
Deep Learning-Based Scene Processing and Optimization for Virtual Reality Classroom 

Environments: A Study 

Qiuju Wang1 , Zhengwen Yu2*

1 School of Humanities and Education, Liaodong University, Dandong 118000, China 
2 School of Tourism and Sports Health, Hezhou University, Hezhou 542800, China 

Corresponding Author Email: 201807029@hzxy.edu.cn

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.410109 ABSTRACT 

Received: 9 July 2023 

Revised: 23 November 2023 

Accepted: 10 December 2023 

Available online: 29 February 2024 

With the increasingly widespread application of Virtual Reality (VR) technology in the field 

of education, VR classroom models, characterized by their unique immersive experience, 

are considered an important direction for educational innovation. To maximize the 

educational effects of VR classrooms, efficient processing and optimization of scene images 

are essential. Currently, although many studies are devoted to the rendering techniques of 

static scenes, research on real-time processing and personalized layout optimization of 

dynamic interactive teaching scenes is still insufficient. This paper proposes innovative 

methods based on deep learning for two core issues in VR classrooms: scene image 

enhancement and visual layout optimization. First, by constructing an image enhancement 

generation model based on the U-net network, the clarity and detail richness of scene images 

are significantly improved. Second, this paper applies an improved Spatial Pyramid Pooling 

in Fast Regions with Convolutional Neural Networks (SPPF) structure from Yolo5 to scene 

layout and introduces a novel visual graph attention model (GAM), which can extract colors 

from input images and effectively apply them to visual interface design. These methods not 

only enhance the visual effects of scenes but also lay the foundation for building 

personalized teaching environments that meet the needs of different learners. This research 

provides a new perspective for the real-time processing and layout optimization of VR 

classroom scenes, which is of significant importance for advancing the development of 

educational technology.   

Keywords: 

Virtual Reality (VR) classroom, scene image 

enhancement, visual layout optimization, 

deep learning, U-net Network, Spatial 

Pyramid Pooling in Fast Regions with 

Convolutional Neural Networks (SPPF) 

structure, visual graph attention model 

(GAM) 

1. INTRODUCTION

With the rapid development of VR technology, its 

application in the field of education has gradually deepened. 

As a new mode of teaching, VR classrooms have begun to 

change the traditional educational landscape [1-4]. Utilizing 

the immersive and three-dimensional interactive experience 

provided by VR technology has the potential to greatly 

enhance learners' engagement and learning outcomes [5, 6]. 

However, to fully realize the teaching potential of VR 

classrooms, it is essential to ensure the clarity of scene images 

and the rationality of layouts, in order to create a distraction-

free and easy-to-interact learning environment for students. 

Current research is in the preliminary stages of exploring 

VR applications in education, where the processing and 

optimization of scene images are among the key issues [7-10]. 

High-quality scene images can not only provide a more 

realistic visual experience but also help to improve learning 

efficiency and effectiveness [11-14]. In addition, effective 

layout optimization can significantly enhance the efficiency of 

information transmission, assisting students in better 

understanding and memorizing the learning content [15, 16]. 

Therefore, exploring scene image enhancement and layout 

optimization methods based on deep learning is of great 

research significance for optimizing the VR classroom 

experience and improving teaching quality. 

Existing studies are mostly focused on static scene 

rendering techniques, with less discussion on real-time 

processing and optimization of dynamic interactive teaching 

scenes [17-19]. Moreover, current scene layout methods often 

overlook personalized learning needs and cognitive 

differences, lacking adaptive design for different learners [20-

24]. These limitations restrict the potential of VR in 

personalized teaching and inclusive education, also 

constraining the maximization of educational effects. 

This paper first focuses on the research of scene image 

enhancement methods for VR classrooms, proposing an image 

enhancement generation model based on the U-net network, 

aimed at significantly improving the quality and detail 

expression of scene images through deep learning algorithms. 

Then, to achieve more efficient scene layout, this paper 

introduces and improves the SPPF structure from Yolo5, 

proving its effectiveness in optimizing scene layout through 

comparative analysis. Next, it delves into the visualization 

layout optimization of VR classroom scene images, employing 

a visual GAM combined with innovative loss functions, 

detailing how to extract color styles from input images and 

efficiently apply this style to visual interface design. This 
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research not only provides a new direction for the visualization 

layout of VR classroom scenes but also offers technical 

support for personalized teaching design, having profound 

theoretical significance and practical value. 

 

 

2. SCENE IMAGE ENHANCEMENT METHODS FOR 

VR CLASSROOMS 

 

2.1 Network construction concept 

 

In the current application of VR classroom scenes, due to 

the high image quality requirements of the VR environment, 

image processing models need to possess better nonlinear 

expression capability and the ability to learn complex 

mappings to ensure the realism and coherence of the scene. 

Although the ReLU activation function can speed up the 

training process of deep neural networks and prevent the 

problem of gradient vanishing, its gradient in the negative 

value area is zero, which may lead to the "death" of some 

neurons, causing the model to lose some information. In the 

processing of VR classroom scenes, the loss of this 

information may manifest as a lack of detail or a decrease in 

contrast, affecting the learning experience. The SiLU 

(Sigmoid Linear Unit) activation function provides smooth 

non-linear characteristics and allows for the passage of small 

gradients in the negative value area, thus avoiding the problem 

of neuron death and potentially improving the model's 

performance in image detail enhancement, to further optimize 

the learning environment and enhance educational effects. 

 

2.2 Generator network structure 

 

In the current application of VR classrooms, the clarity and 

brightness balance of scene images are crucial for users' 

immersion and learning experience. The purpose of general 

image enhancement algorithms is to improve visual effects, 

applicable to various scenes, but for VR classrooms, image 

enhancement is not just for visual comfort but also for the 

accurate delivery of teaching content and students' interactive 

experience. Therefore, the research goal of this paper is to 

develop a deep learning model, especially for VR classroom 

scenes under low brightness conditions, to improve their 

image clarity and brightness balance. Figure 1 gives the 

generator network structure. 

Addressing the limitations of U-net in segmentation tasks, 

the research content proposed in this paper focuses on 

optimizing algorithms to solve the problem where 

classification accuracy and localization precision are difficult 

to achieve concurrently. In VR classroom scenes, some details 

may be difficult to discern in low light; hence, the model needs 

to adjust the amount of brightening, applying greater 

enhancement in extremely low-light areas, while moderately 

brightening or maintaining the original state in already 

sufficiently bright areas. The purpose of this dynamic 

adjustment is to achieve a new brightness balance between 

different light areas, ensuring that the enhanced image retains 

all teaching-related details while providing the best visual 

effect and learning experience. 

In the application of VR classrooms, high-quality 

reconstruction and detail preservation of scene images are 

extremely important, as they relate to the recognizability of 

learning materials and the authenticity of the interactive 

experience. Although the traditional U-net network performs 

well in image segmentation tasks, it may have certain 

limitations when processing highly complex and detail-rich 

VR classroom scenes. Especially during the feature extraction 

stage, the standard U-net might not fully utilize all relevant 

information in the image, particularly across channels and 

spatial dimensions. To address this issue, this paper proposes 

a novel attention feature transfer module designed to 

strengthen the structure of the generator. This attention module, 

by analyzing input features more finely, can consider 

dependencies between channels and relevance of spatial 

positions simultaneously. Specifically, by weighting each 

pixel of the input image, it can optimize feature extraction, 

ensuring that the image enhancement process does not 

overemphasize or ignore key details. 

 

 
 

Figure 1. Generator network structure 
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The computation is first carried out for all pixel feature 

maps. For applications in VR classrooms, this step needs 

special attention to visual features of teaching content, such as 

text, images, symbols, etc., ensuring these key pieces of 

information can be accurately extracted. Further, the impact 

factors of all pixels are calculated. In this step, the attention 

module not only identifies key educational elements in the 

image but also dynamically adjusts the representation strength 

of these elements based on the importance of scene content. 

For example, for explanatory text or charts in the classroom, 

the module assigns a higher impact factor to ensure they 

remain prominent and easy to read in the enhanced image. 

Assuming a batch contains a number of image samples 

represented by Y, the number of color channels by Z, and the 

height and width of the image by G and Q, respectively. The 

feature map of the u-th pixel is represented by XLu, and the 

impact factor of the u-th pixel is represented by α1, then the 

calculation formulas are: 

 

( ) ( )
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Calculating the final input of all pixels, this process 

integrates the information obtained in the first two steps to 

generate the final enhanced image. Here, based on the 

calculated pixel impact factors, the attention module weights 

the features of each pixel, thus obtaining the adjusted feature 

maps, which are subsequently used to generate images with 

optimized clarity and brightness. The calculation formula for 

the final output Pu of the u-th pixel is: 

 

( )( )1

u

u n uP Q D =   (3) 

 

Pu is susceptible to the influence of the random matrix Qn 

generated by the multi-head attention mechanism. This paper 

applies Qn to the input, then multiplies the result with the 

corresponding impact factor, and further multiplies it by a 

decay factor, with the result being the final output Pu. Let the 

feature map of the u+1-th pixel be represented by XLu+1, and 

the input sequence by Du+1, then the calculation formula is: 
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In the adopted feature attention model, matrices Qw and Qj 

are randomly generated based on the multi-head attention 

mechanism first, where Qw affects (Du+1)T, and Qj affects 

(Du+1), multiplying them together and based on the final result 

to generate the feature map. Let the impact factor of the u+1-

th pixel be represented by α2, then the calculation formula is: 
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Assuming the decay factors corresponding to the previous 

pixel and the next pixel are represented by ε and β, respectively, 

the calculation formula for the final output Wu+1 of the u+1-th 

pixel is: 

 

( )( ) ( )( )1

1 1 1 2

u u

u n u n uW Q D Q D   +

+ +=  +   (6) 

In reiterating the feature attention mechanism proposed in 

this paper, considering the special needs of VR classrooms, we 

will emphasize how this mechanism adapts to the high 

demands for image coherence and completeness in the 

teaching environment. VR classroom scenes, unlike general 

image enhancement applications, not only require improving 

the visual quality of images but also maintaining the logical 

coherence and understandability of teaching content. In this 

study, the feature attention mechanism first processes the 

value of the u-th pixel, through specially designed neural 

network layers for feature extraction, which includes two 

different convolution operations to capture the spatial and 

channel information of the pixel. Then, this feature map is 

processed through an activation function to enhance non-linear 

expression capability. At the same time, the feature map is 

multiplied by a dynamically adjusted decay factor, this process 

finely controls the weight of each pixel's contribution, 

ensuring the prominence of important information. Then, the 

mechanism proceeds to process the next pixel (the u+1-th), 

performing the same operations. This is not only to extract 

features of each independent pixel but also to capture the 

dependencies between adjacent pixels, maintaining the 

contextual coherence of the image. Finally, the mechanism 

will combine the output of the u+1-th pixel with the output of 

the i-th pixel to obtain the final output. This accumulative way 

not only includes the information of the current pixel but also 

integrates the information of previous pixels, thus ensuring the 

coherence and completeness of the image's contextual 

information. 

 

 
 

Figure 2. The SPPF structure 

 

For applications in VR classrooms, this paper innovatively 

improves the SPPF structure in the traditional YOLOv5 

network to adapt to the special requirements of image 

processing in the VR environment. Figure 2 shows the SPPF 

structure. By combining the SPPF module and Transformer 

technology, a new type of module is created, which can more 

effectively capture image features at different scales, 

enhancing its invariance. First, in processing the input image, 
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we perform X, Y direction position encoding to preserve 

spatial information, then extract features through CBS 

operations. Subsequently, pooling operations with 

convolution kernels of different sizes are used to capture 

multi-scale information, and feature fusion is performed 

through the residual structure, finally going through CBS 

operations again to output refined feature mappings. This 

image enhancement method applied in VR classroom scenes, 

compared to other application scenarios, especially 

emphasizes adaptability to dynamic changes and maintaining 

the clarity of learning content in the immersive experience, to 

ensure the maximization of learning outcomes. 

 

 

3. IMAGE VISUALIZATION LAYOUT 

OPTIMIZATION FOR VR CLASSROOM SCENES 

 

With the advancement of technology, VR has become a new 

teaching medium, capable of creating immersive learning 

environments, enhancing learners' engagement, and 

improving learning efficiency. Researching how to effectively 

carry out scene layout can help educators build virtual 

environments that are more in line with teaching goals and 

learners' psychology, enhancing learners' spatial awareness, 

concentration, and memory retention. The goals of conducting 

VR classroom scene image visualization layout include 

creating highly immersive and interactive learning 

environments, improving the accessibility and 

comprehensibility of learning content, and optimizing the user 

interface to meet the needs of different learners. Specifically, 

this involves designing reasonable visual guides and layouts to 

help students adapt to the virtual environment more quickly, 

reducing cognitive load; developing highly adaptable user 

interfaces to ensure that students with different cognitive 

abilities and learning styles can benefit effectively from the 

course; and using data analysis to optimize layout, adjusting 

scene design continuously based on students' interactions and 

learning outcomes to improve teaching effectiveness. These 

goals aim to ensure that the application of VR technology in 

the field of education can maximize its potential. 

 

3.1 Visual GAM 

 

In the application of VR classrooms, to efficiently process 

and optimize the image visualization layout of classroom 

scenes, this study adopts a spatial domain-based graph 

convolutional network model. Spatial domain graph 

convolutional models are suitable for VR teaching scenes 

because they offer advantages in efficiency, generalization 

ability, and flexibility over frequency domain models. Spatial 

models aggregate neighborhood information through a 

message-passing mechanism, allowing for batch processing of 

nodes, thus improving computational efficiency; they do not 

require Fourier transformation of the entire graph, which 

enables the models to better generalize to new graph structures, 

especially important for the dynamic and diverse image 

structures often found in VR teaching scenes; furthermore, 

spatial models can handle complex graph structures, including 

directed and undirected graphs, providing support for the rich 

interaction modes in VR classrooms. Catering to the specific 

needs of VR teaching scenes, such as focusing on the clear 

presentation of teaching content and students' interactive 

experience, this study introduces an attention mechanism, 

enabling the model to focus on visual feature regions that 

significantly affect teaching layout, further enhancing the 

presentation of teaching materials and learning experience. 

This model design, combining spatial graph convolution and 

attention mechanisms, allows the image layout of VR 

classrooms to be more efficient, flexible, and adaptable, 

meeting the special requirements for layout optimization in 

VR teaching environments, and providing a personalized and 

dynamically adaptive teaching experience compared to other 

image visualization layout optimization application scenarios. 

Figure 3 shows the structure of the visual GAM. 

 

 
 

Figure 3. Visual GAM structure 
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The spatial domain-based graph convolutional model used 

here is particularly suited for handling dynamic interactions 

and spatial relationships in VR. The input of the model 

comprises three parts: first, the graph H=(N,R), where N 

represents the collection of image blocks (such as teaching 

elements, interactive buttons, etc.) in the classroom scene, and 

R represents the spatial connection relationships between these 

image blocks, including each node's connection to itself, 

ensuring the importance of self-information is considered 

during feature updating; second, the node feature matrix DH, 

which describes the visual and semantic information of each 

image block; and lastly, the label vector m, providing the target 

score information of nodes during the training process. The 

model's output is twofold: one is the score map H(T), 

preserving the input graph's topological structure, where each 

node's score represents its probability of becoming a visual 

focus in the VR classroom; the other is the predicted width q 

and height g of key visual targets, determining the position and 

size of teaching elements in the layout. Compared to other 

image layout optimization applications, the layout 

optimization of VR classrooms not only needs to efficiently 

process and display teaching content but also consider 

students' gaze tracking and interactive feedback. This requires 

the model to dynamically adapt to different teaching scenarios 

and student behaviors during layout generation, and the spatial 

domain-based graph convolutional model meets these needs 

by providing a highly adaptive and interactive image 

visualization layout optimization solution for VR classrooms 

through attention mechanisms and feature aggregation. 

Unlike other image layout optimization scenarios, layout 

optimization for VR classrooms needs to consider interactive 

presentation of teaching content and students' spatial 

positioning, requiring the model not only to process static 

image features but also to adapt to dynamic interactions and 

changes in user behavior. Thus, the visual GAM constructed 

in this study includes a network structure with two key 

components. The model first utilizes a multi-layer graph 

attention network, combined with preceding and subsequent 

linear layers, effectively integrating the graph H(T) and visual 

saliency features, applying an attention mechanism inspired by 

visual attention mechanisms to enhance the model's ability to 

recognize important visual elements in VR classroom scenes. 

This component outputs a score map, providing a score for 

each classroom element, indicating its likelihood of becoming 

a visual focus of the classroom. The second component is a 

feedforward neural network (FNN), which receives the score 

map as input and precisely regresses the width and height of 

key visual targets, thus determining the size and position of 

teaching elements in the VR classroom layout. 

Assuming the weights of the fully connected layers are 

represented by QIN and QOUT, and the visual saliency feature 

matrix is represented by DH. The scores are represented by 

H(T), and the multi-layer graph attention network expression 

includes: 

 

( ) ( )( )H IN OUT HH T GAT D Q Q D= +  (7) 

 

In the Graph Attention Module (GAT), each graph attention 

layer takes as input the features of classroom elements, 

denoted by d, and outputs a new feature, denoted by d′. 

Assuming the set of neighboring nodes of node nu is denoted 

by Vu, the feature matrix by Q, and the attention coefficient by 

ωuk, for ∀nuN, the linear transformation from dnu to d`nu is 

shown in the following equation: 
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Let the weight vector be represented by x, the formula for 

ωuk is: 
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If the attention mechanism operates independently L times, 

then there is: 
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3.2 Loss functions 

 

The design of the loss function is crucial to ensuring 

effective learning by the network model. Targeting the 

research objectives, this paper designs two types of loss 

functions, each for predicting the position and size of key 

targets in the visual interface. The first loss function, MH, 

focuses on the prediction of graph node probabilities, 

concentrating on enhancing the model's accuracy in locating 

key teaching elements in the VR classroom, ensuring that 

students' attention can be correctly guided to the teaching 

content. The second loss function, MSI, is used for the 

regression task of key visual target sizes, helping the model 

learn how to dynamically adjust the size of elements based on 

teaching content and student interactions, to optimize visual 

presentation and teaching effectiveness. These two 

independent loss functions work together on the model, 

enabling it to accurately predict visual focuses in the VR 

environment and adjust the position and size of elements in the 

layout to support teaching activities in VR classrooms. This is 

different from the loss function design in traditional image 

layout optimization, which might focus more on plane 

aesthetics or general layout rules of the user interface, without 

involving interactivity or teaching objectives. 

Assuming the score of node nu is represented by tnu, MH is: 
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Assuming the number of key targets in the visual interface 

is represented by Vz, then MSI: 
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3.3 Key target coloring for visual interfaces  

 

In VR classroom applications, the selection of a coloring 

scheme plays a crucial role in the learning experience and 

teaching effectiveness. This research focuses on coloring the 

key targets of visual interfaces determined by deep learning 

methods, aiming to enhance students' perception and cognition 

of teaching content through the optimization of color mapping 
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schemes. In the virtual environment, unlike traditional image 

layout optimization, colors need to be harmonious and easily 

distinguishable, while ensuring contrast with the background, 

and aligning with VR's interactivity and immersion 

requirements. Therefore, the coloring needs to consider color 

harmony, to ensure the visual interface does not distract users 

with overly stimulating or discordant colors; color contrast, to 

make key targets stand out against the variable backgrounds of 

the virtual classroom, making them easy to recognize; and 

color readability, ensuring users with different visual abilities 

can clearly identify and understand teaching elements. This 

coloring strategy not only meets the specific educational goals 

of VR classrooms, which is to promote learning through visual 

effects, but also considers users' visual comfort and 

information absorption efficiency, further advancing the 

development and application of VR educational technology. 

In the VR classroom environment, handling color harmony 

must meet aesthetic needs and adapt to the functionality and 

interactivity requirements of this specific teaching 

environment. The deep learning-based key target coloring 

method proposed in this paper first extracts a global color 

palette by performing k-means clustering analysis on 

classroom scene images, establishing a basic color scheme 

consistent with the image style. However, directly applying 

the original colors of the image may not achieve the purpose 

of highlighting educational content and visual guidance. The 

study chooses to introduce palettes designed for visualization 

as built-in templates. These template palettes, combined with 

the educational goals and interactive requirements of VR 

classrooms, optimize color usage, not only enhancing the 

visual appeal of key teaching elements but also ensuring 

overall harmony and contrast with the virtual environment. 

This approach promotes students' focus and understanding of 

the teaching content while maintaining the coherence of the 

immersive learning experience. 

Specifically, suppose the global palette is represented by 

ZOIM={z0-1,z0-2,…,z0-j}, and the number of categories in the key 

target data of the visual interface is represented by kj. The 

template palette is represented by ZOB-I={ZO1,ZO2,…,ZOm}, 

where ZOa={za-1,za-2,…,za-la}1<=a<=m,la=|ZOa|. The 

perceptual distance between template palette ZOa and ZOIM is 

represented by OFZR-a, and the distance between color z0-u in 

ZOIM and color za-k in ZOa is represented by OFz-uk. The 

calculation formula is:  

 

1
1 1
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Suppose the values of two colors in CIELAB space are 

represented by (M*
u,x*

u,y*
u) and (M*

u,x*
u,y*

u) respectively. The 

perceptual distance between two colors can be calculated 

using the formula:  
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To ensure that teaching content, indicators, or interactive 

elements, which are key targets of the visual interface, are 

clearly visible in the diverse background environments of the 

VR classroom, this paper first uses a clustering algorithm to 

analyze the image background area around the key targets, 

extracting the dominant colors of that area. Then, using the 

WCAG 2.0 color contrast formula, it calculates the contrast 

between the colors of the key targets and the background 

colors to ensure a sufficient visual difference between them, 

thereby facilitating visual recognition and understanding of the 

learning content. This process must consider unique visual 

challenges in the VR environment, such as complex scene 

compositions, dynamic background changes, and the effects of 

lighting, ensuring teaching elements maintain high visibility 

under various conditions. Suppose ZOs=MIN1<=a<=m OFzo-a, i.e., 

ZOs is the closest to ZOIM. The primary color of the image 

background area covered by the key target frames of the visual 

interface is represented by ZLO. The contrast between color zs-

u,u∈[0,ls], and ZLOm is represented by ZEu, reflecting the 

visual difference between the two colors. Let the new color 

sequence in the palette be represented by ZO'={z's-1,z's-2,…,z's-

ls}, satisfying ZEu≥ ZEk, m≤u<k< ls. 

For the specificity of VR classrooms, this paper adopts 

optimal color coding to enhance the readability of key data. 

This requires using colors with high contrast to the background 

to highlight important information, ensuring that, regardless of 

background changes in the VR classroom environment, key 

information remains prominent and easy for students to 

identify. Unlike traditional image visualization layout 

optimization, VR classroom scenarios must consider the three-

dimensional environmental effects and immersive 

experience's impact on student attention, such as adjusting the 

size of pie chart segments or the color and size in bar charts, 

making data visualization consistent with students' interaction 

and cognitive processes in virtual space. This optimization is 

not just for aesthetics but more importantly, to improve the 

efficiency and accuracy of information transmission, reduce 

cognitive load, and make it easier for students to recognize and 

understand teaching content in a dynamic and interactive 

learning environment. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the experimental results in Table 1, we can observe 

the performance of various image enhancement methods 

across five different performance metrics. These metrics 

include Structural Similarity Index (SSIM), Average 

Boundary Matching Error (ABME), Mean Squared Error 

(MSE), Peak Signal-to-Noise Ratio (PSNR), and Natural 

Image Quality Evaluator (NIQE). Among these measures, a 

higher SSIM indicates closer image quality to the original 

image; lower ABME and MSE indicate smaller errors; higher 

PSNR indicates better image quality; lower NIQE indicates 

higher perceptual quality. According to the table data, we can 

see that the proposed method performs optimally on four 

indicators (highest SSIM, lowest ABME, lowest MSE, highest 

PSNR), although slightly higher on NIQE than "Proposed 

Method-SPPE," but overall shows the best image 

enhancement effect. This indicates that, when considering 

these performance metrics comprehensively, the proposed 

method can more effectively enhance the quality of VR 

classroom scene images. 

Analyzing the above experimental results, we can conclude 

that the image enhancement generation model based on the U-

net network proposed in this study significantly outperforms 

other variant methods. Although "Proposed Method-SPPE-

CA" and "Proposed Method-CA" performed better on the 

SSIM indicator, the proposed method showed higher 

performance on MSE and PSNR, indicating its advantages in 

reducing errors and improving image quality. 
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Table 1. Performance comparison of image enhancement 

methods for VR classroom scenes in ablation study 

 
Method SSIM ABME MSE PSNR NIQE 

Proposed 

Method-

SPPE-CA 

0.3126 0.2278 0.082 34.268 3.5124 

Proposed 

Method -

CA 

0.3569 0.2249 0.0715 34.236 3.5621 

Proposed 

Method -

SPPE 

0.3154 0.2569 0.097 33.159 3.5214 

Proposed 

Method 
0.4326 0.1895 0.0623 36.689 3.6238 

 

Table 2. Performance comparison of different image 

enhancement methods for VR classroom scenes 

 
Method SSIM ABME MSE PSNR NIQE 

RetinexNet 0.1895 0.3548 0.1689 31.2568 3.8745 

GLADNet 0.2635 0.4216 0.2235 31.2547 3.6589 

Zero-DCE 0.4215 0.2178 0.0689 35.2369 4.1258 

KinD 0.3859 0.2136 0.0578 35.2314 3.7895 

KinD++ 0.3659 1.2359 0.0712 34.5987 4.2365 

RRDNet 0.2874 0.3158 0.1258 32.1245 3.6589 

Proposed 

Method 
0.4326 0.1895 0.0623 36.8954 3.5612 

 

Table 2 shows the performance comparison of different 

image enhancement methods for VR classroom scenes, 

including RetinexNet, GLADNet, Zero-DCE, KinD, KinD++, 

RRDNet, and the U-net-based image enhancement method 

proposed in this paper. In terms of performance metrics, SSIM 

measures the structural similarity of images, ABME represents 

edge error, MSE measures pixel-level error, PSNR assesses 

image reconstruction quality, and NIQE is a no-reference 

image quality evaluation metric for assessing the visual quality 

of images. The results show that the proposed method 

achieved optimal performance on the key indicators of SSIM, 

MSE, and PSNR, indicating its superior ability in reproducing 

structural details, reducing pixel errors, and enhancing image 

quality over other methods. Especially, the significant 

improvements in SSIM and PSNR indicate that the effect of 

image enhancement is closer to the real visual perception of 

the original scene. Also, relatively good results were obtained 

on NIQE, showing that the perceptual quality of images was 

also improved. 

A comprehensive analysis of the data in Table 2 leads to a 

clear conclusion: the U-net-based image enhancement method 

proposed in this paper shows significant advantages in the 

application of VR classroom scenes. Compared with other 

advanced image enhancement methods, the proposed method 

achieved the best performance on multiple important 

evaluation metrics, especially in terms of structural 

preservation and improvement of image quality. This result 

not only validates the effectiveness of the U-net structure in 

image enhancement tasks but also demonstrates the success of 

the authors in optimizing scene layout after improving the 

SPPF structure in Yolo5. 

In Figure 4, it can be observed that with the increase in the 

number of enhancement processing rounds, the PSNR 

experiences fluctuations, showing a non-monotonic trend, but 

overall, as the number of rounds increases, the PSNR value 

tends to rise. Especially, when the number of rounds increased 

to 12.5, PSNR reached a significant peak of 28.1, and although 

there were fluctuations, it reached the highest value of 29.4 at 

the final round of 17.5, reflecting the gradual improvement in 

image quality. Moreover, the SSIM indicator steadily 

increased from the initial 0.923 to the final 0.954, showing that 

the image enhancement processing steadily improved the 

structural fidelity of the image with the increase in rounds. The 

improvement in these two indicators indicates that with the 

increase in the number of iterations of the enhancement model, 

both image quality and structural similarity have been 

improved. From these experimental results, it can be 

concluded that the image enhancement method based on the 

U-net network proposed in this paper has a clear enhancement 

effect on VR classroom scenes. With the application of deep 

learning algorithms, both the PSNR and structural similarity 

of images have been improved with the increase in iteration 

rounds, showing that the method can effectively improve 

image quality while preserving its structural features. 

 

 
 

(a) PSNR 

 

 
 

(b) Structural similarity 

 

Figure 4. Result images of image enhancement methods for 

VR classroom scenes on the test set 
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In the ablation experiment in Table 3, we can observe the 

performance of the proposed method in image visualization 

layout optimization for VR classroom scenes. By comparing 

the impact of different components, i.e., the removal of the 

GAM and the Fully Connected Neural Network (FNN) on 

performance, the complete version of the proposed method 

showed the best performance on two key indicators: 

Intersection over Union (IoU) and Boundary Displacement 

Error (BDE). Specifically, the IoU increased from 0.37 with 

GAT removed and 0.52 with FNN removed to 0.61 with the 

proposed method, and the BDE significantly decreased from 

103 with GAT removed and 65 with FNN removed to 47. 

These results indicate that both the GAT and the FNN play an 

important role in the method proposed in this paper, and their 

combination significantly enhances the optimization 

performance of image layout. 

Further analysis leads to the conclusion that our method, by 

integrating the visual graph attention mechanism and 

innovative loss functions, achieves efficient image style 

extraction and application in VR classroom scenes, effectively 

optimizing the design of the visual interface. The effectiveness 

of this method is not only reflected in the intuitive 

improvement in performance, where the increase in IoU 

indicates more accurate identification and separation of areas 

of interest in the scene, and the decrease in BDE indicates 

more precise boundary localization. These improvements 

directly enhance the quality and usability of the final visual 

layout, confirming the practical value and technical innovation 

of our method in enhancing VR teaching environments. 

Table 4 shows the performance comparison of different 

methods in the task of image visualization layout optimization 

for VR classroom scenes. From the table, it is evident that the 

proposed method outperforms other methods across all 

evaluation indicators. On the IoU, the proposed method 

reached 0.61, significantly higher than other methods, 

indicating that it is more precise in correctly identifying and 

segmenting areas of interest. Meanwhile, in terms of BDE, the 

proposed method also performed the best, with only 47, far 

lower than other methods, meaning more accurate boundary 

localization and smaller errors. In terms of User Satisfaction 

Score (Uscore) and User Satisfaction Value (Uvalue), the 

proposed method reached 4.1 and 81%, respectively. These 

significant improvements further reflect the advantage of the 

proposed method in user experience, indicating that the 

proposed method can achieve high recognition and satisfaction 

in practical applications. 

From these experimental results, it is clear that the proposed 

method, by combining the visual GAM and innovative loss 

functions, has achieved significant improvements in the 

visualization layout optimization of VR classroom scene 

images. Not only has it surpassed existing methods in accuracy 

of image processing and precision of boundary localization, 

but it has also shown great potential in enhancing user 

satisfaction and practical value. 

In this study, multiple algorithms were employed for the 

visualization layout optimization of VR classroom scene 

images, and their performance was quantified. In Figure 5, the 

algorithms compared include E-CNNs, C-GANs, DRLMs, 

GPU-PSO, and MTL-Fs. With the aid of the visual GAM, the 

proposed method focuses on extracting color styles from 

various input images and effectively applying these styles to 

scene layout optimization. The specific experimental results 

show that in five different VR classroom scenarios, the 

proposed method performed excellently in terms of 

initialization success position and had the highest tracking 

success rate in all test scenarios. Especially in two weak-

texture scenarios, "Historical Space-Time Reproduction" and 

"Language Learning Interactive Space," the proposed 

method's average tracking success rate was about 25% and 65% 

higher than the second-place MTL-Fs, respectively, indicating 

its exceptional performance and high adaptability in handling 

complex scenes. 

 

Table 3. Performance comparison of image visualization 

layout optimization methods for VR classroom scenes in 

ablation study 

 
Method IoU↑ BDE↓ 

Proposed Method-GAT 0.37 103 

Proposed Method-FNN 0.52 65 

Proposed Method 0.61 47 

 

Table 4. Performance comparison of different image 

visualization layout optimization methods for VR classroom 

scenes 

 

Method IoU↑ BDE↓ Uscore↑ Uvalue↑ 

E-CNNs 0.34 112 2.3 3% 

C-GANs 0.38 109 2.6 10% 

DRLMs 0.33 111 2.2 5% 

GPU-PSO 0.55 85 2.8 15% 

MTL-Fs 0.54 66 3.1 30% 

The 

Proposed 

Method 

0.61 47 4.1 81% 

 

 

 
 

Figure 5. Results of image visualization layout optimization for VR classroom scenes in different scenarios 
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(a) Historical Space-Time Reproduction (b) Language Learning Interactive Space 

   

(c) Conceptual Visualization (d) Simulated Training Lab 

 

Figure 6. Effects of image visualization layout optimization for VR classroom scenes in different scenarios 

 

To further evaluate the performance of the proposed 

algorithms, this study compared the proposed algorithm with 

two variants: proposed method-GAT and proposed method-

FNN, with experimental results shown in Figure 6. The results 

demonstrate that in the "Historical Space-Time Reproduction" 

sequence, after turning, both proposed method-GAT and 

proposed method-FNN were unable to continue tracking, 

while the proposed algorithm, despite experiencing significant 

rotational errors during the turn, was still able to maintain 

tracking, leading to a noticeable trajectory shift. In the 

"Language Learning Interactive Space" sequence, facing the 

single texture of white walls and floors, proposed method-

GAT and proposed method-FNN showed significant 

localization errors, clearly evidenced by the red circles in 

Figure 6. For the "Conceptual Visualization" scenario, 

proposed method-GAT lost tracking shortly after initialization, 

and proposed method-FNN lost tracking at the third turn, with 

only the complete version of the proposed algorithm 

maintaining stable tracking throughout the sequence. In the 

dynamic "Simulated Training Lab" scenario, despite rapid 

turns and motion blur, both proposed method-GAT and 

proposed method-FNN exhibited good adaptability. 

From the analysis, it is evident that the algorithm proposed 

in this paper has significant advantages in complex VR scenes. 

Although in weak-texture environments, such as turning 

scenes, the proposed algorithm still faces challenges, leading 

to rotational errors and trajectory shifts, overall, its 

performance remains superior to the variants based on GAT 

and FNN. This suggests that while the proposed algorithm still 

requires improvements in handling scenes with complex turns 

and single-texture features, it has shown strong capabilities in 

continuous tracking and adapting to dynamic scenes. These 

results emphasize the importance of considering the diversity 

of textures and dynamic changes in scenes when designing 

visualization layout optimization algorithms to improve the 

robustness and adaptability of the algorithms. 

 

 

5. CONCLUSION 

 

This study proposes a series of innovative methods and 

models for image quality and layout optimization in VR 

classroom scenes. First, through an image enhancement 

generation model based on the U-net network, the quality and 

detail expression of VR classroom scene images have been 

significantly improved, offering users a clearer and more 

immersive visual experience. Second, the study introduces and 

improves the SPPF structure from Yolo5, optimizing the scene 

layout efficiency, with experimental results validating the 

effectiveness of this structure in enhancing scene layout 

effects. Furthermore, by utilizing a visual GAM and an 

innovative loss function, the study effectively extracts color 
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styles from input images and applies these styles to visual 

interface design, improving the aesthetic and visual comfort of 

the scenes. 

In terms of experimental research, this paper conducts 

detailed ablation experiments and performance comparison 

experiments. By analyzing the PSNR and SSIM of different 

VR classroom scene image enhancement methods, the 

effectiveness of the proposed enhancement method is verified. 

Additionally, the paper compares the performance of various 

methods for image visualization layout optimization in VR 

classroom scenes, providing optimization results in different 

scenarios, further proving the advantages of the proposed 

methods. 

Overall, the research findings of this paper advance the 

development of image enhancement and layout optimization 

for VR classroom scenes at a technical level, holding 

significant academic and practical value, and serving as a 

reference for researchers and developers in related fields. 

However, this study also has certain limitations, such as the 

need for improved stability and robustness in processing 

complex dynamic scenes. Future research directions could 

focus on further improving algorithms to adapt to more diverse 

and rich VR environments, such as by integrating more 

advanced deep learning models to enhance the algorithms' 

generalization capabilities and reducing dependence on high-

quality training data. Additionally, exploring the application 

of the research findings in a wider range of VR application 

scenarios, such as remote education, virtual tourism, and game 

design, could help validate and expand the applicability and 

effectiveness of the proposed method. 
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