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Distributed Denial of Service (DDoS) stands as a critical cybersecurity concern, 

representing a malicious tactic employed by hackers to disrupt online services, network 

resources, or host systems, rendering them inaccessible to legitimate users. DDoS attack 

detection is essential as it has a wide-ranging impact on the field of computer science. This 

is quantitative research to evaluate Multilayer Perceptron (MLP) classification algorithm 

with different optimization methods and different activation functions on UDP-based DDoS 

attack detection. The CIC-DDoS2019 DDoS evaluation dataset, known for its inclusion of 

modern DDoS attack types, was instrumental in this study by the Canadian Institute for 

Cyber Security. The CIC-DDoS2019 dataset encompasses eleven DDoS attack datasets, 

which are UDP, UDP-Lag, NTP, and TFTP datasets were utilized in this investigation. This 

study proposes a novel feature selection approach. It specifically targets datasets related to 

UDP-based DDoS attacks. The approach aims to identify groups of features that share the 

uncorrelated characteristic. It means None of the features within a subset have a significant 

relationship with each other as measured by three correlation methods: Pearson, Spearman, 

and Kendall. To further validate the proposed approach, the researchers conducted 

experiments on a specially crafted DDoS attack dataset. MLP classification algorithm along 

with ADAM optimization method and Tanh activation function produce the better results 

for UDP-based DDoS attack detection. This combination produces the better accuracy 

values of 99.97 for UDP Flood attack, 99.77 for UDP-Lag attack, 99.70 for NTP attack, 

99.93 for TFTP attack and 99.76 for UDP customized DDoS attack. 
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1. INTRODUCTION

The alarming rise of cyberattacks targeting internet-

connected devices has become a pressing concern, with 

Distributed Denial-of-Service (DDoS) attacks being a major 

culprit. As detailed in sources [1] DDoS attacks [2] overwhelm 

systems with a deluge of malicious traffic originating from a 

multitude of compromised devices. DDoS attacks aim to 

cripple a specific system or server by overwhelming it with a 

flood of malicious traffic. This onslaught can render the victim 

completely inaccessible (service failure) or significantly slow 

it down (service degradation). The consequences of such an 

attack can be severe, leading to financial losses, server outages, 

and putting immense pressure on IT staff to restore normal 

operations. There are two primary types of DDoS attacks: 

reflection-based and exploitation-based. The key difference 

lies in how they target vulnerabilities. Reflection-based DDoS 

attacks exploit weaknesses in internet communication. In a 

reflection-based DDoS attack, attackers exploit weaknesses in 

third-party servers. They trick these servers into sending 

massive responses by forging the source address in packets to 

appear as if they originated from the victim's IP address. This 

bombardment of responses overwhelms the victim's system, 

causing a denial-of-service. These protocols can be 

application-layer or transport-layer protocols used for basic 

communication. The victim is flooded with legitimate 

responses, but from the wrong source, making it hard to 

identify the attacker. Exploitation-based DDoS attacks target 

specific weaknesses in the victim’s system or software. These 

weaknesses can be in application-layer protocols or transport-

layer protocols that handle basic communication. Similar to 

reflection attacks, the attacker hides behind legitimate 

communication, making it difficult to identify them. This 

research emphasizes the detection of DDoS attacks based on 

UDP, specifically targeting NTP, TFTP, UDP, and UDP-Lag 

attacks. 

A UDP flood [3] constitutes an exploitation-based DDoS 

attack, where an extensive volume of UDP packets is directed 

towards a specific server with the intent to inundate its 

processing and response capacities. 

The UDP-Lag attack [4] is a sneaky trick used by some 

gamers to slow down their opponents. It disrupts the 

connection between a player and the game server, giving the 

attacker an unfair advantage. There are two ways to launch a 
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UDP-Lag attack: Lag Switch and Bandwidth Hogging 

Software. Lag Switch is a special piece of hardware that 

disrupts the flow of data between the player and the game 

server. Imagine it like a faulty on/off switch for your internet 

connection. Bandwidth Hogging Software is a program that 

eats up a lot of internet bandwidth on the attacker's network. 

By hogging the bandwidth, there's less available for other 

users, causing their connection to slow down. 

The Network Time Protocol (NTP) [5] is like a universal 

clock for computers on the internet. It keeps everyone 

synchronized. Attackers exploit publicly available NTP 

servers. These servers are designed to respond to requests with 

a much bigger chunk of data. The attacker sends a tiny request 

to the NTP server with the victim's IP address spoofed as the 

source. The tricked server then sends a huge response back to 

the victim, overloading their system with useless traffic. 

The Trivial File Transfer Protocol (TFTP) [6] facilitates the 

transfer of firmware and configuration files among networked 

devices. 

Primary challenges [7] in DDoS detection are early 

detection, less computation and accuracy in detection. If 

DDoS attacks not detect early its consequences create very 

huge financially in financially and damage reputation. 

Conventional DDoS detection methods like data mining and 

statistical methods not detect early and not detect more 

accurately. This research employs quantitative methods to 

assess classification evaluation metrics for detecting UDP-

based DDoS attacks using Multilayer Perceptron. Three 

optimization methods are evaluated, each paired with four 

different activation functions. This study tackles DDoS attack 

detection by finding a special set of features. Uncorrelated 

Features that act independently of each other. Imagine features 

like different colored lights on a traffic light - they all tell a 

different part of the story. Three different techniques (Pearson, 

Spearman, and Kendall) to identify these independent features, 

like looking at the traffic light from three different angles. By 

looking at the features identified by all three methods, we find 

a smaller set of highly reliable features. This is like the 

intersection of the three views of the traffic light, giving us the 

clearest picture. This approach leverages a focused set of 

informative features to achieve swift and accurate DDoS 

attack detection. By utilizing a more concise data selection, the 

method reduces overall resource requirements. 

In this segment, we introduce UDP-based DDoS attacks and 

outline the objectives of this study. Section 2 dives deep into 

the heart of this study: our proposed method for detecting 

DDoS attacks. It covers all the essential steps. The Overall 

Approach (Framework), it explains the big picture of our 

method, laying out the different components that work 

together. The Step-by-Step Process (Algorithm), it breaks 

down the method into clear, sequential steps, like a recipe for 

DDoS attack detection. Preparing the Data (Preprocessing), it 

discusses how we get the data ready for analysis, ensuring it's 

in the best shape for our method to work effectively. The 

Workhorse (Multilayer Perceptron), it introduces the 

Multilayer Perceptron, a powerful classification tool we use to 

identify DDoS attacks. Fine-Tuning the Machine (Activation 

Functions and Optimization Methods), it explores different 

ways to adjust the Multilayer Perceptron to achieve the best 

possible performance in detecting attacks. The evaluation 

metrics for classification, along with the results and 

discussions based on experimental findings, are detailed in 

Section 3. Lastly, Section 4 summarizes the key findings and 

takeaways from this investigation into DDoS attack detection. 

2. METHODOLOGY 

 

The framework of the proposed model is illustrated in 

Figure 1. 

 

2.1 Dataset 

 

This study utilizes the CICDDoS2019 dataset [8], a 

comprehensive resource compiled by the Canadian Institute 

for Cybersecurity at the University of New Brunswick. It 

comprises eleven distinct DDoS attack datasets provided in 

PCAP file format. These PCAP files converted into a CSV file 

format by CICFlowmeter. This study use UDP, UDP-Lag, 

NTP and TFTP UDP-based DDoS attack datasets. Each 

dataset contains 87 network traffic features and millions of 

records. Experiments also performed on customized UDP-

based DDoS attack dataset. 

 

2.2 Preprocessing 

 

Before feeding data into a machine learning model, we need 

to do some prep work. This process, called preprocessing. 

Preprocessing [9] helps improve the accuracy and efficiency 

of the model. It involves making data suitable for the model 

by eliminating socket features that exhibit variability across 

networks, addressing missing and infinity values to clean the 

data. Encode the class labels for normal traffic (benign) and 

attack traffic into a language the model understands. In this 

case, normal traffic becomes "0" and attack traffic becomes 

"1". This simplifies things for the model. All the feature values 

on a similar scale. Standardizing the features ensures they all 

contribute equally to the model's analysis. 

 

2.3 Feature selection 

 

In this study, relevant features [10] are selected for the 

model to enhance performance. This is achieved through the 

use of variance threshold and correlation methods. Remove 

features that don't provide any useful information. These can 

be features with no variation (constant) or features that almost 

never change (quasi-constant). If two features are highly 

correlated (meaning they move together), consider only one. 

To find these related features, use three different methods 

(Pearson, Spearman, and Kendall) and remove features with a 

correlation score very close to +1 or -1, where these values 

indicate very strong positive or negative relationships 

correspondingly. 

To measure how closely related two features are, the 

Pearson correlation coefficient [11] is determined by Eq. (1).  
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where,  

xi , yi: the sample values of the x and y features, 

�̅� and �̅�: the mean values of the x and y features, 

r: is the correlation coefficient. 

The Spearman correlation coefficient [12], similar to 

Pearson's, measures how related two features are, but it 

focuses on the order or ranking of the data points rather than 

their actual values. It is determined by Eq. (2). 
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where,  

n: total observations, 

di: variation between the consecutive ranks, 

ρ: is correlation coefficient. 

The Kendall correlation coefficient [13] assesses the 

strength and direction of the relationship between two features 

by considering how often the order of one variable changes in 

the same (positive correlation) or opposite (negative 

correlation) direction as the other. It is determined by Eq. (3). 
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where,  

Nc, Nd: the number of concordant and discordant 

correspondingly, 

𝜏: the correlation coefficient. 

 

2.4 Multilayer perceptron 

 

Imagine a powerful learning machine called a Multilayer 

Perceptron (MLP) [14]. It works like a complex web of 

interconnected processing units, similar to the network of 

neurons in a brain. These processing units are called neurons, 

and they are grouped into layers. Each neuron in one layer can 

connect to any neuron in the next layer, allowing for complex 

information flow. The first layer (input layer) receives raw 

data from the features we're interested in. The final layer 

(output layer) acts like a decision maker, with one neuron for 

tasks like predicting a single value or classifying data into two 

categories (like normal vs. attack traffic). For more complex 

classifications with multiple categories, there would be 

multiple output neurons (one for each category). Layers in 

between the input and output layers are called hidden layers. 

These layers play a critical role in learning patterns from the 

data, but how they work is determined by the training process 

itself, making them quite adaptable. 

Neurons in our Multilayer Perceptron (MLP) [15] are like 

tiny decision-makers. But how do they decide when to fire up 

and contribute to the final output? That's where activation 

functions come in! Activation functions act like gatekeepers, 

determining whether a neuron should send its signal onward 

based on the information it receives. This study explores 

different activation functions, like linear, logistic, Tanh, and 

ReLU, to see which ones work best for our MLP in detecting 

DDoS attacks. 

The linear activation function is also called the Identity 

function [16]. In this approach, a neuron's output directly 

reflects its input. Mathematically, it can be represented as: 

 

( )f x x=  (4) 

 

The Logistic Activation Function [17] squeezing 

information between 0 and 1. As the input increases, the output 

approaches 1.0, while decreasing input values lead to an output 

closer to 0.0. This function is commonly utilized in models 

requiring probabilistic predictions. Mathematically, it can be 

represented as: 

 

1
( )

1 x
f x

e−
=

+
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The Tanh (Hyperbolic Tangent) activation function [18] 

processes any real value as input and yields an output ranging 

between -1 and 1. As the input increases, the output tends 

towards 1.0, and for decreasing input values, it tends towards 

-1.0. Mathematically, it can be represented as:  
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The ReLU (Rectified Linear Unit) activation function [19] 

is a nonlinear function. When the input is positive, it directly 

outputs the input; otherwise, it outputs zero. Mathematically, 

it can be represented as: 

 

( ) max(0, )f x x=  (7) 

 

This research investigates how different optimization 

techniques can improve a neural network's ability to detect 

DDoS attacks. Optimization, in this context, refers to fine-

tuning the network's internal settings to achieve the best 

possible performance. The study compares three specific 

optimization methods SGD, L-BFGS, and ADAM [20] used 

in conjunction with a multilayer perceptron classifier to see 

which one yields the most effective DDoS attack detection 

system. 

This study examines SGD [21] as a potential optimization 

method for DDoS attack detection using a neural network. 

SGD is known for its efficiency in training large machine 

learning models, particularly those involving linear classifiers 

and convex loss functions. It's also praised for its ease of 

implementation. However, SGD requires careful adjustment 

of internal settings (hyperparameters) and the number of 

training cycles to achieve optimal results. Additionally, its 

performance can be affected by the way data features are 

scaled. 

The LBFGS method [22] is like a smart assistant helping us 

train our neural network. It belongs to a group of optimization 

methods called "quasi-Newton” optimization methods, 

designed to operate within constrained computer memory 

resources. It is particularly well-suited for addressing 

problems characterized by a high number of features. Unlike 

SGD, LBFGS does not necessitate extensive hyperparameter 

tuning. However, it does consume more memory and typically 

requires a greater number of iterations in comparison to SGD. 

This research explores ADAM as an optimization technique 

for the neural network used in DDoS attack detection. ADAM 

combines momentum, a method that helps the network 

navigate training challenges, with Root Mean Squared 

Propagation (RMSP), which tackles issues like vanishing 

learning rates. Praised for its fast learning and efficiency, 

ADAM is often the default choice for training Multilayer 

Perceptron (MLP) classifiers. However, it requires more 

computational resources compared to other optimization 

methods. 

This study conducts experiments utilizing the Python 

programming language along with libraries such as 

sklearn.neural_network, pandas, and numpy for processing 

MLP classification algorithms. Visualization of the ROC-

AUC curve is facilitated using matplotlib and seaborn libraries. 

The experiments are conducted on Google Colaboratory 

(Colab) provided a cloud-based platform with 25 GB of RAM 

and a special processing unit called a TPU (Tensor Processing 

Unit) to accelerate the training process. Additionally, The 
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CICFlowMeter network traffic flow generator tool played a 

crucial role in converting raw network traffic data stored in 

PCAP files into a more usable format (CSV files) for analysis 

by the MLP. 

 

 
 

Figure 1. Proposed model framework 

 

 

3. RESULTS AND DISCUSSIONS 

 

This study investigates how to optimize a MLP classifier for 

accurate and efficient detection of UDP-based DDoS attacks. 

We explore different optimization methods and activation 

functions to achieve high attack detection accuracy while 

minimizing data processing and execution time. The research 

also examines the impact of reducing features in the input data 

on both accuracy and processing speed. To speed up how 

quickly the model can identify attacks, we preprocess the data 

by streamlining the features. This means reducing the number 

of data points the model needs to analyze without sacrificing 

accuracy. Consequently, decreasing data computation time 

also leads to a significant reduction in execution time. Figure 

1 outlines proposed approach to balancing accuracy and 

efficiency. We're developing a model that reduces the amount 

of data the system needs to analyze features while maintaining 

its ability to accurately detect DDoS attacks. Datasets 

containing UDP-based DDoS attacks from the CICDDoS2019 

collection. This dataset includes a variety of both TCP and 

UDP-based DDoS attack types. To see how well model 

performs, execute experiments using datasets containing 

different types of UDP-based DDoS attacks. These included 

UDP flood, UDP-Lag, NTP, and TFTP attacks. Building a 

broader test, this study constructed a custom dataset. This 

combined data from UDP attack types (UDP flood, UDP-Lag, 

NTP, TFTP) to simulate a more real-world scenario with 

mixed threats.  

This section dives into the analysis of the results. First, we 

examine the impact of removing features with little variation 

constant and quasi-constant using a technique called variance 

thresholding. Next, we explore how well features relate to each 

other correlation using three methods: Pearson, Spearman, and 

Kendall. We then identify features that are consistently 

uncorrelated across all three methods. Finally, we evaluate the 

performance of the algorithms based on standard classification 

metrics.  

This section details a novel feature selection method used to 

improve efficiency in DDoS attack detection. After initial data 

cleaning, we removed features with minimal variation to 

reduce the overall number analyzed. Next, we employed three 

separate correlation techniques Pearson, Spearman, and 

Kendall on the UDP-based DDoS datasets. Each method 

identified unique sets of uncorrelated features. We then looked 

for features that consistently appeared as uncorrelated across 

all three methods. This approach prioritizes highly informative 

features, reducing computational burden due to the smaller 

feature set. Table 1 summarizes the number of commonly 

identified uncorrelated features across the datasets. 

Interestingly, features like "Flow IAT Min," "Flow Duration," 

and various traffic volume metrics consistently emerged as 

uncorrelated across multiple attack types (NTP, TFTP, UDP, 

and UDP-Lag). Finally, we evaluated the effectiveness of 

Multilayer Perceptron (MLP) classifiers with different 

optimization methods and activation functions on all datasets 

UDP, UDP Lag, NTP, TFTP, and a bespoke dataset using 

these identified uncorrelated feature sets. 
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Table 1. The count of common uncorrelated features across 

the datasets 

 
Data Set Count 

UDP Flood 12 
UDP-Lag 12 

NTP 11 
TFTP 11 

Customized 14 

 

3.1 Evaluation metrics of classification algorithms 

 

This study uses the following evaluation metrics for results 

of UDP-based DDoS attacks detection. 

 

TP TN
ACCURACY

TP TN FP FN

+
=

+ + +
 (8) 
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=

+
 (9) 
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1
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N
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I
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N =

− = − + − −  (13) 

 

In the given context, "N" represents the total number of 

observations, "p" denotes the predicted probability, and "y" 

signifies the actual value. 

Accuracy specifies the amount of correct classifications out 

of all classification results. Precision specifies how much 

classifier predictions are correctly classified. Recall measures 

the proportion of actual correct classes that are correctly 

classified by the classifier. The F1 score is the harmonic mean 

of precision and recall. Log loss quantifies the disparity 

between the actual classification outcomes and the model's 

predicted classification results. Furthermore, the results are 

assessed using K-fold cross-validation and ROC-AUC score. 

In K-fold cross-validation, the dataset is divided into k smaller 

subsets. Each model is trained on k-1 folds and tested on the 

remaining fold, repeating this process until all folds have been 

used for testing. The ROC-AUC score plots the true positive 

rate against the false positive rate across variance threshold 

values. ROC scores indicate the area under the curve, with 

values ranging from 0 to 1, where 1 denotes the best score and 

0 indicates poor model performance. 

 

3.2 Results and Discussion 

 

3.2.1 Results and Discussion on UDP dataset 

UDP-flood attacks detection, MLP model utilizing the 

ADAM optimization approach and Tanh activation function 

achieves the highest overall accuracy and K-fold cross-

validation accuracy, both exhibiting very low standard 

deviation. Table 2 illustrates the accuracy results for 

identifying UDP-flood DDoS attacks. MLP with the LBFGS 

optimization method yields superior K-fold cross-validation 

accuracy compared to overall accuracy. Meanwhile, MLP with 

SGD and ADAM optimization methods produce identical 

accuracy values for both overall and K-fold cross-validation. 

Notably, MLP models with SGD and ADAM optimization 

methods consistently deliver identical accuracy values across 

both overall and K-fold cross-validation scenarios. For smaller 

datasets, LBFGS optimization demonstrates respectable 

performance, while SGD and ADAM optimization methods 

exhibit robust results irrespective of dataset size. Additionally, 

the ReLU activation function yields consistent accuracy values 

for both overall and K-fold cross-validation. MLP models with 

activation functions generally outperform those without 

activation functions (e.g., identity activation). 

 

 
 

Figure 2. ROC-curves of the MLP with LBFGS 

optimization method with different activation functions on 

UDP dataset 

 

 

Table 2. The accuracy of the overall model and K-fold cross-validation, presented as percentages with standard deviation, for 

MLP utilizing various optimization techniques and activation functions on UDP flood attack with the common uncorrelated 

feature subset 

 

 LBFGS SGD ADAM 

 Accuracy Validation Accuracy Accuracy Validation Accuracy Accuracy Validation Accuracy 

identity 99.90 99.9314% (0.0075%) 99.90 99.9216% (0.0079%) 99.92 99.9262% (0.0064%) 
logistic 99.93 99.9577% (0.0067%) 99.91 99.9063% (0.0070%) 99.95 99.9575% (0.0074%) 

tanh 99.95 99.9637% (0.0048%) 99.94 99.9538% (0.0053%) 99.97 99.9642% (0.0047%) 
ReLU 99.94 99.9468% (0.0177%) 99.94 99.9468% (0.0177%) 99.96 99.9633% (0.0033%) 
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Table 3. Classification evaluation metrics of MLP employing diverse optimization techniques and activation functions for 

detecting UDP flood attacks, utilizing the common uncorrelated feature subset 

 
 LBFGS 

 Precision Recall F1-Score Specificity 

Identity 1.00 1.00 1.00 0.52 

Logistic 1.00 1.00 1.00 0.76 

Tanh 1.00 1.00 1.00 0.78 

ReLU 1.00 1.00 1.00 0.72 

 SGD 

 Precision Recall F1-Score Specificity 

Identity 1.00 1.00 1.00 0.55 

Logistic 1.00 1.00 1.00 0.62 

Tanh 1.00 1.00 1.00 0.75 

ReLU 1.00 1.00 1.00 0.72 

 ADAM 

 Precision Recall F1-Score Specificity 

Identity 1.00 1.00 1.00 0.55 

Logistic 1.00 1.00 1.00 0.78 

Tanh 1.00 1.00 1.00 0.84 

ReLU 1.00 1.00 1.00 0.81 

 

Table 4. ROC, log-loss scores of MLP employing various optimization techniques and activation functions for detecting UDP 

flood attacks, utilizing the common uncorrelated feature subset 

 
 LBFGS SGD ADAM 

 ROC Log-loss ROC-AUC Log-loss ROC-AUC Log-loss 

Identity 0.99624335 0.03336252 0.99625977 0.03496641 0.99085721 0.02871106 

Logistic 0.99477902 0.02341777 0.99504135 0.02983372 0.99626906 0.01603965 

Tanh 0.99657918 0.01668122 0.99980612 0.01988914 0.99991359 0.01186934 

ReLU 0.99489425 0.02020997 0.99489425 0.02020997 0.99736743 0.01283174 

 

 
 

Figure 3. ROC-curves of the MLP with SGD optimization 

method with different activation functions on UDP dataset 

 

Table 3 showcases the performance of Multilayer 

Perceptron (MLP) classifiers for UDP flood attack detection 

using the identified common uncorrelated features. The table 

presents precision, recall, and F1-score metrics for various 

optimization techniques and activation functions employed 

with the MLP model. Notably, MLP consistently delivers 

strong performance across all optimization methods, with or 

without activation functions, when detecting UDP flood DDoS 

attacks. Interestingly, the combination of ADAM optimization 

and tanh activation function yielded the best specificity is 

ability to correctly identify normal traffic for the UDP flood 

attack dataset. Conversely, LBFGS optimization without an 

activation function resulted in a lower specificity compared to 

other configurations. 

 

 
 

Figure 4. ROC-curves of the MLP ADAM optimization 

method with different activation functions on UDP dataset 

 

Log loss and ROC values of MLP, employing various 

optimization techniques and activation functions, are 

presented in Table 4 for detecting UDP flood attacks using the 

common uncorrelated feature subset. Among the activation 

functions, MLP with the tanh activation function demonstrates 

the best log-loss values across all optimization methods on the 

UDP dataset. Furthermore, MLP with the ADAM 

optimization method and tanh activation function outperforms 

others in terms of log-loss values on the UDP-flood dataset. 

Additionally, MLP with the ADAM optimization method and 

tanh activation function yields superior ROC-AUC scores 

compared to other configurations on the UDP-flood dataset. 

The ROC curves of MLP classification algorithms with 

LBFGS, SGD, and ADAM optimization methods, along with 
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different activation functions, for UDP flood attack detection 

are illustrated from Figures 2-4. 

 

3.2.2 Results and discussion on UDP-Lag DDoS attack dataset 

For detecting UDP-Lag DDoS attacks, the MLP model 

utilizing the ADAM optimization approach and Tanh 

activation function exhibits the highest overall accuracy and 

K-fold cross-validation accuracy, accompanied by very low 

standard deviation. However, these two accuracy values are 

not identical. Conversely, MLP employing the LBFGS 

optimization approach and logistic activation function 

demonstrates subpar overall accuracy but improved K-fold 

cross-validation accuracy in UDP-Lag DDoS attack detection. 

The accuracy results for detecting the UDP-Lag DDoS attack 

dataset are presented in Table 5. 

The precision, recall, and F1-score metrics for MLP with 

various optimization techniques and activation functions are 

provided in Table 6 for UDP-Lag attack detection, utilizing the 

common uncorrelated feature subset. Across all optimization 

techniques, MLP with ADAM optimization consistently 

achieves the highest precision, recall, and F1-score values, 

regardless of the presence of activation functions, on the UDP-

Lag dataset. Notably, for the UDP-Lag dataset, the 

combination of ADAM optimization and logistic activation 

function yields superior specificity values, while SGD 

optimization with logistic and ReLU activation functions 

results in zero specificity values. 

Log-loss and ROC values of MLP employing various 

optimization techniques and activation functions for UDP-Lag 

attack detection are outlined in Table 7. MLP utilizing the 

ADAM optimization method and tanh activation function 

outperforms others in terms of log-loss values on the UDP-Lag 

dataset. Conversely, MLP with LBFGS optimization method 

and logistic activation function exhibits inferior log-loss 

values compared to others on the UDP-Lag dataset. 

Additionally, MLP with the ADAM optimization method and 

tanh activation function achieves superior ROC-AUC scores 

compared to other configurations on UDP-Lag dataset. ROC 

curves illustrating the performance of MLP classification 

algorithms with LBFGS, SGD, and ADAM optimization 

methods, along with different activation functions, for UDP-

Lag attack detection are depicted from Figures 5-7. 

 

3.2.3 Results and Discussion on NTP DDoS attack dataset 

In the detection of NTP DDoS attacks, the MLP model 

achieves the highest overall accuracy with the LBFGS 

optimization approach and ReLU activation function, while it 

achieves the best K-fold cross-validation accuracy with the 

tanh activation function. The accuracy results for detecting 

NTP DDoS attacks are presented in Table 8. 
 

Table 5. Overall model accuracy and K-fold cross-validation accuracy score (with a standard deviation) in % of the MLP with 

different optimization techniques and different activation functions on UDP-Lag attack using common uncorrelated feature subset 

 
 LBFGS SGD ADAM 

 Accuracy Validation Accuracy Accuracy Validation Accuracy Accuracy Validation Accuracy 

Identity 95.90 98.9528% (0.1409%) 96.32 99.0415% (0.1260%) 99.24 99.1168% (0.1104%) 

Logistic 75.57 99.7002% (0.0665%) 96.40 99.2741% (0.0436%) 99.54 99.4650% (0.0529%) 

Tanh 97.67 99.7083% (0.0688%) 96.34 99.3386% (0.0504%) 99.77 99.6868% (0.0598%) 

ReLU 97.06 99.7002% (0.0602%) 96.40 99.3346% (0.0456%) 99.46 99.6626% (0.0484%) 

 

Table 6. Classification evaluation metrics of the MLP with different optimization techniques and different activation functions on 

UDP-Lag attack using the common uncorrelated feature subset 

 
 LBFGS 

 Precision Recall F1-Score Specificity 

Identity 0.97 0.99 0.98 0.04 

Logistic 0.99 0.76 0.86 0.74 

Tanh 0.99 0.98 0.99 0.84 

ReLU 0.97 1 0.98 0.31 

 SGD 

 Precision Recall F1-Score Specificity 

Identity 0.96 1 0.98 0.03 

Logistic 0.96 1 0.98 0 

Tanh 0.96 1 0.98 0.02 

ReLU 0.96 1 0.98 0 

 ADAM 

 Precision Recall F1-Score Specificity 

Identity 1 0.99 1 0.94 

Logistic 1 1 1 0.99 

Tanh 1 1 1 0.96 

ReLU 0.99 1 1 0.86 

 

Table 7. ROC-AUC score, and Log-loss value of the MLP with different optimization techniques and different activation 

functions on UDP-Lag attack using the common uncorrelated feature subset. 

 
 LBFGS SGD ADAM 

 ROC Log-loss ROC-AUC Log-loss ROC-AUC Log-loss 

Identity 0.73970459 1.41701261 0.66856372 1.27215739 0.99352817 0.26185604 

Logistic 0.70830944 0.43877508 0.99928304 1.24430132 0.99928304 0.15971281 

Tanh 0.92919776 0.80413879 0.75354777 1.26287186 0.99968980 0.07985737 

ReLU 0.42910718 1.01586614 0.39875022 1.24430132 0.99957816 0.18757353 
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The precision, recall, and F1-score metrics for MLP 

employing various optimization techniques and activation 

functions on NTP attack, utilizing the common uncorrelated 

feature subset, are illustrated in Table 9. MLP consistently 

achieves superior precision, recall, and F1-score values across 

all optimization techniques, regardless of the presence of 

activation functions, for detecting NTP DDoS attacks. Notably, 

on an NTP DDoS attack dataset, MLP with SGD optimization 

without activation function yields the best specificity value, 

while ADAM optimization with tanh activation function 

demonstrates poorer specificity compared to others. 

Log-loss and ROC values of MLP utilizing various 

optimization techniques and activation functions for NTP 

attack detection are outlined in Table 10. MLP employing the 

LBFGS optimization method and ReLU activation function 

outperforms others in terms of log-loss scores on the NTP 

dataset. Additionally, MLP with LBFGS optimization method 

and ReLU activation function achieves a superior ROC-AUC 

score compared to other configurations on the NTP DDoS 

attack dataset. The ROC curves depicting the performance of 

MLP classification algorithms with LBFGS, SGD, and 

ADAM optimization methods, along with different activation 

functions, for NTP attack detection are illustrated from Figures 

8-10. 

 

3.2.4 Results and Discussion on TFTP DDoS attack dataset 

In detecting TFTP DDoS attacks, the MLP model achieves 

the highest overall accuracy with the LBFGS optimization 

approach and ReLU activation function, while it achieves 

highest KFC validation accuracy using the tanh activation 

function. The accuracy results for detecting TFTP attacks are 

presented in Table 11. 

 

 

Table 8. Overall model accuracy and K-fold cross-validation accuracy score (with a standard deviation) in % of the MLP with 

different optimization techniques and different activation functions on NTP attack using common uncorrelated feature subset 

 
 LBFGS SGD ADAM 

 Accuracy 
Validation 

Accuracy 
Accuracy 

Validation 

Accuracy 
Accuracy 

Validation 

Accuracy 

Identity 99.71 99.6909% (0.0056%) 99.72 99.6970% (0.0082%) 99.71 99.6978% (0.0092%) 

Logistic 99.72 99.7203% (0.0138%) 99.68 99.6709% (0.0070%) 99.80 99.7873% (0.0109%) 

Tanh 99.71 99.8536% (0.0209%) 99.76 99.7373% (0.0117%) 99.70 99.7960% (0.0121%) 

ReLU 99.87 99.8060% (0.0140%) 99.74 99.7323% (0.0111%) 99.83 99.7939% (0.0094%) 

 

Table 9. Classification evaluation metrics of the MLP with different optimization techniques and different activation functions on 

NTP attack using the common uncorrelated feature subset 

 
 LBFGS 

 Precision Recall F1-Score Specificity 

Identity 1.00 1.00 1.00 0.99 

Logistic 1.00 1.00 1.00 0.94 

Tanh 1.00 1.00 1.00 0.76 

ReLU 1.00 1.00 1.00 0.94 

 SGD 

 Precision Recall F1-Score Specificity 

Identity 1.00 1.00 1.00 1.00 

Logistic 1.00 1.00 1.00 0.95 

Tanh 1.00 1.00 1.00 0.97 

ReLU 1.00 1.00 1.00 0.94 

 ADAM 

 Precision Recall F1-Score Specificity 

Identity 1.00 1.00 1.00 0.98 

Logistic 1.00 1.00 1.00 0.98 

Tanh 1.00 1.00 1.00 0.75 

ReLU 1.00 1.00 1.00 0.98 

 

Table 10. ROC-AUC score, and Log-loss value of the MLP with different optimization techniques and different activation 

functions on NTP attack using the common uncorrelated feature subset 

 
 LBFGS SGD ADAM 

 ROC Log-loss ROC-AUC Log-loss ROC-AUC Log-loss 

Identity 
0.9982014954167

338 

0.100289431996238

2 

0.9983914075398

773 

0.09798913347621

446 

0.9982863056290

869 

0.1012095492

7418421 

Logistic 
0.9989064977738

97 

0.096609477649795

6 

0.9992082071253

128 

0.11148415848524

285 

0.9994775714922

742 

0.0700800063

6121194 

Tanh 
0.9997592411840

928 

0.099218061726216

93 

0.9994300767446

267 

0.08357467990976

582 

0.9995689827218

632 

0.1047386659

9093051 

ReLU 
0.9997655352968

907 

0.046464724375566

056 

0.9993849943687

322 

0.09078227767904

656 

0.9996872455179

264 

0.0594990712

5215883 
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Figure 5. ROC-curves of the MLP with LBFGS 

optimization method with different activation functions on 

UDP-Lag attack 

Figure 6. ROC-curves of the MLP with SGD optimization 

method with different activation functions on UDP-Lag 

attack 

  

  
  

Figure 7. ROC-curves of the MLP with ADAM optimization 

method with different activation functions on UDP-Lag 

attack 

Figure 8. ROC-curves of the MLP with LBFGS 

optimization method with different activation functions on 

NTP attack 

  

  
  

Figure 9. ROC-curves of the MLP with SGD optimization 

method with different activation functions on NTP attack 

Figure 10. ROC-curves of the MLP with ADAM 

optimization method with different activation functions on 

NTP attack 

 

The precision, recall, and F1-score metrics for MLP 

employing various optimization techniques and activation 

functions on TFTP attack, utilizing the common uncorrelated 

feature subset, are displayed in Table 12. MLP consistently 

achieves superior precision, recall, and F1-score values across 

all optimization techniques, regardless of the presence of 
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activation functions, for detecting TFTP attacks. Notably, on 

the TFTP dataset, MLP with the combination of LBFGS 

optimization and tanh activation function yields better 

specificity values, while SGD optimization with logistic 

activation function results in poorer specificity compared to 

others. 

Log-loss and ROC scores with MLP utilizing various 

optimization techniques and activation functions for TFTP 

attack detection are presented in Table 13. MLP employing the 

LBFGS optimization method and ReLU activation function 

outperforms others in terms of log-loss values on the TFTP 

dataset. Additionally, MLP with the ADAM optimization 

method and ReLU activation function achieves a superior 

ROC-AUC score compared to other configurations on the 

TFTP dataset. The ROC curves illustrating the performance of 

MLP classification algorithms with LBFGS, SGD, and 

ADAM optimization methods, along with different activation 

functions, for TFTP attack detection are depicted from Figures 

11-13. 

 

Table 11. Overall model accuracy and K-fold cross-validation accuracy score (with a standard deviation) in % of the MLP with 

different optimization techniques and different activation functions on TFTP attack using common uncorrelated feature subset 

 
 LBFGS SGD ADAM 

 Accuracy Validation Accuracy Accuracy Validation Accuracy Accuracy Validation Accuracy 

Identity 99.92 99.9080% (0.0134%) 99.83 99.8302% (0.0051%) 99.91 99.8884% (0.0311%) 

Logistic 99.92 99.9265% (0.0080%) 99.81 99.8049% (0.0067% 99.93 99.9306% (0.0053%) 

Tanh 99.63 99.9602% (0.0133%) 99.91 99.9028% (0.0101%) 99.93 99.9403% (0.0089%) 

ReLU 99.95 99.9533% (0.0132%) 99.91 99.9051% (0.0069%) 99.93 99.9472% (0.0066%) 

 

Table 12. Classification evaluation metrics of the MLP with different optimization techniques and different activation functions 

on TFTP attack using the common uncorrelated feature subset 

 
 LBFGS SGD ADAM 

 Precision Recall F1-Score Specificity Precision Recall F1-Score Specificity Precision Recall F1-Score Specificity 

Identity 1.00 1.00 1.00 0.72 1.00 1.00 1.00 0.19 1.00 1.00 1.00 0.60 

Logistic 1.00 1.00 1.00 0.64 1.00 1.00 1.00 0.08 1.00 1.00 1.00 0.70 

Tanh 1.00 1.00 1.00 0.89 1.00 1.00 1.00 0.59 1.00 1.00 1.00 0.70 

ReLU 1.00 1.00 1.00 0.83 1.00 1.00 1.00 0.59 1.00 1.00 1.00 0.71 

 

Table 13. ROC-AUC score, and Log-loss value of the MLP with different optimization techniques and different activation 

functions on TFTP attack using the common uncorrelated feature subset 

 
 LBFGS SGD ADAM 

 ROC Log-loss ROC-AUC Log-loss ROC-AUC Log-loss 

Identity 
0.9421633408325

975 

0.02610731935690

3545 

0.9738537303854

027 

0.05913494304908

6425 

0.9306134940453

68 

0.03208379026161

7444 

Logistic 
0.9986909449850

065 

0.02862377644901

0867 

0.9765062697768

166 

0.06636954783588

36 

0.9993079698353

17 

0.02453465200429

941 

Tanh 
0.9875212363680

852 

0.12896188323378

12 

0.9986381392159

467 

0.03239834557766

988 

0.9994648663363

476 

0.02390556321772

6133 

ReLU 
0.9994559527225

304 

0.01792909231301

2245 

0.9884061132013

747 

0.03145472332057

578 

0.9996418712742

362 

0.02359100790167

3688 

 

  
  

Figure 11. ROC-curves of the MLP with LBFGS 

optimization method with different activation functions on 

TFTP attack 

Figure 12. ROC-curves of the MLP with SGD optimization 

method with different activation functions on TFTP attack 
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Figure 13. ROC-curves of the MLP with ADAM 

optimization method with different activation functions on 

TFTP attack 

 

 

4. CONCLUSIONS 

 

This research evaluated how well a Multilayer Perceptron 

(MLP), a type of artificial neural network, could classify 

between regular traffic and various forms of UDP-based 

DDoS attacks. This study tested different MLP configurations 

to see which worked best for accurate attack detection. These 

configurations included different attack types, MLP 

optimizations and activation functions. This study examined 

five different DDoS attacks such as UDP Flood, UDP-Lag, 

NTP, TFTP, and a custom dataset combining these attacks. 

This study explored three optimization methods (LBFGS, 

SGD, ADAM) that fine-tune the MLP's internal workings for 

better performance. This study tested four activation functions 

(Identity, Logistic, Tanh, ReLU) that influence how the MLP 

interprets information. A feature selection approach was 

proposed for the classifier, focusing on selecting common 

uncorrelated features through the overlapping sets of features 

that are uncorrelated according to Pearson, Spearman, and 

Kendall methods across DDoS datasets Results indicated that 

MLP classifier with ADAM optimization method and Tanh 

activation function yielded superior performance on UDP 

Flood and UDP-Lag DDoS attack datasets due to its faster 

convergence nature. Conversely, MLP classifier with LBFGS 

optimization method and ReLU activation function 

demonstrated better results on NTP and TFTP DDoS attack 

datasets. Furthermore, MLP classifier with ADAM 

optimization method and Tanh activation function showcased 

improved results on the customized UDP-based DDoS attack 

dataset, as well as on customized NTP and TFTP DDoS attack 

datasets. Consequently, the MLP classifier with ADAM 

optimization method and Tanh activation function emerged as 

the most suitable choice for UDP-based DDoS attack detection. 

These research findings are instrumental in early and accurate 

detection of DDoS attacks, thereby mitigating potential 

consequences. As an extension of this research, future plans 

include exploring MLP classification algorithms with features 

selected via KPCA (Kernel Principal Component Analysis) 

for dimensionality reduction in DDoS attack detection. 
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