨁(𝑑𝑑𝑒𝑒𝑑𝑑

⊞ 𝐾𝐾𝑥𝑥𝑥𝑥))
𝑅𝑅2𝑛𝑛+1 = 𝐷𝐷1𝑛𝑛 ⊞ (�(𝑅𝑅1𝑛𝑛 ≪ 4⨁𝑅𝑅1𝑛𝑛 ≫ 5) ⊞𝑅𝑅1𝑛𝑛�⨁�𝑑𝑑𝑒𝑒𝑑𝑑

⊞ 𝐾𝐾𝑦𝑦𝑥𝑥�)

(5)

The steps of the proposed XTEA algorithm are explained in

the following.

1079

Figure 3. Round of modified XTEA algorithm

Modified algorithm
Step 1: Initialize parameters.
 a = 0.2, b = 0.2, and c = 5.7 // Parameters
Step 2: Initialize variables x, y, z // Initial.
Step 3: Set nr = 64 // Number of
 time steps.
Step 4: Loop for i from 1 to nr // Loops
 dx/dt = - (y + z) // Equation to
 generate
 chaos
 dy/dt = x + a * y
 dz/dt = b + z * (x - c)
 End
Step 5: Save x, y in arrays 𝐾𝐾𝑥𝑥𝑥𝑥 , 𝐾𝐾𝑦𝑦𝑥𝑥 , // Save the
 output as a
 key.
Step 6: Split the plaintext (𝐷𝐷1𝑛𝑛,𝑅𝑅1𝑛𝑛 ,𝐷𝐷2𝑛𝑛,𝑅𝑅2𝑛𝑛)
Step 7: For i from 1 to 23 do // Number of rounds
Step 8: Set 𝐷𝐷1𝑛𝑛+1=𝑅𝑅2𝑛𝑛
Step 9: Set 𝐷𝐷2𝑛𝑛+1 = 𝑅𝑅1𝑛𝑛
Step 10: Set 𝑅𝑅1𝑛𝑛+1 = 𝐷𝐷2𝑛𝑛 ⊞ (�(𝑅𝑅2𝑛𝑛 ≪ 4⨁𝑅𝑅2𝑛𝑛 ≫ 5) ⊞

𝑅𝑅2𝑛𝑛�⨁(𝑑𝑑𝑒𝑒𝑑𝑑 ⊞ 𝐾𝐾𝑥𝑥𝑥𝑥))
Step 11: Set 𝑅𝑅2𝑛𝑛+1 = 𝐷𝐷1𝑛𝑛 ⊞ (�(𝑅𝑅1𝑛𝑛 ≪ 4⨁𝑅𝑅1𝑛𝑛 ≫ 5) ⊞

𝑅𝑅1𝑛𝑛�⨁�𝑑𝑑𝑒𝑒𝑑𝑑 ⊞ 𝐾𝐾𝑦𝑦𝑥𝑥 �)
Step 12: Cipher text = 𝐷𝐷1𝑛𝑛+1,𝑅𝑅1𝑛𝑛+1 ,𝐷𝐷2𝑛𝑛+1,𝑅𝑅2𝑛𝑛+1
Step 13: End

6. RESULTS AND DISCUSSIONS

The outcomes are derived from the operationalization of the
prescribed methodology, facilitated via the execution of two
distinct evaluations: the "Avalanche Effect" examination and
the analysis of key sensitivity. Concurrently, due

consideration is accorded to the temporal aspects of encryption
and decryption processes. A judiciously efficacious
encryption algorithm is requisite to manifest resilience against
a gamut of established incursions. To this end, the magnitude
of the key space should surpass a threshold adequate for
forestalling brute-force attacks, and furthermore, the algorithm
should evince discernible reactivity to the confidential key
substrate. The criteria for evaluating the security posture of
block encryption algorithms encompass pivotal metrics,
among which the Avalanche Effect and key sensitivity
analysis are salient. These assessments were meticulously
conducted to empirically validate the commendable security
efficacy inherent in our proposed XTEA algorithm, compared
against the benchmark performance of the conventional XTEA
instantiation.

6.1 Avalanche effect test evaluation

The effect of avalanche holds substantial significance

within the domain of cryptographic algorithms. A block cipher
of notable caliber is expected to promptly and profoundly alter
the resulting cipher text upon even minor perturbations to
either the plaintext or the encryption key. This quality ranks
among the foundational design imperatives, representing a
coveted criterion within the purview of cryptographic
algorithm development. To assess the avalanche
phenomenon's impact upon both the modified XTEA and the
conventional XTEA, as have recourse to the subsequent
mathematical expression.

Avalanche Ratio =
No. of flipped bits in ciphertext

No. of bits in ciphertext

∗ 100% [22]
(6)

The outcomes are displayed in Table 2. To assess the

avalanche effect, were conducted a test where ten plaintexts
were encrypted, producing ten corresponding cipher texts.
Following this, were repeated the encryption process using the
same ten plaintexts, but with a single-bit variation in the key
that was used in the previous test. This led to pairs of cipher
texts, each pair resulting from the same plaintext but with the
key and its one-bit different version. Ultimately, were
calculated the average percentage across all ten results to
evaluate the extent of the avalanche effect in the algorithm,
which measures how a slight change in input or key leads to a
significant alteration in the output.

Table 2. Avalanche Effect Test

Block XTEA Our Proposal

1 46.87 47.65
2 48.43 49.21
3 50 50.78
4 45.31 61.7
5 51.56 52.34
6 53.12 53.29
7 50 54.68
8 54.68 55.46
9 56.25 58.59
10 53.12 61.71

Average 50.93 54.54

As depicted in Table 2, the altered XTEA demonstrates a
superior avalanche effect (with an average of 54.54%)
compared to the original XTEA (with an average of
50.93%).This difference highlights that modified XTEA is

1080

sensitive to minor modifications in plain text.

6.2 Key sensitivity test

The procedure was described involves testing the sensitivity

of an encryption algorithm to changes in the encryption key.
This is an important aspect of cryptographic security, as a
"good" encryption algorithm should produce significantly
different cipher texts when even a small change is made to the
encryption key. The results of this experiment, as stated in
Table 3, can offer perceptions into the key sensitivity between
both of original and modified XTEA algorithm.

Fifteen blocks of unencrypted text were encrypted using a
particular key, which was subsequently modified the last block
of the same key. Subsequently, fifteen blocks were encrypted
with the new key, and the difference between the cipher text
blocks was computed. This test has been performed for both
the original XTEA and modified XTEA, with the results being
displayed in Table 3, and the test you described helps evaluate
this important security characteristic.

Table 3. Key sensitivity test

Standard XTEA % Block Proposed %

43.4 1 50.00
43.5 2 50.10

44.11 3 47.80
44.32 4 46.90
46.55 5 50.02
47.78 6 50.10
46.91 7 60.10
55.12 8 55.81
36.98 9 46.88
39.85 10 49.81
48.11 11 53.20
48.75 12 51.11
45.7 13 58.01

46.99 14 55.11
49.19 15 60.33
45.81 Average 52.35

6.3 Randomness test

To test the keys used in XTEA modified algorithm, it must
be subjected to a diverse of statistical tests designed to disclose
the randomness of the sequence, were use a NIST statistical
test as shown in Table 4.

Table 4. NIST test results for modified XTEA

NIST Test P Value Status Passed

Frequency (Monobit) 0.232330 Ok
Block frequency 0.127801 Ok
Cumulative sum 0.494146 Ok

Linear complexity 0.018712 Ok
Runs 0.067882 Ok

Non-overlapping template
matchings 0.550106 Ok

Discrete fourier transform 0.121115 Ok
Serial 0.110325 Ok

Longest run 0.018812 Ok

6.4 Execution time

Calculating the execution time for both the original
algorithm and the modified algorithm across varying block
lengths, taking into account that the algorithm is implemented
in google Colab with GPU acceleration, Table 5 states the

obtain result of time across the different block size for both
original and modified XTEA in two cases encryption and
decryption.

Table 6 shows how long it takes to encrypt a modified
XTEA TEA, XTEA, and XXTEA file with files of different
sizes. As clear results show that modified XTEA encryption
time is shorter than that of all the security algorithms currently
in use in IoT networks.

Table 5. Encryption and decryption execution time for

original and modified XTEA algorithms

Block Size
(Byte)

XTEA Encryption
Time (ms)

XTEA Decryption
Time (ms)

Original Modified Original Modified
128 1.9801 0.9791 2.4569 1.9801
256 1.9897 1.0097 3.0000 2.0290
512 2.1084 1.6084 2.6709 3.1003

1024 2.9017 2.1011 4.9084 2.9098
2048 3.8901 3.0201 5.9651 4.9876

Average 2.574 1.74368 3.80026 3.00136

Table 6. Encryption time of TEA, XTEA, XXTEA and

modified XTEA algorithm

Block Size
(Byte) TEA XTEA XXTEA Modified

XTEA
128 2.009 1.9801 0.9801 0.9791
256 1.999 1.9897 1.0278 1.0097
512 3.0347 2.1084 1.6080 1.6084

1024 3.9081 2.9017 2.1009 2.1011
2048 4.1590 3.8901 3.0392 3.0201

Average 3.02196 2.574 1.7512 1.74368

6.5 Entropy analysis

Entropy is a term used in cryptography to describe how

random or unpredictable the data being encrypted is. The
optimal value of the data is near (8) when the entropy is high,
indicating that the data is more random and hence harder to
predict. The following formula can be used to determine the
entropy of a cipher text.

𝐻𝐻(𝑖𝑖) = � 𝑃𝑃(𝑖𝑖𝑥𝑥)
2𝑁𝑁−1

𝑥𝑥=0

log2
1

𝑃𝑃(𝑖𝑖𝑥𝑥)
 (7)

Table 7. Comparison of entropy analysis between XTEA and

modified XTEA algorithm

Blocks XTEA Modified XTEA
1 7.89981 7.90091
2 7.90121 7.99995
3 7.89999 7.89992
4 7.92908 7.94994
5 7.99886 7.99697
6 7.95941 7.99905

Average 7.93139 7.95779

The entropy value before and after changing the algorithm

is displayed in Table 7. We observe that the modified
algorithm's entropy value has increased. Thus, based on the
data above, we can conclude that optimizing the algorithm can
raise the cipher text's entropy value. Naturally, this is regarded
as the outcome of a modification that is better equipped to fend
off an entropy attack; the value of 7.95779(~8) indicates that
it is safe from an entropy attack.

1081

6.6 Computational complexity and resource consumption

Designing encryption algorithms involves considering

complexity and resource utilization as crucial factors.
Complexity theory illustrates the inherent challenges of
computational problems, while resource consumption analysis
examines the practical resource usage during program
execution. Both concepts play a vital role in enhancing our
comprehension and enhancement of algorithms and systems
across various computing environments.

6.6.1 Resource consumption

The memory requirements of a standard XTEA algorithm
can be described as follows. The key is 128 bits (16 bytes),
block has 64 bits (8 bytes), key schedule generates 64 subkeys,
each of which is 64 bits (8 bytes), for a total of 64 * 8 = 512
bits (64 bytes).

Therefore, the total memory requirement for XTEA can be
calculated as 16 bytes (key) + 8 bytes (block) + 64 bytes
(subkeys) = 88 bytes.

To calculate the memory requirements for the modified
XTEA algorithm as follows. The block has 128 bits (16 bytes),
each of the 64 keys produced by the Rossler system has 128
bits (16 bytes), totaling 64 * 16 = 1024 bits (128 bytes), the
total memory requirement for XTEA can be calculated as:

Total Memory = (Total Keys+Block Size)
𝐷𝐷𝑚𝑚=128+16 =144 bytes

6.6.2 Computational complexity

The computational complexity of the standard XTEA
algorithm can be calculated by dissecting it into its constituent
parts:

1. Number of rounds: 64 rounds are used by XTEA for
encryption and decryption.

2. Operations per round: Four fundamental operations are
performed in each round of XTEA: two additions, one XOR
operation, and one bitwise shift.

Computational Complexity = Total Number of Rounds *

Number of Operations in Each Round
𝐶𝐶𝑋𝑋=64*4=256

Modified XTEA algorithm operate on a 128-bit block size

and each round includes eight basic operations (four additions,
two XOR operations, and two bitwise shifts) and 64 rounds for
both encryption and decryption, we can calculate the
complexity as follows:

𝐶𝐶𝑋𝑋=64*8=512

6.6.3 Time

To calculate the encryption time for (800 blocks) and We
assume Time per Block is (0.08 ms), can use the given time
per block and multiply it by the number of blocks:

Encryption Time = Number of Blocks * Time per Block

Standard XTEA Et=(800/64)*0.08 =(1 ms)
Modified XTEA Et= (800/128) *0.08 = (0.5 ms)

7. CONCLUSION

The architecture of the Modified XTEA is ideal for devices

where cost-effectiveness and minimal power usage are
paramount. The suggested modefication has demonstrated

excellent performance compared with standard XTEA. This
algorithm design stems from a meticulous analysis of every
element within the Modified XTEA algorithm. Our
implemented approach has proven to be resilient against
various types of attacks, as verified through security and
statistical tests conducted on the system's outcomes. Its
encryption speed, operational efficiency, and cost-
effectiveness make it an excellent choice for resource-
constrained applications, including passive Raspberry Pi
setups and wireless sensor networks. Therefore, the algorithm
can be applied in various uses, including email encryption,
embedded systems, file encryption, network security, and
unique network protocols for safe data transfers. It can also be
used to encrypt data kept in databases or on storage devices.

ACKNOWLEDGMENT

The authors would be grateful to thank Mustansiriyah

University (www.uomustansiriyah.edu.iq) in Baghdad, Iraq
for collaboration and support in the present work.

REFERENCES

[1] Collaguazo, A., Villavicencio, M., Abran, A. (2023). An

activity-based approach for the early identification and
resolution of problems in the development of IoT
systems in academic projects. Internet of Things, 24:
100929. https://doi.org/10.1016/j.iot.2023.100929

[2] Mohamed, S., Hassan, A.M., Aslan, H.K. (2021). IoT
modes of operations with different security key
management techniques: A survey. International Journal
of Safety and Security Engineering, 11(6): 641-651.
https://doi.org/10.18280/ijsse.110604

[3] Hasan, M.Z., Mohd Hanapi, Z. (2023). Efficient and
secured mechanisms for data link in IoT WSNs: A
literature review. Electronics, 12(2): 458.
https://doi.org/10.3390/electronics12020458

[4] Aziz Al Kabir, M., Elmedany, W., Sharif, M.S. (2023).
Securing IoT devices against emerging security threats:
Challenges and mitigation techniques. Journal of Cyber
Security Technology, 7(4): 199-223.
https://doi.org/10.1080/23742917.2023.2228053

[5] Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.S. (2004).
Related key differential attacks on 27 rounds of XTEA
and full-round GOST. In Fast Software Encryption: 11th
International Workshop, FSE 2004, Delhi, India, pp.
299-316. https://doi.org/10.1007/978-3-540-25937-4_19

[6] Adriaanse, P.E. (2021). A comparative study of the TEA,
XTEA, PRESENT and simon lightweight cryptographic
schemes. Bachelor thesis, Delft University of
Technology.

[7] Kotel, S., Zeghid, M., Machhout, M., Tourki, R. (2017).
Lightweight encryption algorithm based on modified
XTEA for low-resource embedded devices. In
Proceedings of the 21st International Database
Engineering & Applications Symposium, Bristol, United
Kingdom, pp. 192-199.
https://doi.org/10.1145/3105831.3105853

[8] Acholli, S., Ningappa, K.G. (2019). VLSI
implementation of hybrid cryptography algorithm using
LFSR key. International Journal of Intelligent
Engineering and Systems, 12(4): 10-19.

1082

https://doi.org/10.22266/ijies2019.0831.02
[9] Anusha, R., Veena Devi Shastrimath, V. (2019). LCBC-

XTEA: High throughput lightweight cryptographic block
cipher model for low-cost RFID systems. In Cybernetics
and Automation Control Theory Methods in Intelligent
Algorithms: Proceedings of 8th Computer Science On-
line Conference 2019, Zlin, Czech Republic, pp. 185-196.
https://doi.org/10.1007/978-3-030-19813-8_20

[10] Mishra, Z., Acharya, B. (2021). High throughput novel
architectures of TEA family for high speed IoT and RFID
applications. Journal of Information Security and
Applications, 61: 102906.
https://doi.org/10.1016/j.jisa.2021.102906

[11] Kella, C., Mishra, Z., Acharya, B. (2021). A compact &
low power architecture of XXTEA192 lightweight block
cipher. In 2021 6th International Conference on
Communication and Electronics Systems (ICCES),
Coimbatre, India, pp. 972-976.
https://doi.org/10.1109/ICCES51350.2021.9489097

[12] Nagarajan, M., Rajappa, M., Teekaraman, Y.,
Kuppusamy, R., Thelkar, A.R. (2022). Renovated XTEA
encoder architecture-based lightweight mutual
authentication protocol for RFID and green wireless
sensor network applications. Wireless Communications
and Mobile Computing, 2022(1): 8876096.
https://doi.org/10.1155/2022/8876096

[13] Shailaja, A. (2019). Design and Analysis of Lightweight
Block Ciphers. Shodhganga: A Reservoir of Indian
Theses.

[14] Ragab, A.A.M., Madani, A., Wahdan, A.M., Selim, G.M.
(2023). Design, analysis, and implementation of a new
lightweight block cipher for protecting IoT smart devices.
Journal of Ambient Intelligence and Humanized
Computing, 14: 6077-6094.
https://doi.org/10.1007/s12652-020-02782-6

[15] Jinwala, D., Patel, D., Dasgupta, K. (2012). FlexiSec: A

configurable link layer security architecture for wireless
sensor networks. arXiv preprint arXiv:1203.4697.
https://doi.org/10.48550/arXiv.1203.4697

[16] Rysak, A., Sedlmayr, M., Gregorczyk, M. (2023).
Revealing fractionality in the Rössler system by
recurrence quantification analysis. The European
Physical Journal Special Topics, 232(1): 83-98.
https://doi.org/10.1140/epjs/s11734-022-00740-1

[17] Zou, C.Y., Wang, L. (2023). A visual DNA compilation
of Rössler system and its application in color image
encryption. Chaos, Solitons & Fractals, 174: 113886.
https://doi.org/10.1016/j.chaos.2023.113886

[18] Kontorovich, V., Beltrán, L.A., Aguilar, J., Lovtchikova,
Z., Tinsley, K.R. (2009). Cumulant analysis of Rössler
attractor and its applications. The Open Cybernetics &
Systemics Journal, 3(1): 29-39.
https://doi.org/10.2174/1874110X00903010029

[19] Albahrani, E.A., Alshekly, T.K., Lafta, S.H. (2023). New
secure and efficient substitution and permutation method
for audio encryption algorithm. The Journal of
Supercomputing, 79(15): 16616-16646.
https://doi.org/10.1007/s11227-023-05249-5

[20] Kaps, J.P. (2008). Chai-tea, cryptographic hardware
implementations of xtea. In Progress in Cryptology-
INDOCRYPT 2008: 9th International Conference on
Cryptology in India, Kharagpur, India, pp. 363-375.
https://doi.org/10.1007/978-3-540-89754-5_28

[21] Abed, S.E., Jaffal, R., Mohd, B.J., Alshayeji, M. (2019).
FPGA modeling and optimization of a SIMON
lightweight block cipher. Sensors, 19(4): 913.
https://doi.org/10.3390/s19040913

[22] Hussein, S.N., Al-Alak, S.M. (2021). Secret keys
extraction using light weight schemes for data ciphering.
Journal of Physics: Conference Series, 1999(1): 012114.
https://doi.org/10.1088/1742-6596/1999/1/012114

1083

	1. Introduction

