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To address the shortcomings of existing conveyor belt deviation detection methods, 

such as poor fault location accuracy, a low automation level and low reliability, a 

method that utilizes machine vision technology to detect belt deviations in belt 

conveyors is proposed. This method involves preprocessing operations on captured 

video images, including Region of Interest (ROI) extraction, grayscale processing, and 

noise reduction, thereby eliminating image noise and interference. To address the edge 

blurring due to Gaussian filtering and threshold setting issues in Canny detection, an 

enhanced edge detection technique using a guided filter and the Otsu method modifies 

the traditional Canny operator is introduced. Subsequent application of Hough 

Transform and least squares fitting processes delineate the edges of the conveyor belt 

and its rollers during operation. Utilizing the detected edges of the conveyor belt and 

rollers as references, a dual-baseline positioning method is for the first time proposed 

to quantify the deviation degree, facilitating the identification of deviation faults. After 

detection with the improved Canny algorithm, clearer contour binary images with fewer 

noise and impurities were obtained. Experiments conducted on images from various 

deviation scenarios yielded an average detection accuracy of 95.4% and a detection 

speed of 26 frames per second (FPS). This approach not only enhances the detection 

speed and accuracy but also reduces the frequency of conveyor belt failures and 

improves the operational efficiency of belt conveyors. 
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1. INTRODUCTION

As China's economy rapidly develops, the demand for 

energy continues to increase. However, under the goals of 

peaking carbon emissions and achieving carbon neutrality, 

constructing a comprehensive multi-energy supply system and 

realizing the sustainable development and green 

transformation of energy have become the current crucial 

directions in energy development [1, 2]. China has rich coal 

reserves, currently ranking among the world's top in terms of 

coal storage and annual coal production [3, 4]. As coal remains 

a major source of energy in China, it is essential to develop 

intelligent coal machinery equipment, enhance safety 

management in coal production, and improve mining 

technology levels [5]. Gradually achieving automated and 

intelligent mining and the green, clean, and efficient utilization 

of coal resources reduces the negative environmental impacts 

during the mining, production, and use of coal, ensuring the 

healthy development of the coal mining industry [6, 7]. 

In the coal production process, mining belt conveyors 

primarily transport large quantities of coal from the mine 

bottom to the surface, forming an integral part of the coal 

mining and utilization process. The safe and stable operation 

of these conveyors directly affects the safety and efficiency of 

coal production [8]. Additionally, compared to road and rail 

transportation, belt conveyor systems have the advantages of 

large transport capacity, long transport distances, low freight 

rates, high efficiency, high automation levels, continuity, and 

convenient loading and unloading, and are widely used in 

underground and open-pit coal mines [9, 10]. Conveyor belt is 

the most expensive part of any belt conveyor. It is responsible 

for 40% to 60% of the conveyor’s total price [11]. Belt 

conveyors often operate under harsh conditions for long 

periods at high loads and intensities, frequently experiencing 

various faults [12]. Studies have shown that about 70%-80% 

of accidents involving belt conveyors are due to belt deviations 

[13]. When deviation occurs, a significant amount of coal falls 

from the side of the conveyor belt, severely impacting 

production efficiency and even threatening the safety of 

miners on the production line [14]. 

Belt deviation refers to the gradual deviation of the 

conveyor belt's center position from the centerline of the 

conveyor frame, resulting in one side widening and the other 

narrowing, breaking the normally symmetrical and equal-

width state of the belt [15]. Such faults can cause uneven belt 

tension, leading to wear and deformation, spillage of materials, 

or the belt twisting, significantly increasing operational 

resistance, potentially burning out motors, causing the 

conveyor belt to slip, and thereby leading to even more severe 

accidents such as fires [16]. Therefore, monitoring the state of 

conveyor belt deviation is equally important for ensuring safe 

production, and various deviation fault monitoring methods 

have been proposed and applied ever since. 

Traditional fault detection devices for belt conveyors 

Mathematical Modelling of Engineering Problems 
Vol. 11, No. 5, May, 2024, pp. 1257-1264 

Journal homepage: http://iieta.org/journals/mmep 

1257

https://orcid.org/0009-0007-9753-4277
https://orcid.org/0000-0003-0658-1152
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110514&domain=pdf


 

mostly rely on structural changes or physical and chemical 

changes to complete detection tasks. However, these devices 

tend to fail over long periods in harsh underground 

environments, reducing their reliability [17]. Current domestic 

and international fault detection systems for underground coal 

mine belt conveyors still face issues such as single 

functionality, poor fault localization and analysis accuracy, 

low automation levels, and low reliability. Moreover, the 

systems developed so far are generally costly and not easy to 

maintain [18]. Therefore, how to quickly and reliably detect 

and warn of failures during the operation of mining belt 

conveyors is an urgent problem in the safe production of coal 

energy. 

To overcome the existing problems in fault detection 

technology for underground coal mine belt conveyors, this 

paper proposes an intelligent detection method for conveyor 

belt deviation faults based on machine vision. By improving 

the machine vision edge detection algorithm, edge images with 

clearer outlines and less noise and impurities are obtained, and 

through the conveyor belt deviation mathematical model, 

rapid and accurate detection of deviation faults is achieved, 

and enhancing the reliability of underground belt conveyor 

monitoring systems, effectively preventing fault omissions 

due to the failure of traditional detection devices. 

 

 

2. LITERATURE REVIEW 

 

2.1 Detection of conveyor belt deviation 

 

Many experts and scholars have researched the detection of 

conveyor belt deviation and have proposed numerous 

solutions aimed at minimizing the frequency of deviation 

occurrences and reducing failures in belt conveyors. Existing 

methods for detecting conveyor belt deviation primarily 

include contact and non-contact methods. 

Contact detection methods for conveyor belt deviation 

primarily utilize mechanical action deviation sensors. When 

the conveyor belt touches the sensor, it triggers a deviation 

travel switch and a knob, emitting an alarm signal. If the 

conveyor belt continues to deviate, a second-level knob is 

triggered, which then activates an emergency stop button. 

While this detection device is convenient to use, the sensors 

are significantly affected by environmental factors and often 

fail due to rust [19]; another method involves identifying 

conveyor belt deviation by measuring the deflection angle of 

the vertical rollers driven by the misaligned belt, using this 

deflection angle to detect and categorize deviation with pre-

warning [20]. This mechanical structure-based pre-warning 

method for belt deviation is highly stable, but it cannot monitor 

the deviation status and trends online, and the communication 

between devices is complex, requiring extensive installation, 

deployment, and high maintenance costs. 

The limitations of contact detection methods are poor 

reliability and accuracy. In high-speed operations, friction 

between the conveyor belt edge and the guide rod can cause 

wear and deformation of the belt and damage to sensors, often 

leading to false alarms or even shutdowns. Additionally, these 

methods have poor sensitivity, and cannot estimate the degree 

of deviation, thus not effectively meeting practical production 

needs.  

Non-contact detection devices generally utilize 

technologies such as high-definition cameras and 

photoelectric sensors, combined with microcontrollers, PLCs, 

and virtual machines, to form conveyor belt deviation 

detection and monitoring systems, but these are somewhat 

limited by the site environment [21]. One non-contact method 

uses photoelectric sensors to detect the operational status of 

the conveyor belt. This detection method is quite effective for 

ordinary deviation detection and correction, but it struggles 

with diagnosing faults like serpentine deviation or twisted 

belts [18]. Chamorro et al. [22] proposed the fusion of sensor 

monitoring systems and developed an algorithm for analyzing 

sensor data to monitor the health of conveyor systems, 

enabling monitoring of belt speed, belt load, and belt 

misalignment. However, long-term test runs are required to 

ensure system reliability; Stachowiak et al. [23] introduced a 

biomimetic inspection robot system that also relies on image 

processing to extract conveyor belt edge information, which 

has been preliminarily applied in mines. 

 

2.2 Machine vision image detection 

 

Machine vision image detection refers to the use of 

computer vision algorithms and models to detect the presence 

and location of specific objects, items, or patterns in images. 

It is a technique that utilizes artificial intelligence to transform 

specific image information into data that can be understood 

and interpreted by computers. The main steps include image 

acquisition, image preprocessing, feature information 

extraction, object detection, classification, and recognition. 

Machine vision image detection technology is widely used in 

many fields, including autonomous driving, security 

monitoring, medical image analysis, and industrial quality 

inspection [21]. 

Machine vision image processing is also extensively 

applied in the field of conveyor belt deviation monitoring, with 

numerous scholars conducting extensive research using 

machine vision image inspection technology. For instance, 

Wang et al. [24] proposed a method that utilizes line detection 

to identify the edges of a conveyor belt and measures the 

deviation distance to assess the extent of the belt's deviation. 

Zeng et al. [18] introduced a deep learning approach based on 

a multi-scale feature fusion network, which has been 

experimentally proven to be more effective than FCN and 

other segmentation models and the classical Canny edge 

detection algorithm in detecting the edges of conveyor belts. 

Wang et al. [25] combined the Canny operator with Hough line 

transformation to extract the edges of the conveyor belt, and 

by using morphological processing and connected component 

analysis, they determined the position of the conveyor belt and 

assessed whether deviation had occurred. Zhang et al. [26] 

based on Canny detection and Hough transformation, 

proposed an image processing mode that uses a laser 

projection line as a reference, also achieving monitoring of 

conveyor belt deviation faults. Wang et al. [21] considered the 

impact of dust and other factors in harsh environments, used 

wavelet transform to denoise and enhance coal mine conveyor 

belt images, employed the OpenCV vision library for image 

preprocessing and conveyor belt edge extraction, and designed 

a three-level correction mechanism involving "adjustable 

idler—passive drum—motor." Liu et al. [19] processed 

conveyor belt images captured by industrial cameras mounted 

on inspection robots, used Hough transformation to extract the 

belt edges, employed template matching to obtain information 

on the outer edge of the rollers, and by comparing the two, they 

assessed the degree of deviation, accomplishing deviation 

detection at any position of the segment belt conveyor. 
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3. MATHEMATICAL MODEL AND RESEARCH 

METHOD 

 

The principle of conveyor belt deviation detection based on 

machine vision image processing technology proposed in this 

paper is as follows: Data collection is conducted through a 

camera located directly above the conveyor belt, capturing 

real-time video and transmitting the data to an edge computer 

for deviation detection, as shown in Figure 1. The decoded 

video undergoes image capture every 5 seconds. Firstly, the 

collected data undergo image preprocessing, including 

extraction of the ROI, grayscale transformation, noise 

processing, and histogram equalization. Then, enhanced 

Canny algorithm is used for edge feature extraction, and 

morphological filtering methods are applied to handle 

interference signals and false edges. Finally, through Hough 

transform and least squares fitting, the edges of the conveyor 

belt and rollers during operation are identified. Using the 

detected edges of the conveyor belt and rollers as a reference, 

a dual-baseline positioning method is designed, establishing a 

mathematical model for conveyor belt deviation, calculating 

the extent of deviation, and realizing the identification of 

conveyor belt deviation faults. 

 

 
 

Figure 1. Flowchart of conveyor belt deviation detection 

 

3.1 Image processing  

 

Image preprocessing includes extracting the image ROI, 

grayscale transformation, noise processing, and histogram 

equalization. When the camera is installed directly above the 

conveyor belt, facing the direction of material transportation 

on the belt, the belt area usually occupies more than 70% of 

the entire image. Therefore, the ROI is taken as 35% of the 

image width from the center point to both left and right, and 

from the top to the bottom boundary of the image. Grayscale 

transformation involves converting the original RGB image 

into a grayscale image to increase the efficiency of algorithm 

processing. Unprocessed grayscale images often contain noise 

points, which significantly affect subsequent edge detection, 

thus necessitating filtering operations to eliminate these noise 

points. After noise processing, the histogram equalization 

algorithm is used to stretch the image contrast, enhancing the 

image's dynamic range, making the black and white 

boundaries more prominent, and facilitating the subsequent 

edge detection algorithm. 

(1) Grayscale processing 

Grayscale processing refers to the process of converting a 

color image into a grayscale image. The purpose of using a 

grayscale image is to simplify the matrix, reduce the 

information channels of the image to be processed, and 

increase computational speed. In this study, the weighted 

average method is used for image grayscale processing, hence 

each pixel's grayscale value is the weighted average of the red, 

green, and blue color channels. The calculation expression is 

as shown in Eq. (1): 

 
Gray(x, y) = 0.299 ∗ R(x, y) + 0.587 ∗ G(x, y) + 0.114 ∗ B(x, y) (1) 

 

where, Gray(x,y) represents the pixel value of the grayscale 

image, and R(x,y), G(x,y), and B(x,y) respectively represent 

the pixel values of the red, green, and blue color channels at 

the (x,y) coordinates in the original image. The coefficients 

0.299, 0.587, and 0.114 are standard weights used in the 

formula for converting color images to grayscale images. 

(2) Noise processing  

Considering factors such as coal dust pollution, possible 

camera shaking, and dim underground lighting that can reduce 

the clarity of the captured video images, it is necessary to filter 

out noise from the video images. The Wiener filter, which has 

the advantages of low computational load, good image 

restoration effects, noise suppression, and prevention of noise 

amplification, achieves a good balance between image clarity 

and noise suppression. The calculation expression is shown in 

Eq. (2): 

 

𝑒2 = 𝑚𝑖𝑛𝐸 [|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)|
2

] (2) 

 

where, e² represents the mean squared error between the 

original image and the Wiener filtered image, E is the expected 

value of the parameter, f(x,y) is the original image, and 𝑓(𝑥, 𝑦) 

is the Wiener filtered image.  

(3) Histogram equalization  

Histogram equalization redistributes the grayscale values in 

the original image, making the differences between grayscale 

levels more apparent, thus achieving enhanced contrast. After 

image filtering, using histogram equalization to stretch the 

image contrast enhances the image's dynamic range, making 

the black and white boundaries more distinct, and improving 

the detection effectiveness of the edge detection algorithm. 

The image is composed of many pixels, so the mapping 

method for image histogram equalization is: 
 

Sk = ∑
nj

n

k

j=0
  (k = 0,1,2, ⋯ , L − 1) (3) 

 

where, Sk is the value after cumulative distribution of the 
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current gray level, n is the sum of pixels, nj is the number of 

pixels in the current gray level, and L is the total number of 

gray levels.  

3.2 Conveyor belt positioning algorithm 

3.2.1 Edge detection 

In the images, most important information is present at the 

edges, which are the boundaries where there is a sharp change 

in grayscale. The Canny algorithm is a commonly used edge 

detection algorithm, which involves the following four steps: 

(1) Gaussian filtering of the image; (2) calculation of gradient

magnitude and direction; (3) non-maximum suppression; (4)

double threshold filtering and edge linking.

However, during the detection process, Gaussian filtering 

uses the weighted average of pixel neighborhoods to replace 

the pixel values at the detection points, reducing the grayscale 

differences at the boundaries and causing blurred edges. The 

manual setting of dual thresholds cannot adapt to changes in 

the environment, leading to extracted edges that are 

discontinuous and incomplete. To avoid these issues with 

Canny edge detection, this paper uses an improved Canny 

edge detection algorithm based on guided filtering and the 

maximum inter-class variance method (Otsu method) for 

detecting the edges of conveyor belts and rollers. 

The image gradient calculation in the Canny algorithm 

detection process is very sensitive to noise signals. This paper 

uses guided filtering technology to remove noise interference 

signals. The principle is that a point on the image and its 

neighboring parts can form a linear model, so the overall 

image filtering function can be represented by multiple local 

linear models. The grayscale average of a point's pixel is taken 

from the average of all local linear models that include that 

point, thus achieving filtering in any direction. During the 

guided filtering process, the filtered grayscale value of a pixel 

in the image is given by Eq. (4). 

𝑞𝑖 = 𝛴𝑗𝑊𝑖,𝑗(𝐼)𝑝𝑗 (4) 

where i and j represent pixel points; 𝑞𝑖 is the pixel value of the

output image; I is the guide image; p is the input image; 𝑊𝑖,𝑗  is

the kernel function between the guide image I and the input 

image p. 

Define 𝜔𝑘 as the filtering window for pixel k, then the local

linear model between the output image q and the guide image 

I can be expressed using Eq. (5). 

𝑞𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘 , ∀ⅈ ∈ 𝜔𝑘 (5) 

Taking the gradient on both sides of Eq. (4), we can get Eq. 

(6): 

𝛻𝑞 = 𝑎𝛻𝐼 (6) 

Further minimization of the window 𝜔𝑘 results in the loss

function within the filtering window as shown in Eq. (7). 

𝐸(𝑎𝑘 , 𝑏𝑘) = 𝛴𝑖∈𝜔𝑘
((𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝑝𝑖)2 + 𝜀𝑎𝑘

2) (7) 

From this, the values of a and b are calculated, as shown in 

Eqs. (8) and (9), and thus the output image q can be obtained. 

𝑎𝑘 =

1
|𝜔| 𝛴𝑖∈𝜔𝑘

𝐼𝑖𝑝𝑖 − 𝜇𝑘𝑝𝑘̅̅ ̅

𝜎𝑘
2 + 𝜀

(8) 

𝑏𝑘 = �̅�𝑘 − 𝑎𝑘𝜇𝑘 (9) 

where, ε is the smoothing factor for 𝑎𝑘, �̅�𝑘 =
1

|𝑤|
𝛴𝑖∈𝜔𝑘

𝑝𝑖  is the

average of p in 𝜔𝑘, |ω| is the number of pixels in the window, 
𝜇𝑘 and 𝜎𝑘

2 are the mean and variance of the pixel intensities 
within the window. Using the guided filtering method for 

filtering the conveyor belt edge images not only effectively 

eliminates high-frequency parts of the image but also retains 

the grayscale gradients of the edges, maintaining good 

conveyor belt edge features, and laying a solid foundation for 

subsequent edge detection. 

To avoid the problems of manually setting high and low 

threshold parameters in the original algorithm, which cannot 

adapt to environmental changes, this paper uses the Otsu 

algorithm to automatically determine the optimal threshold by 

using the image's grayscale histogram to divide the image 

pixels into two categories: background and target. If the inter-

class variance between the background and target is larger, it 

indicates a greater difference between the background and 

target in the image, thus a more accurate classification. When 

the background and target classification is incorrect, it leads to 

a smaller inter-class variance. Therefore, the optimal threshold 

is when the inter-class variance is maximized. Assuming the 

segmentation threshold between the target and background is 

T, the proportion of target pixels in the image is 𝜔0, and the 
average grayscale is 𝜇0; the proportion of background pixels is 

𝜔1 , and the average grayscale is 𝜇1 . The total average 
grayscale 𝜇, and the inter-class variance g between the target 

and background can be expressed using Eqs. (10) and (11), 

with a constraint relationship as shown in Eq. (12). 

𝜇 = 𝜔0𝜇0 + 𝜔1𝜇1 (10) 

𝑔 = 𝜔0(𝜇0 − 𝜇)2 + 𝜔1(𝜇1 − 𝜇)2 (11) 

𝜔0 + 𝜔1 = 1 (12) 

Substituting Eq. (12) into Eq. (11) yields: 

𝑔 = 𝜔0𝜔1(𝜇0 − 𝜇1)2 (13) 

As shown in Eq. (13), when the inter-class variance g is 

maximized, the difference in grayscale values between the 

foreground and background in the image is maximized, and 

thus the threshold 𝑇 = 𝑔𝑚𝑎𝑥 . Therefore, the high threshold 𝑇ℎ

for the Canny operator is set to T, and based on experience, the 

low threshold is typically set to 0.3 to 0.5 times the high 

threshold. In this paper, the low threshold 𝑇𝑙  is chosen as 0.4 ∗
𝑇ℎ.

The steps of the improved Canny edge detection algorithm 

are as follows: First, guided filtering is used to smooth and 

filter the grayscale image of the original image, reducing noise 

interference and preserving edge information. Second, the 

Sobel operator is used to calculate the gradient. Third, non-

maximum suppression is applied to remove non-maximum 

points in the positive and negative gradient directions, 

retaining maximum gradient points. Fourth, the Otsu 

algorithm with a suppression factor is used to adaptively select 

the threshold T, and this value is set as the high threshold 𝑇ℎ =
𝑇 for the Canny operator, with the low threshold 𝑇𝑙 = 0.4 ∗ 𝑇ℎ.

The final step involves using the double threshold method to 

detect, retaining strong edges and weak edges connected to 

strong edges, filtering out other interferences. 
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3.2.2 Line extraction 

The Hough transform is widely used in line detection due to 

its robustness and strong noise resistance. Its principle 

involves a transformation of parameters between different 

spaces. Specifically, a line in the Cartesian coordinate system 

can be mapped to a point in the Hough parameter space, 

forming a peak point. This transforms the problem of line 

detection in the Cartesian coordinate system into a problem of 

peak statistics in the Hough parameter space, allowing for 

detection even if the spatial shape is partially obscured or 

distorted in the image. As lines parallel to the y-axis in the 

Cartesian coordinate system do not exist or have an infinite 

slope, it is necessary to transform the line representation from 

Cartesian coordinates to polar coordinates before mapping to 

the Hough space, as shown in Figure 2. 

In the Hough transform, the representation of lines in polar 

coordinates is used, as shown in Eq. (14). 

 

𝜌 = 𝑥 cos 𝜃 + 𝑦 sⅈn 𝜃 (14) 

 

where, ρ is the distance from the origin to the line, and θ is the 

angle between the x-axis and the line. 

 

 
(a) Image space 

               
(b) Parameter space 

 

Figure 2. Schematic of the Hough transform dual 

relationship 

 

3.2.3 Least squares fitting 

Least squares fitting is a commonly used linear fitting 

method in engineering that aims to find the best fit parameters 

by minimizing the sum of the squares of the residuals, thereby 

ensuring that the model's predicted values closely match the 

observed data. Its advantage lies in providing a simple yet 

powerful method to estimate model parameters, allowing the 

model to adapt to the observed data. This paper utilizes the 

least squares method to achieve linear fitting of line segments 

near the conveyor belt edge, thereby correcting the edges of 

the rollers and the conveyor belt. 

 

3.3 Method for calculating deviation 

 

Under normal conditions, the center position of the 

conveyor belt coincides with the centerline of the conveyor 

frame. As the distribution of transported materials changes or 

due to other variable factors, the position of the conveyor belt 

may shift. However, the relative positions of the rollers on 

both sides of the conveyor will not change, and the outer edges 

of the rollers on both sides of the belt conveyor will form two 

straight lines. The midline of these two lines is considered the 

centerline of the frame. Therefore, this paper proposes a 

method for determining conveyor belt deviation using the 

straight lines formed by the edges of the rollers of the belt 

conveyor. The deviation of the conveyor belt is calculated by 

measuring the distance from the midline of the conveyor belt 

edges to the midline of the rollers on both sides, as shown in 

the schematic diagram in Figure 3. 

 

 
 

Figure 3. Schematic diagram of conveyor belt deviation 

judgment model 

 

As shown in Figure 3, the coordinate system is established 

at the top left corner of the image, and a virtual reference line 

is constructed, which is the blue dashed line parallel to the x-

axis. The red lines a and b on both sides of the image are the 

lines formed after fitting the edges of the rollers, and the green 

lines p and q are the straight lines formed after fitting the edges 

of the conveyor belt. The intersection points of the virtual 

reference line with lines a and b are A and B, respectively, and 

segment AB is the connecting line of the rollers on the left and 

right. The intersection points of the virtual reference line with 

lines p and q are M and N, respectively, and segment MN is 

the line on the conveyor belt, with both MN and AB parallel 

to the x-axis. The green dashed line f is the midline of segment 

MN, intersecting the virtual reference line at point G. The red 

dashed line c is the centerline of segment AB, intersecting the 

virtual reference line at point C. 

Using the coordinates of each pixel, the straight lines p and 

q of the left and right edges of the conveyor belt can be fitted, 

as well as the outermost lines a and b on both sides of the 

rollers. Based on the midpoint G(xG,yG) determined by points 

M(xM,yM) and N(xN,yN) on the edge of the conveyor belt, the 

midline f of the conveyor belt in actual operation can be 

obtained:  

 

G(xG, yG) = G(
xM + xN

2
,
yM + yN

2
) (15) 

 

Similarly, based on the midpoint C(xC,yC) determined by 

points A(xA,yA) and B(xB,yB) on the fitted lines of the rollers, 

the midline c of the left and right rollers can be determined:  

 

C(xC, yC) = C(
xA + xB

2
,
yA + yB

2
) (16) 

 

When the conveyor belt is not misaligned, line f coincides 
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with line c. When the conveyor belt is misaligned, the distance 

D2 from point A to line c is the distance from point A to point 

C:  
 

D2 = √(xC − xA)2+(yC − yA)2 (17) 

 

The distance D1 from point A to line f is the distance from 

point A to point G:  
 

D1 = √(xG − xA)2+(yG − yA)2 (18) 

 

Therefore, the distance between line f and line c is: 
 

∆d = |D2 − D1| (19) 

 

Thus, Δd is the actual deviation distance of the conveyor 

belt. When the edges of the conveyor belt coincide with the 

external connection lines of the rollers, i.e., when line a 

coincides with line p, it represents the maximum value of 

conveyor belt deviation. At this time, the distance D1min from 

point A to line f is at its minimum, so the maximum distance 

∆dmax between line f and line c is:  
 

∆dmax = |D2 − D1min| (20) 

 

Consequently, the overall offset Es of the conveyor belt is: 
 

Es =
∆d

∆dmax

× 100% (21) 

 

When D1<D2 and the actual overall offset Es  of the 

conveyor belt exceeds 20%, it can be determined as deviation 

to the left; When D1>D2 and Es  exceeds 20%, it can be 

determined as deviation to the right. 
 
 

4. EXPERIMENT AND ANALYSIS  

 

The experimental subject was a YF19072-BCR300 model 

conveyor at a certain mine. The video image analysis software 

was written in Python and deployed on a supervisory computer. 

Video images were captured by a Hikvision MV-CE050-

31GM model industrial area array CMOS camera installed 

above the conveyor. The video stream was processed frame by 

frame to obtain test images, including images of the conveyor 

belt in normal condition and deviated conveyor belt images. 

First, the test image is subjected to image preprocessing. As 

shown in Figure 4(b), after grayscale processing of the original 

color image, the image contains only one color, with its pixel 

values changing from three channels to a single channel, 

which is beneficial for subsequent image processing to 

improve image quality and processing speed.  

After removing blurred Gaussian noise with Wiener 

filtering, the clarity of the grayscale image was significantly 

improved, and overly bright noise points were filtered out, as 

shown in Figure 5. 

Figures 6(a) and (b) show a comparison between the results 

of the traditional Canny algorithm and the images after the 

improved Canny edge detection, where white represents the 

object's edge contour, and black represents the background. In 

the image processed by the traditional Canny algorithm, the 

bulk materials transported on the conveyor belt have a lot of 

fine edge noise, and the edges on both sides of the conveyor 

belt are blurred and have few straight-line features. After 

detection with the improved Canny algorithm, the conveyor 

belt located in the middle of the image has almost no noise, 

and the left and right edges of the conveyor belt are mostly 

preserved. Thence clearer contour binary images with fewer 

noise and impurities were obtained. The straight lines of the 

left and right edges of the conveyor belt and the rollers' 

contours are clearly visible in the images. 
 

 
(a) 

 
(b) 

 

Figure 4. Image grayscale processing: (a) Original image; (b) 

Grayscale processed image 

 

 
 

Figure 5. Image after wiener filtering 

 

 
(a) 

 
(b) 

 

Figure 6. Conveyor belt edge line feature extraction: (a) 

Traditional canny algorithm result; (b) Image after improved 

canny edge detection 

1262



 

Hough Transform was used to detect multiple groups of 

lines that might represent the edges of the conveyor belt and 

rollers. Detected lines were divided into two groups based on 

their slope: lines with a positive slope were grouped as the left 

line group, and those with a negative slope were grouped as 

the right line group. Subsequently, the average slope for the 

left and right line groups was calculated independently. Lines 

significantly deviating from the average slope on the left were 

removed from the left line group, and similarly, lines in the 

right group significantly different from the average slope on 

the right were also removed. Finally, the remaining lines in the 

left and right groups were fitted to the left and right edges 

respectively using least squares method, as shown by the green 

lines in Figure 7 for the conveyor belt edges, and the red lines 

for the outermost edges of the rollers. Additionally, using the 

method described in Section 3 for detecting the amount of 

deviation of the conveyor belt, the offset between the conveyor 

belt edges and the reference line of the rollers was calculated. 

If the offset exceeds a predefined threshold, it is identified as 

conveyor belt deviation. If D1<D2, the conveyor belt is 

determined to be misaligned to the left; if D1>D2, the conveyor 

belt is determined to be misaligned to the right. 

 

 
 

Figure 7. Image after Hough transform and least squares 

fitting 

 

From the collected 300 test images, 100 images each of no 

deviation, left deviation, and right deviation were selected for 

testing using the methods described above. The test results are 

presented in Table 1. 
 

Table 1. Results of conveyor belt deviation detection 
 

Conveyor Belt 

Operational State 

Number of Images 
Missed 

Detection 

Rate (%) 

Accuracy 

(%) 

Average 

Processing 

Time (ms) 

Sample 

Images 

Identified 

Images 

Successfully 

Detected Images 

Incorrectly 

Detected 

Images 

Left deviation 100 100 96 4 0 96.0 37.4 

Normal 100 100 97 3 0 97.0 35.2 

Right deviation 100 100 93 7 0 93.0 38.3 

As shown in Table 1, under normal conditions, the miss 

detection rate is 0, and there are 3 images with false detected, 

giving an accuracy rate of 97.0%; under deviation conditions, 

the miss detection rate is 0, with 11 images showing false 

detected, resulting in an average accuracy rate of 94.5%. 

Therefore, the combined average detection accuracy for all 

samples is 95.4%.  

On one hand, some images captured during the experiment 

were close to the deviation threshold of the conveyor belt, 

making it difficult for the human eye to discern whether there 

was deviation, leading to incorrect classification of the 

deviation status in the samples. On the other hand, during the 

edge detection and line extraction processes, there were some 

discrepancies between the detected belt edges and the actual 

belt edges, and some sample pictures collected in a dark and 

dusty environment have limited light intensity and low image 

clarity, causing slight fluctuations in accuracy. However, since 

the belt conveyor operation manual allows for deviation within 

a reasonable range during operation, this does not affect the 

actual deviation detection results. 

Additionally, as shown in Table 1, the average processing 

time per photo for the conveyor belt deviation detection 

method is less than 38.3 ms, and the computer can complete 

frame detection in this time, processing 26 frames per second 

(FPS), which means the detection speed reaches 26 FPS. Thus, 

the conveyor belt deviation detection method proposed in this 

study can to some extent meet the requirements for real-time 

deviation fault status detection. 

 
 

5. CONCLUSIONS 
 

In response to the needs for the development of intelligent 

mining equipment, this paper proposes an intelligent detection 

method for conveyor belt deviation faults, achieving relatively 

rapid and accurate detection of conveyor belt deviation 

conditions. This study replaces traditional contact deviation 

sensors with machine vision image detection, reducing the 

need for maintenance personnel and enhancing the level of 

automation in the detection system, which helps to promote 

the development of belt conveyor systems. The contents of this 

study are summarized as follows: 

(1) This paper performed a series of preprocessing 

operations on the collected video images, including ROI 

extraction, grayscale processing, and noise removal, to 

improve computational efficiency and effectively eliminate 

noise and false edges. An improved edge detection method 

based on guided filtering and the Otsu method was used, 

followed by Hough Transform and least squares fitting to 

obtain the edges of the conveyor belt and rollers during 

operation. 

(2) A dual baseline positioning method was proposed, using 

the detected edges of the conveyor belt and rollers as 

references to establish a mathematical model for detecting the 

deviation state of the conveyor belt. This model calculated the 

degree of deviation and is used to identify the deviation fault 

state of the conveyor belt. 

(3) An intelligent detection method for conveyor belt 

deviation state based on machine vision technology was 

designed and tested. In experiments, 300 images of conveyor 

belt shifts under different operational conditions were detected 

and evaluated, achieving an average detection accuracy of 

95.4% and a detection speed of 26 FPS, thus enabling fast and 

accurate detection of deviation fault states. The detection error 

in this study was relatively large in insufficient lighting and 

dusty environments. In the follow-up research, it is aimed to 

solve this problem and propose an effective method to correct 

the deviation to ensure the stable and safe operation of the belt 

conveyor. 
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