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The Internet of Things (IoT) employs various devices with varying hardware capabilities, 
including those with restricted resources like wireless sensor networks and those with ample 
resources like satellites. One of the primary hurdles is developing a streamlined encryption 
algorithm suitable for IoT devices with limited hardware capabilities. This paper introduces 
an enhanced lightweight algorithm that not only addresses side-channel vulnerabilities but 
also guards against nonce misuse attacks In this work, we present a design that generates 
encryption keys using chaotic systems, thereby increasing their unpredictability and 
randomness. The primary objective of this research is to fortify security measures against a 
range of novel attack techniques, guaranteeing comprehensive defense, unpredictability, 
and resilience. The aim of putting strategic defenses and tactics into place is to shield 
valuable assets from possible threats. 

Keywords: 
data encryption, XTEA algorithm, rossler 
system

1. INTRODUCTION

The Internet of Things (IoT) is often described as a system
of devices that connect with cloud nodes to share data. Unlike 
computers these devices have high capacities when it comes 
to RAM, memory and processing power [1-3]. 

Many IoT devices have security vulnerabilities that make 
them vulnerable to cyber attacks and unauthorized access. This 
expose data security and personal privacy. The absence of 
communication protocols among devices leads to 
compatibility issues posing a major obstacle. This slow down 
their ability to interact and exchange information across 
platforms and devices. Additionally several IoT devices are 
reserved by power, storage capacity and energy resources 
impacting directly on their performance, in handling tasks and 
processing substantial data volumes. Their overall 
functionalities and capabilities are typically restricted by these 
limitations [4, 5]. 

These restrictions are mostly motivated by security 
concerns. Because many encryption techniques are complex, 
implementing encryption on Internet of Things devices can be 
difficult. Nonetheless, a number of encryption algorithms are 
available that are especially made for these limited settings. 
These algorithms are renowned for their straightforward 
design, rapid speed, and effective memory management [6]. 

Encryption algorithms are completely immune to attacks, 
even algorithms like XTEA have vulnerabilities that can be 
exploited under certain conditions. It's important to note that 
XTEA is not considered a highly secure encryption algorithm 
by today's standards due to its vulnerability to certain attacks 
because of these vulnerabilities and other weaknesses, called 
the need to make a combination with chaotic systems. Chaotic 
signals exhibit several features that align with the prerequisites 
of cryptography, including their pseudo-randomness, extreme 

sensitivity to initial conditions and system parameters, and 
high degree of nonlinearity-all essential qualities in the field 
of cryptography. 

Consequently, chaotic systems have gained extensive 
utilization in the construction of cryptographic systems in 
recent times. In this paper, we propose an architecture based 
on the chaotic system of generating keys and obtaining 
unpredictable randomness. The remaining structure of this 
paper is as follows: An overview of Related Works is 
presented in Section 2. Section 3 describes Rossler System. 
Section 4 comprises XTEA algorithm. Section 5 contains 
Modified XTEA Algorithm. Evaluation parameters are 
discussed in Section 6. Conclusions are presented in Section 7. 

2. RELATED WORK

Many works in the literature focus on improving
performance of XTEA algorithm for better productivity. We 
now present some recent, closely related work. 

Kotel et al. [7] offered a block cypher algorithm that is 
lightweight. This update modifies the key obstetrics function 
present in the XTEA1 algorithm by use of a linear feedback 
shift register. The objective evaluation of lightweight 
cryptographic systems metric, which computes metrics like 
RAM usage, ROM usage, and execution time to measure 
performance across three commonly used embedded devices: 
32-bit ARM, 8-bit MSP, and 32-bit AVR microcontrollers,
was used to perform a code analysis of this XTEA variant
using the same benchmarks. The implementation results are
shown that this modified version imposes fewer software
demands in comparison to the original XTEA. Furthermore,
the Software performance and security have been notably
improved.
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Acholli and Ningappa [8] enhance the security and privacy 
of information. It focuses on communication systems. The 
researchers focus on encryption and decryption techniques. 
They stress the importance of key generation for encryption 
security. Keys are vulnerable to modern computers. So, a 
hybrid crypto algorithm is proposed. It combines XTEA with 
IDEA. The researchers use a method called ID-XT-EA-LFSR. 
It is based on the International Data - Extended Tiny 
Encryption Algorithm. They use it to boost the security of real-
time apps, especially for online streaming data. They 
recognize that a large key size adds randomness. But it also 
makes the network busier and more complex. To fix this, 
generate random numbers using an LFSR scheme for the key. 
It improves FPGA performance by up to 50.43% compared to 
other algorithms. These include QTL, DROM-CSLA-QTL, 
and XTEA. The research highlights the usefulness of the 
proposed hybrid cryptographic algorithm. It improves security 
for real-time applications.  

Anusha et al. [9] introduce a pipelined architecture that 
utilizes parallel computation to enhance throughput while 
simultaneously bolstering security measures. Our proposed 
XTEA cipher is designed with configurability, allowing for the 
adjustment of its mode to either encryption or decryption as 
needed. Simulations for TEA and XTEA on an FPGA platform, 
specifically Artix-7, taking into account resource limitations 
such as area, time, and power, and have presented the results 
in tabular form. 

Mishra and Acharya [10] introduced a hybrid model 
featuring a pipelined architecture that emulates all three 
lightweight ciphers: TEA, XTEA, and XXTEA, within a 
single framework tailored for high-speed IoT and RFID 
applications. The pipelined implementation of these ciphers 
was undertaken to enhance the computational throughput of 

the encryption This was accomplished by parallelizing the 
computation, which led to a significant increase in throughput 
at the expense of increased resource consumption. 
Additionally, they combined the TEA architecture to 
incorporate a hybrid approach. These specially created 
encoders were used with both FPGA and ASIC platforms. 

A simplified sequential design for the XXTEA-192 block 
cipher specifically intended for use in RFID applications was 
proposed by Kella et al. [11]. RFID tags usually have very 
strict limitations on the amount of power and space they can 
use. Among the TEA family of ciphers, XXTEA is the 
strongest member. It is notable for its ability to handle 
messages of varying lengths; messages must be at least 62 bits 
long and multiples of 32-bit word sizes. This special 
characteristic enables the cipher to encrypt larger data blocks 
more effectively. Every clock cycle, the XXTEA-192's 
proposed serial architecture performs 32-bit operations like 
addition, XOR, and shifting. 

Nagarajan et al. [12] introduced an upgraded architecture 
known as RXTEA (Renovated XTEA), along with a secure 
mutual authentication protocol termed RXMAP (RXTEA-
based Mutual Authentication Protocol). In the revised XTEA 
design, various modifications have been implemented to 
enhance computational efficiency and bolster resistance 
against related key attacks and meet-in-the-middle attacks. A 
novel delta value is computed for each successful 
authentication using random numbers, increasing security. 
Additionally, only half of the ciphered text is employed for 
server and tag authentication, rendering key value prediction 
nearly impossible. Furthermore, key values are dynamically 
updated at both the server and tag sides through internal 
computations, enhancing security by making the prediction of 
the new key highly improbable. 

 
Table 1. Summary of previous work 

 
Year Authors Methodology Key Features Measurements and Results 

2017 [7] 
A Linear Feedback Shift Register is used to 
replace the key generation function in the 

XTEA1 Algorithm. 

Using the same evaluation 
conditions, analyzed the software 
implementation of the modified 

XTEA using FELICS (Fair 
Evaluation of Lightweight 
Cryptographic Systems) a 

benchmarking framework which 
calculates RAM footprint, ROM 
occupation and execution time on 

three largely used embedded 
devices: 8-bit AVR 

microcontroller, 16-bit MSP 
microcontroller and 32-bit ARM 

microcontroller. 

Implementation results show that it 
provides less software requirements 

compared to original XTEA. 
Enhanced the security level and the 

software performance. 

2019 [8] 

The research's main method is to enhance the 
security and privacy of information. It focuses 
on communication systems. The researchers 

focus on encryption and decryption 
techniques. They stress the importance of key 
generation for encryption security. Keys are 

vulnerable to modern computers. So, a hybrid 
crypto algorithm is proposed. It combines 

XTEA with IDEA. 

The researchers use a method 
called ID-XT-EA-LFSR. It is based 

on the International Data - 
Extended Tiny Encryption 

Algorithm. They use it to boost the 
security of real-time apps, 

especially for online streaming 
data. They recognize that a large 
key size adds randomness. But it 

also makes the network busier and 
more complex. To fix this, generate 

random numbers using an LFSR 
scheme for the key. 

It improves FPGA performance by up 
to 50.43% compared to other 

algorithms. These include QTL, 
DROM-CSLA-QTL, and XTEA. The 
research highlights the usefulness of 
the proposed hybrid cryptographic 
algorithm. It improves security for 

real-time applications. 

2019 [9] 
This article introduces a Lightweight Block 
cipher method. The hardware layout of Tiny 

Encryption Algorithm (TEA) has been 

The suggested XTEA is 
reconfigurable, allowing it to 

conduct encryption or decryption 

Similar previous research efforts, such 
as AES-8bit, TinyXTEA1, and Tiny 
XTEA-3, with improvements in area, 

1076



developed to be straightforward, adaptable 
requiring computations and with a key 
scheduling process. To address security 

vulnerabilities, in the scheduling of TEA, an 
Enhanced TEA (XTEA) has been created with 
a structure that enables parallel processing to 

enhance efficiency and enhance security 
measures. 

by switching modes. The Xilinx 
ISE tool on the Model Sim 6.5f 
simulator yielded the TEA and 

XTEA simulation results, which 
were then implemented on the 
FPGA Platform-Artix-7 with 
tabulated resource limitations, 

including area, time, and power. 

throughput, and efficiency on the 
same FPGA platform, are compared 
with the suggested XTEA. With a 

high throughput of 81 Mbps and an 
efficiency of 0.34 Mbps/slice, the 

suggested XTEA operates. 

2021 [10] 

TEA, XTEA and XXTEA encryption methods 
were utilized to achieve the specified goal. 
They were developed, put into practice and 

enhanced using hardware technologies such, as 
platforms for Application Specific Integrated 

Circuits (ASIC) and Field Programmable Gate 
Arrays (FPGA). Block sizes, implementation 
rounds, and important scheduling techniques 

were among the attributes that the designs 
were put into practice to evaluate. 

Utilizing T1, T2 and T3 through a 
sequential approach to boost 
performance measures like 

occurrence and size. Introducing a 
blended model (T4) that merges 

TEA family codes into one 
blueprint employing a sequential 

structure. 

This research paper introduces four 
different hardware architectures 
named TEA (T1), XTEA (T2), 

XXTEA (T3) and a hybrid model 
(T4). T1, T2 and T3 were developed 
using a pipelined approach, resulting 

in significant frequency 
improvements of 75.9%, 162% and 

89% respectively. Additionally, there 
were notable area enhancements of 

85.43%, 57.08% and 90.79% for each 
architecture. The hybrid model T4 

combines the TEA family designs into 
a single pipelined architecture, 

showing a gate equivalent 
improvement of 47.50% for T2 

specifically. Despite having similar 
throughput to T1, T2 and T3, the 
hybrid model (T4) requires fewer 

gates compared to the combined total 
of the three individual architectures. 

The efficiency enhancement achieved 
by these new designs surpasses that of 

existing literature by more than 
eighteen times. 

2021 [11] 

This paper introduces a design for the XXTEA 
192 block cipher suitable for RFID 

applications. RFID tags face limitations in 
terms of space and power. XXTEA is 

considered the cipher, within the TEA family. 
It operates on messages of varying lengths 

with a message size of 62 bits, which must be 
multiples of 32-bit words. 

This feature enables the cipher to 
encrypt larger block sizes. Serial 
architecture of XXTEA-192 has 

been proposed that performs 32-bit 
operations like addition, XOR and 

shifting in each clock cycle. 

The suggested plan has been put into 
action using verilog. Evaluation of 
performance measures such as size, 

speed, effectiveness, power, and 
energy has been conducted on types 

of FPGA devices like Spartan 6 
Virtex 6 and Virtex 7. The proposed 
layout has attained 45 slices and a 

data transfer rate of 498.44 Mbps on 
Spartan 6 making the design compact 

and fast, for RFID uses. 

2021 [15] 

This article presents an updated and more 
secure iteration of the XXTEA algorithm by 

incorporating an S-box to bolster security 
against various attacks. Additionally, the M 

XXTEA algorithm is combined with a 
generation system providing an additional 

layer of security that aligns with the concept of 
a onetime pad. The encryption keys change for 
each block of plaintext during the encryption 

process. 

As a result, it offers a stronger 
security system than both the AES 

and the original XXTEA. In 
addition to improving data security, 

the M-XXTEA can work with 
various text block and key widths. 

To compare the M-XXTEA's 
performance with that of the AES 
and the original XXTEA, several 

experiments are conducted. 

The encryption and decryption time 
efficiencies of M-XXTEA surpass 

AES by 60%, according to the results. 
Additionally, the M-XXTEA 
outperforms the AES in speed 
efficiency by 57%. It can be 

effectively applied to safeguard e-
health systems, smart cities, and 

industrial IoT smart device security. 

2022 [12] 

The research's main method is to address 
security challenges in wireless sensor 

networks. It focuses on Radio Frequency 
Identification (RFID) and green solutions. 

Chose the Extended Tiny Encryption 
Algorithm (XTEA) as a lightweight encryption 

scheme. But fixed its vulnerabilities with 
domain-specific customization. Employ 
random numbers and secret key renewal. 

The researchers propose two 
Renovated XTEA Mutual 

Authentication Protocol (RXMAP) 
encoder architectures. They are 

RXMAP-1 and RXMAP-2. They 
replace precise blocks with rough 

ones to boost security. The 
evaluation process includes 

assessing two things: 
computational and storage 

overhead. It also includes verifying 
against various security threats. 

Verification uses BAN logic formal 
and informal methods. 

For functional verification, Simulate 
the proposed encoders, also make an 

Application-Specific Integrated 
Circuit (ASIC). It has a 132 nm 

process node. The results show that 
RXMAP-1 and RXMAP-2 designs 

take up much less space. They take up 
53.11% to 53.31% less space than 

XTEA I and XTEA II 
implementations. Also, RXMAP-1 

and RXMAP-2 use much less power 
(68.76% to 71.64% less) than XTEA 

II. But they have the same throughput. 
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Shailaja [13] proposed a hybrid encryption approach that 
combines the Extended Encryption Algorithm (XTEA) and 
the IDEA algorithm to increase security in real-time 
applications. While a larger key size ensures randomness, it 
also increases network load and complexity proportionally. To 
tackle this issue, generate keys by generating random numbers 
using the Linear Feedback Shift Register system. This 
algorithm proved suitable for encrypting and decrypting online 
streaming data, leading to the method's designation as the 
International Data-XTEA-LFSR (ID-XT-EA-LFSR). Notably, 
the ID-XT-EA-LFSR method significantly improved FPGA 
performance, demonstrating a 50.43% enhancement compared 
to QTL, DROM-CSLA-QTL, and XTEA algorithms. 

Ragab et al. [14] to improved its defences against different 
types of attacks, added an improved S-box to the original 
XXTEA cypher, making it a more robust version. Furthermore, 
a chaotic key generating system is integrated with the M-
XXTEA, adding an extra degree of security consistent with the 
idea of a one-time pad. In contrast to the original XXTEA, the 
cypher keys are dynamically changed for every plaintext block 
during the encryption process, resulting in a more adaptable 
security architecture. M-XXTEA is flexible enough to work 
with a variety of text block sizes and key sizes, enhancing data 
security. 

Researchers stated in Table 1 describe their previous works 
were studied ways to improve XTEA's productivity. They 
have showcased recent progress. Nagarajan and colleagues 
introduced RXTEA, a new XTEA structure. They also 
introduced RXMAP, a secure mutual authentication protocol. 
It offers better speed and more resilience against attacks. 
Shailaja proposed ID XT EA LFSR. It is a hybrid encryption 
technique that combines XTEA and IDEA. It shows better 
FPGA performance for real time apps. Mishra and Acharya 
presented a hybrid model. It uses pipelined architecture for 
TEA, XTEA, and XXTEA. This speeds up computation in 
high speed IoT and RFID applications. Kella et al. I devised a 
sequential XXTEA 192 block cipher for RFID systems. It 
handles variable length messages well and boosts security. 
Kotel et al. made a lightweight version of XTEA1. It had 
reduced software needs and better performance on embedded 
devices. Anusha and her team introduced a configurable 
pipelined XTEA cipher. It has better throughput and security 
due to parallel computation techniques. Ahmed Ab M. 
Ragaband et al. Strengthened XXTEA. That was done by 
adding an improved S box and by adding dynamic key changes. 
These changes provide adaptable security against diverse 
attacks. They make M XXTEA a versatile solution for various 
data security needs. 
 
 
3. ROSSLER SYSTEM 

 
The Rossler system was discovered by Otto Rossler when 

he was conducting research in the field of chemical kinetics 
[16, 17]. Mathematically, the Rossler system is characterized 
by three interconnected nonlinear differential equations, 
which are explained by the following Eq. (1): 
 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = −𝑦𝑦– 𝑧𝑧, 𝑑𝑑𝑦𝑦/𝑑𝑑𝑑𝑑 = 𝑑𝑑 + 𝑎𝑎 × 𝑦𝑦 
𝑑𝑑𝑧𝑧/𝑑𝑑𝑑𝑑 = 𝑏𝑏 + 𝑧𝑧 × (𝑑𝑑– 𝑐𝑐) (1) 

 
where, a=0.2, b= 0.2, c=5.7. 

By studying the Rossler system, it is often used as a simple 
example to illustrate chaotic behavior and explore the 

properties of chaotic systems and the system's butterfly-
shaped attractor, using techniques such as numerical 
simulations. The bifurcation diagrams and Lyapunov 
exponents can analyze its dynamics, shown in Figure 1. 

The Rossler system serves as a foundational model for 
understanding the concepts of chaos, attractors, and complex 
behavior in dynamical systems. Because of its visually 
appealing patterns, it has uses in physics, engineering, biology, 
and even the arts and aesthetics [18]. 

The chaotic character of the Rössler systemits and great 
sensitivity to initial conditions, which offers a great degree of 
complexity and randomness, is one of the reasons it was 
chosen for encryption. Because of this, even if an attacker 
knows the equations and parameters of the system, it will be 
challenging for them to forecast the key stream. Furthermore, 
the Rössler system is computationally efficient for encryption 
applications because to its comparatively basic structure when 
compared to other chaotic systems. 

 

 
 

Figure 1. Rossler system bifurcation diagrams when a=0.2, 
b=0.2, c=5.7 

 
The Rössler system is superior to other encryption 

techniques in several ways. Firstly, it offers a high level of 
security due to its chaotic behavior and resilience to attacks. 
Second, because of its simplicity of implementation and high 
computational efficiency, it is suitable for real-time encryption 
applications. In the end, a range of important stream sequences 
can be generated by merely altering the Rössler system's 
parameters. which makes it a strong option for encryption 
algorithms that require a high level of unpredictability and 
security [17, 19]. 

 
 

4. EXTENDED TINY ENCRYPTION ALGORITHM 
(XTEA) 

 
The cryptographic algorithm is simple, lightweight, and has 

a tiny code size. It is therefore suitable for small applications. 
The block size of XTEA is 64 bits, with a key size of 128 bits. 
It also made use of the Feistel network for N rounds. Where N 
is usually 32. XTEA uses the following operations (Exclusive 
OR, Additions & Shifts). With a 128-bit key size, 64 rounds 
of operations, and 64 bits of block data, the XTEA is the most 
potent and quickest light-weight cryptographic block cipher 
(LCBC) with a basic Feistel structure. Most real-time 
cryptography applications make advantage of it [20]. 

For microcontrollers with limited memory, the clear key 

1078



schedule and dynamic scheduling of the rounds' keys optimize 
memory consumption [21]. 

XTEA it was described as a valuable and advanced 
alternative for enhancing security by the same scholars who 
developed it. Although XTEA is widely regarded as one of the 
most significant lightweight algorithms, it suffers from a low-
round security vulnerability, and high-security applications 
should be able to handle 32 rounds [22]. 

As depicted in Figure 2, The XTEA encrypts data by 
dividing it into two halves, Li and Ri, which are subsequently 
applied to a regular function for N rounds (usually 32). First, 
the Ri half is shifted four times, then five times. The outcomes 
of these two processes are XORed together. Subsequently, the 
Li portion is added to the result. All that is needed for 
encryption in each round are additions, shifts, and exclusive-
or operations (modulo 232). 

 

 
 

Figure 2. XTEA algorithm block diagram 
 
The permutation functions are written as below. 

 
𝑓𝑓(𝑑𝑑) = (𝑑𝑑 << 4) ⊕ (𝑑𝑑 >> 5) + 𝑑𝑑 (2) 

 
The operation of XTEA's key scheduling is very simple 

function: the 128-bit master key K is divided into four 32-bit 
sub key blocks (K [0], K [1], K [2], and K [3]), and the subkey 
generation functions are expressed as 
 

𝐾𝐾𝐾𝐾 = 𝐾𝐾(𝐾𝐾 − 1/2. 𝛿𝛿 ≫ 11)&3, 𝑖𝑖𝑓𝑓 𝐾𝐾 𝑖𝑖𝑖𝑖 𝑜𝑜𝑑𝑑𝑑𝑑
𝐾𝐾𝐾𝐾 = 𝐾𝐾(𝐾𝐾/2. 𝛿𝛿 ≫ 11)&3, 𝑖𝑖𝑓𝑓 𝐾𝐾 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (3) 

 
In above equation: 
• 𝑘𝑘𝐾𝐾 round key, r round  
• ≪ represents the bitwise left shift operation. 

• ≫ represents the bitwise right shift operation. 
• & represents the bitwise AND operation. 
• δ and K assumed to be constants specific to your context. 
 
In each round, sum is the incrementation value of the 

constant number DELTA=0x9e3779b9. DELTA is derived 
This constant number is used to guarantee that the sub keys are 
different. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = (√5 − 1) ∗ 231 = 9𝐷𝐷3779𝐵𝐵9ℎ 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖] = (𝑖𝑖 + 1) ∗  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖 = 0,1,2 … 31 

 
 

5. MODIFIED XTEA ALGORITHM  
 
In this section, the modifications are discussed that are 

undertaken to elevate the algorithm's security against code 
analysis. One of the most notable drawbacks of the XTEA 
algorithm is the fixed key size of 128 bits. Although this 
provides a reasonable level of security, it may be considered 
limited compared to algorithms such as AES, which support a 
range of key sizes (128, 192, and 256 bits). There is also no 
built-in mechanism to extend or rotate the key. This means that 
if the key is compromised, all data encrypted with that key is 
potentially compromised. Related key attacks: XTEA is 
vulnerable to related key attacks, where an attacker can exploit 
the relationship between keys to decrypt data. Cryptanalysis: 
Although XTEA is considered secure against many types of 
attacks it is not immune to cryptanalysis. This vulnerability 
can be mitigated by ensuring that keys are generated using a 
secure random number generator such as a chaotic system.  

Therefore, we propose to use the Rossler system 
(Mentioned in Section 3) to generate keys, where the 
parameters of the system a, b, and c are initialized in the first 
stage to generate 64 random keys with a size of 32 bits. Where 
each round has two different keys. The keys generated for each 
round are different from the next, giving the system a high 
level of security. As shown in the Eq. (4). 
 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = −𝑦𝑦– 𝑧𝑧, 𝑑𝑑𝑦𝑦/𝑑𝑑𝑑𝑑 = 𝑑𝑑 + 𝑎𝑎 × 𝑦𝑦 
𝑑𝑑𝑧𝑧/𝑑𝑑𝑑𝑑 = 𝑏𝑏 + 𝑧𝑧 × (𝑑𝑑 − 𝑐𝑐) 

𝐾𝐾𝑥𝑥𝑥𝑥 = 𝑑𝑑𝑥𝑥 , 𝐾𝐾𝑦𝑦𝑥𝑥 = 𝑦𝑦𝑥𝑥  
(4) 

 
The stage of modifying the algorithm architecture. The 

algorithm is expanded to operate on a 128-bit block instead of 
a 64-bit block, using 64 different random keys generated from 
the chaotic system (each key is 32 bits), where each round has 
two different keys. Each input block is then divided into four 
partitions (𝐷𝐷1𝑛𝑛,𝑅𝑅1𝑛𝑛 ,𝐷𝐷2𝑛𝑛and 𝑅𝑅2𝑛𝑛 ), which are then applied to a 
routine like the Feistel network for N rounds, where N is 
usually 32. The partitions are swapped between them, as 
explained in Figure 3. The proposed architecture in the process 
of exchanging four partitions (32 bits) created from a 128-bit 
block increases the strength of the encryption and reduces the 
time taken for encryption and decryption by half. 
𝐷𝐷1𝑛𝑛+1 =𝑅𝑅2𝑛𝑛 , 𝐷𝐷2𝑛𝑛+1 = 𝑅𝑅1𝑛𝑛  and 𝑅𝑅1𝑛𝑛+1 ,𝑅𝑅2𝑛𝑛+1  is computed 

using following: 
 
𝑅𝑅1𝑛𝑛+1 = 𝐷𝐷2𝑛𝑛 ⊞ (�(𝑅𝑅2𝑛𝑛 ≪ 4⨁𝑅𝑅2𝑛𝑛 ≫ 5) ⊞𝑅𝑅2𝑛𝑛�⨁(𝑑𝑑𝑒𝑒𝑑𝑑

⊞ 𝐾𝐾𝑥𝑥𝑥𝑥)) 
𝑅𝑅2𝑛𝑛+1 = 𝐷𝐷1𝑛𝑛 ⊞ (�(𝑅𝑅1𝑛𝑛 ≪ 4⨁𝑅𝑅1𝑛𝑛 ≫ 5) ⊞𝑅𝑅1𝑛𝑛�⨁�𝑑𝑑𝑒𝑒𝑑𝑑

⊞ 𝐾𝐾𝑦𝑦𝑥𝑥�) 

(5) 

 
The steps of the proposed XTEA algorithm are explained in 

the following. 
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Figure 3. Round of modified XTEA algorithm 
 
Modified algorithm 
Step 1: Initialize parameters. 
            a = 0.2, b = 0.2, and c = 5.7 // Parameters 
Step 2: Initialize variables x, y, z // Initial. 
Step 3: Set nr = 64   // Number of  
    time steps. 
Step 4: Loop for i from 1 to nr // Loops 
            dx/dt = - (y + z)  // Equation to 
   generate  
   chaos 
            dy/dt = x + a * y 
            dz/dt = b + z * (x - c) 
            End 
Step 5: Save x, y in arrays 𝐾𝐾𝑥𝑥𝑥𝑥 , 𝐾𝐾𝑦𝑦𝑥𝑥 , // Save the 
    output as a  
    key. 
Step 6: Split the plaintext (𝐷𝐷1𝑛𝑛,𝑅𝑅1𝑛𝑛 ,𝐷𝐷2𝑛𝑛,𝑅𝑅2𝑛𝑛) 
Step 7: For i from 1 to 23 do // Number of rounds 
Step 8:   Set 𝐷𝐷1𝑛𝑛+1=𝑅𝑅2𝑛𝑛 
Step 9:   Set 𝐷𝐷2𝑛𝑛+1 = 𝑅𝑅1𝑛𝑛  
Step 10:   Set 𝑅𝑅1𝑛𝑛+1 = 𝐷𝐷2𝑛𝑛 ⊞ (�(𝑅𝑅2𝑛𝑛 ≪ 4⨁𝑅𝑅2𝑛𝑛 ≫ 5) ⊞

𝑅𝑅2𝑛𝑛�⨁(𝑑𝑑𝑒𝑒𝑑𝑑 ⊞ 𝐾𝐾𝑥𝑥𝑥𝑥 )) 
Step 11:   Set 𝑅𝑅2𝑛𝑛+1 = 𝐷𝐷1𝑛𝑛 ⊞ (�(𝑅𝑅1𝑛𝑛 ≪ 4⨁𝑅𝑅1𝑛𝑛 ≫ 5) ⊞

𝑅𝑅1𝑛𝑛�⨁�𝑑𝑑𝑒𝑒𝑑𝑑 ⊞ 𝐾𝐾𝑦𝑦𝑥𝑥 �) 
Step 12: Cipher text = 𝐷𝐷1𝑛𝑛+1,𝑅𝑅1𝑛𝑛+1 ,𝐷𝐷2𝑛𝑛+1,𝑅𝑅2𝑛𝑛+1 
Step 13: End 

 
 
6. RESULTS AND DISCUSSIONS 
 

The outcomes are derived from the operationalization of the 
prescribed methodology, facilitated via the execution of two 
distinct evaluations: the "Avalanche Effect" examination and 
the analysis of key sensitivity. Concurrently, due 

consideration is accorded to the temporal aspects of encryption 
and decryption processes. A judiciously efficacious 
encryption algorithm is requisite to manifest resilience against 
a gamut of established incursions. To this end, the magnitude 
of the key space should surpass a threshold adequate for 
forestalling brute-force attacks, and furthermore, the algorithm 
should evince discernible reactivity to the confidential key 
substrate. The criteria for evaluating the security posture of 
block encryption algorithms encompass pivotal metrics, 
among which the Avalanche Effect and key sensitivity 
analysis are salient. These assessments were meticulously 
conducted to empirically validate the commendable security 
efficacy inherent in our proposed XTEA algorithm, compared 
against the benchmark performance of the conventional XTEA 
instantiation. 

 
6.1 Avalanche effect test evaluation 

 
The effect of avalanche holds substantial significance 

within the domain of cryptographic algorithms. A block cipher 
of notable caliber is expected to promptly and profoundly alter 
the resulting cipher text upon even minor perturbations to 
either the plaintext or the encryption key. This quality ranks 
among the foundational design imperatives, representing a 
coveted criterion within the purview of cryptographic 
algorithm development. To assess the avalanche 
phenomenon's impact upon both the modified XTEA and the 
conventional XTEA, as have recourse to the subsequent 
mathematical expression. 
 

Avalanche Ratio =
No. of flipped bits in ciphertext

No. of bits in ciphertext
 

∗ 100% [22] 
(6) 

 
The outcomes are displayed in Table 2. To assess the 

avalanche effect, were conducted a test where ten plaintexts 
were encrypted, producing ten corresponding cipher texts. 
Following this, were repeated the encryption process using the 
same ten plaintexts, but with a single-bit variation in the key 
that was used in the previous test. This led to pairs of cipher 
texts, each pair resulting from the same plaintext but with the 
key and its one-bit different version. Ultimately, were 
calculated the average percentage across all ten results to 
evaluate the extent of the avalanche effect in the algorithm, 
which measures how a slight change in input or key leads to a 
significant alteration in the output. 

 
Table 2. Avalanche Effect Test 

 
Block XTEA Our Proposal 

1 46.87 47.65 
2 48.43 49.21 
3 50 50.78 
4 45.31 61.7 
5 51.56 52.34 
6 53.12 53.29 
7 50 54.68 
8 54.68 55.46 
9 56.25 58.59 
10 53.12 61.71 

Average 50.93 54.54 
 

As depicted in Table 2, the altered XTEA demonstrates a 
superior avalanche effect (with an average of 54.54%) 
compared to the original XTEA (with an average of 
50.93%).This difference highlights that modified XTEA is 
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sensitive to minor modifications in plain text. 
 

6.2 Key sensitivity test  
 
The procedure was described involves testing the sensitivity 

of an encryption algorithm to changes in the encryption key. 
This is an important aspect of cryptographic security, as a 
"good" encryption algorithm should produce significantly 
different cipher texts when even a small change is made to the 
encryption key. The results of this experiment, as stated in 
Table 3, can offer perceptions into the key sensitivity between 
both of original and modified XTEA algorithm. 

Fifteen blocks of unencrypted text were encrypted using a 
particular key, which was subsequently modified the last block 
of the same key. Subsequently, fifteen blocks were encrypted 
with the new key, and the difference between the cipher text 
blocks was computed. This test has been performed for both 
the original XTEA and modified XTEA, with the results being 
displayed in Table 3, and the test you described helps evaluate 
this important security characteristic. 

 
Table 3. Key sensitivity test 

 
Standard XTEA % Block Proposed % 

43.4 1 50.00 
43.5 2 50.10 

44.11 3 47.80 
44.32 4 46.90 
46.55 5 50.02 
47.78 6 50.10 
46.91 7 60.10 
55.12 8 55.81 
36.98 9 46.88 
39.85 10 49.81 
48.11 11 53.20 
48.75 12 51.11 
45.7 13 58.01 

46.99 14 55.11 
49.19 15 60.33 
45.81 Average 52.35 

 
6.3 Randomness test 
 

To test the keys used in XTEA modified algorithm, it must 
be subjected to a diverse of statistical tests designed to disclose 
the randomness of the sequence, were use a NIST statistical 
test as shown in Table 4. 

 
Table 4. NIST test results for modified XTEA 

 
NIST Test P Value Status Passed 

Frequency (Monobit) 0.232330 Ok 
Block frequency 0.127801 Ok 
Cumulative sum 0.494146 Ok 

Linear complexity 0.018712 Ok 
Runs 0.067882 Ok 

Non-overlapping template 
matchings 0.550106 Ok 

Discrete fourier transform 0.121115 Ok 
Serial 0.110325 Ok 

Longest run 0.018812 Ok 
 
6.4 Execution time 
 

Calculating the execution time for both the original 
algorithm and the modified algorithm across varying block 
lengths, taking into account that the algorithm is implemented 
in google Colab with GPU acceleration, Table 5 states the 

obtain result of time across the different block size for both 
original and modified XTEA in two cases encryption and 
decryption. 

Table 6 shows how long it takes to encrypt a modified 
XTEA TEA, XTEA, and XXTEA  file with files of different 
sizes. As clear results show that modified XTEA encryption 
time is shorter than that of all the security algorithms currently 
in use in IoT networks. 

 
Table 5. Encryption and decryption execution time for 

original and modified XTEA algorithms 
 

Block Size 
(Byte) 

XTEA Encryption 
Time (ms) 

XTEA Decryption 
Time (ms) 

Original Modified Original Modified 
128 1.9801 0.9791 2.4569 1.9801 
256 1.9897 1.0097 3.0000 2.0290 
512 2.1084 1.6084 2.6709 3.1003 

1024 2.9017 2.1011 4.9084 2.9098 
2048 3.8901 3.0201 5.9651 4.9876 

Average 2.574 1.74368 3.80026 3.00136 
 
Table 6. Encryption time of TEA, XTEA, XXTEA and 

modified XTEA algorithm 
 

Block Size 
(Byte) TEA XTEA XXTEA Modified 

XTEA 
128 2.009 1.9801 0.9801 0.9791 
256 1.999 1.9897 1.0278 1.0097 
512 3.0347 2.1084 1.6080 1.6084 

1024 3.9081 2.9017 2.1009 2.1011 
2048 4.1590 3.8901 3.0392 3.0201 

Average 3.02196 2.574 1.7512 1.74368 
 

6.5 Entropy analysis 
 
Entropy is a term used in cryptography to describe how 

random or unpredictable the data being encrypted is. The 
optimal value of the data is near (8) when the entropy is high, 
indicating that the data is more random and hence harder to 
predict. The following formula can be used to determine the 
entropy of a cipher text. 
 

𝐻𝐻(𝑖𝑖) = � 𝑃𝑃(𝑖𝑖𝑥𝑥)
2𝑁𝑁−1

𝑥𝑥=0

log2
1

𝑃𝑃(𝑖𝑖𝑥𝑥)
 (7) 

 
Table 7. Comparison of entropy analysis between XTEA and 

modified XTEA algorithm 
 

Blocks XTEA Modified XTEA 
1 7.89981 7.90091 
2 7.90121 7.99995 
3 7.89999 7.89992 
4 7.92908 7.94994 
5 7.99886 7.99697 
6 7.95941 7.99905 

Average 7.93139 7.95779 
 
The entropy value before and after changing the algorithm 

is displayed in Table 7. We observe that the modified 
algorithm's entropy value has increased. Thus, based on the 
data above, we can conclude that optimizing the algorithm can 
raise the cipher text's entropy value. Naturally, this is regarded 
as the outcome of a modification that is better equipped to fend 
off an entropy attack; the value of 7.95779(~8) indicates that 
it is safe from an entropy attack. 
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6.6 Computational complexity and resource consumption 
 
Designing encryption algorithms involves considering 

complexity and resource utilization as crucial factors. 
Complexity theory illustrates the inherent challenges of 
computational problems, while resource consumption analysis 
examines the practical resource usage during program 
execution. Both concepts play a vital role in enhancing our 
comprehension and enhancement of algorithms and systems 
across various computing environments. 
 
6.6.1 Resource consumption  

The memory requirements of a standard XTEA algorithm 
can be described as follows. The key is 128 bits (16 bytes), 
block has 64 bits (8 bytes), key schedule generates 64 subkeys, 
each of which is 64 bits (8 bytes), for a total of 64 * 8 = 512 
bits (64 bytes).  

Therefore, the total memory requirement for XTEA can be 
calculated as 16 bytes (key) + 8 bytes (block) + 64 bytes 
(subkeys) = 88 bytes. 

To calculate the memory requirements for the modified 
XTEA algorithm as follows. The block has 128 bits (16 bytes), 
each of the 64 keys produced by the Rossler system has 128 
bits (16 bytes), totaling 64 * 16 = 1024 bits (128 bytes), the 
total memory requirement for XTEA can be calculated as: 
 

Total Memory = (Total Keys+Block Size) 
𝐷𝐷𝑚𝑚=128+16 =144 bytes 

 
6.6.2 Computational complexity  

The computational complexity of the standard XTEA 
algorithm can be calculated by dissecting it into its constituent 
parts: 

1. Number of rounds: 64 rounds are used by XTEA for 
encryption and decryption. 

2. Operations per round: Four fundamental operations are 
performed in each round of XTEA: two additions, one XOR 
operation, and one bitwise shift. 

 
Computational Complexity = Total Number of Rounds * 

Number of Operations in Each Round 
𝐶𝐶𝑋𝑋=64*4=256 

 
Modified XTEA algorithm operate on a 128-bit block size 

and each round includes eight basic operations (four additions, 
two XOR operations, and two bitwise shifts) and 64 rounds for 
both encryption and decryption, we can calculate the 
complexity as follows: 

 
𝐶𝐶𝑋𝑋=64*8=512 

 
6.6.3 Time 

To calculate the encryption time for (800 blocks) and We 
assume Time per Block is (0.08 ms), can use the given time 
per block and multiply it by the number of blocks: 

 
Encryption Time = Number of Blocks * Time per Block 

Standard XTEA Et=(800/64)*0.08 =(1 ms) 
Modified XTEA Et= (800/128) *0.08 = (0.5 ms) 

 
 

7. CONCLUSION 
 
The architecture of the Modified XTEA is ideal for devices 

where cost-effectiveness and minimal power usage are 
paramount. The suggested modefication has demonstrated 

excellent performance compared with standard XTEA. This 
algorithm design stems from a meticulous analysis of every 
element within the Modified XTEA algorithm. Our 
implemented approach has proven to be resilient against 
various types of attacks, as verified through security and 
statistical tests conducted on the system's outcomes. Its 
encryption speed, operational efficiency, and cost-
effectiveness make it an excellent choice for resource-
constrained applications, including passive Raspberry Pi 
setups and wireless sensor networks. Therefore, the algorithm 
can be applied in various uses, including email encryption, 
embedded systems, file encryption, network security, and 
unique network protocols for safe data transfers. It can also be 
used to encrypt data kept in databases or on storage devices. 
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