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ABSTRACT 

 
Supersonic ejectors can be used in heat powered chillers to transfer mechanical energy between the motive and the inverse 
cycle. Within the ejector, momentum is exchanged between a high speed flow produced by a primary nozzle and a slow 
current coming from the chiller evaporator. Due to the supersonic regime of the primary flow, the mixing of the two streams 
causes significant loss and impairs the system efficiency. Up to now, second law efficiency of ejector chillers is quite low 
and optimization is highly needed. The fluid dynamics of the whole ejector involves turbulent mixing, shock trains and 
complex wall flow, requiring CFD analyses for an adequate description. However, in order to attempt an optimization, 
mathematically workable models are advantageous. 
An analytical scheme that captures the basic features of the turbulent mixing zone is discussed here in view of a Constructal 
design of an ejector chiller.  
 

Keywords: Supersonic ejector chiller, Compressible turbulent mixing, Mixing layer model, Second law analysis, 
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1. INTRODUCTION 

Supersonic ejectors are passive compression devices that 
are employed for a range of applications, from aeronautic 
high-speed propulsion systems to the compression of 
refrigerants in energy and refrigeration systems. In particular, 
the use of ejectors in refrigeration applications is a promising 
solution in the light of its ability to exploit low temperature 
heat to produce cooling. Unfortunately, ejector refrigerators 
are still quite far from the performance obtained by 
absorption cycle machines, mostly due to the severe losses 
occurring inside the supersonic ejector. Even so, the common 
practice is to design the ejector according to empirical 
prescriptions (e.g. ESDU [1]) or to use simplified models to 
compute the main geometric characteristics. These methods 
are generally inadequate for thermodynamic optimization, as 
they are unable to predict the system efficiency as a function 
of its design. In most cases, models overlook the dynamics of 
turbulent mixing and only consider global momentum 
balances adjusted through simple efficiency parameters. Yet, 
turbulent mixing is arguably the most important process 
occurring inside ejectors, as it determines the amount of 
suction flow entrainment and a considerable share of the 
system’s total thermodynamic losses. In what follows, an 
analytical scheme that captures the basic features of the 
turbulent mixing zone is discussed. The model builds on a 
previous scheme devised by Papamoschou [1-2] and is able to 
compute all flow properties inside an axisymmetric or planar 
mixing chamber with either constant or variable cross section. 
The amount of secondary flow entrainment, the work and heat 
exchange, pressure losses and mixing efficiency are computed  

 
as a function of the system geometry and without use of any 
arbitrary parameter. Consequently, this model is particularly 
suited for a thermodynamic optimization of the ejector 
system.  

The model will be validated by comparison with CFD 
results for various operating conditions. Furthermore, its use 
as a tool for a Constructal design of the ejector chiller will be 
discussed. 

2. COMPRESSIBLE TURBULENT MIXING LAYER 

When the primary and secondary flow meet inside the 
mixing chamber, they give rise to a narrow region of strong 
mixing called “mixing layer”. Most interestingly, turbulence 
inside the mixing layer is not homogeneous but rather 
characterized by the formation of coherent eddies which were 
first revealed by the work from Brown and Roshko [4]. There 
are many theories explaining the birth and dynamics of these 
structures (see for example [5] or [6]) and the interested 
reader may refer to those for more details on this subject. 
From the point of view of supersonic ejectors, we are 
interested in the more specific case of compressible mixing 
layers, whose main problems are well illustrated in 
monographs like those from Smits and Dussauge [7] and 
Gatsky and Bonnet [8].  

Figure 1 shows the main features of a mixing layer. Outside 
this region the primary (motive) and secondary (suction) 
streams flow isentropically. Inside the mixing layer, the time 
averaged velocity smoothly varies from the value of the 
undisturbed primary stream to that of secondary stream. The 
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extension of the shear region is usually measured by the 
definition of a “shear layer thickness”. In general, there are 
many ways to define this quantity that, unfortunately, are not 
completely equivalent and can lead to difficulties in the 
comparison of experimental data [8]. In what follows, only 
one of these will be considered, i.e., the “vorticity thickness”. 

 

 
 

Figure 1. Mixing layer inside an ejector 
 

The vorticity thickness is defined as the distance given by 
the ratio of the velocity difference across the layer divided by 
the maximum slope of the velocity profile: 
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where ΔU∞ is the difference between the undisturbed 

primary and secondary stream velocities. 
This definition is most useful whenever an analytical 

function that approximates the mixing layer velocity profile is 
provided. For instance, if the velocity is described by a 
hyperbolic tangent, the knowledge of the vorticity thickness 
allows exact definition of the mixing layers edges. The 
spreading rate of the shear layer thickness along the axial 
direction is defined as: 
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An interesting feature of most shear flows (jets, mixing 

layers, and wakes) is that the spreading rate of the shear layer 
(eq. 2) is constant, i.e. the shear region grows linearly with 
distance (see fig. 1).  

Experimental investigations performed in the 70s have 
shown that compressible mixing layers are affected by a 
significant reduction of the mixing layer spreading rate with 
respect to low speed flows ([4], [9]). The causes of this 
phenomenon have been the subject of studies for more than 
50 years, and yet no clear explanation has been found. Early 
studies tried to explain the effect by the density variations 
resulting from the high expansion levels. However, the work 
of Brown and Roshko [4] demonstrated that this was not the 
main cause. Papamoschou and Roshko [10] later found that 
the decrease of mixing layer spreading rate may be described 
by means of a parameter called convective Mach number: 
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    where a∞1 and a∞2 are the sound speed of the primary and 
secondary stream outside the mixing layer.  

The use of the convective Mach number allows 
approximate correlation of the experimental data of 
compressible mixing layer spreading rates. Among the several 
correlations, one of the most simple and popular was provided 
by Papamoschou and Roshko [10] and later readapted by 
Papamoschou [2-3]: 
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where 
2 1    , 2 1 r U U ; the compressibility 

function is defined as the ratio of the compressible to 
incompressible spreading rate, and is given by: 
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The terms inside square brackets in eq. 4 describe the effect 

of density and velocity difference across the layer, which is to 
increase the spreading rate for large velocity differences and 
when the density is greater on the low speed side. The effect 
of compressibility is concentrated in the exponential function 
(eq. 5) and brings about a significant reduction in the mixing 
layer spreading rate.  

Equation 4 provides a mean to easily calculate the 
spreading rate by the knowledge of flow conditions in the 
isentropic region outside the layer. Unfortunately, eq. 5 shows 
discrepancies of the order of 20% or more with respect to 
experimental data [2]. The main reason for this large 
uncertainty is to be found in the scatter of most experimental 
data. In general, mixing layers are influenced by blockage 
effects, thickness and surface conditions of the splitter plate, 
inlet turbulence level and acoustic effects [7]. These effects 
cannot be captured by the sole use of eq. 5 and greater 
accuracy may be achieved by the introduction in eq. 4 of 
some further parameters accounting for these additional 
factors.  

Lastly, the knowledge of the spreading rate allows deriving 
a fundamental equation for the maximum shear stress inside 
the mixing layer. By means of dimensional arguments it can 
be demonstrated that the maximum shear stress is 
approximately given by [2]: 
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where K is an empirical constant, obtained from subsonic 
constant-density experiments. Papamoschou [2-3] suggests 
use of Wygnanski and Fiedler's value, K = 0.013 [11].  

In order to exploit the information on the maximum shear 
stress, the location where this stress is exchanged must be 
known. Townsend [12] showed that the maximum shear stress 
inside a constant pressure mixing layer occurs approximately 
on the dividing streamline, i.e., the line that divides two fluid 
regions having mass flow rates equal to that of primary and 
secondary stream. The division is purely virtual, in that the 
two streams actually mix and do not preserve their identities. 
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Nonetheless, the knowledge of the density and velocity 
profiles along the ejector cross section allows computation, 
for any axial position, of the height or radius that separates 
these two regions. 

The knowledge of the location of the dividing streamline 
will be mostly useful in the development of the present model, 
as illustrated in the following section. 

3. MIXING LAYER MODEL 

The model analyses the primary and secondary stream 
separately by applying the conservation equations on two 
control volumes that surround each stream. To this aim, the 
position of the dividing streamline is computed at each step 
by requiring pressure continuity across it, i.e., by imposing 
that the pressure of primary and secondary stream are equal at 
each cross section. Under this condition, the primary nozzle 
flow is correctly expanded and the intensity of expansions and 
shock trains (shock diamonds) are reduced, increasing mixing 
effectiveness and reducing pressure losses ([9], [13]). The 
shear stress, shear work and heat transfer across the dividing 
streamline, as well as friction at wall, are computed by means 
of experimental correlations. Both axisymmetric and planar 
configurations can be studied.  

The mixing layer flow inside a supersonic ejector is well 
approximated by the 2D compressible boundary layer 
equations [14]. For the planar case, it could be shown by 
dimensional arguments that these reduce to [7]: 
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Where the straight bars over the symbols indicate a 

Reynolds average while the tilde a Favre average; τ, w and q 
are respectively the total (i.e., viscous plus turbulent) shear 
stress, shear work (per unit time and area) and heat transfer:  
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    where the heat and momentum transfer by turbulent 
fluctuations are expressed as a function of the average 
velocity and temperature gradients through the definition of a 
turbulent viscosity and conductivity (Boussinesq 
approximation). 

Generally, for shear layers far from any solid wall (such as 
mixing layers, jets and wakes) it is customary to neglect the 
viscous effects. However, in building the mixing layer model 
for the ejector, and especially for the secondary stream, the 
viscous drag at wall must be included.  

As anticipated, a system of Quasi-One-Dimensional 
conservation equations will be applied separately to each of 

the two streams. Although the flow inside an ejector cannot be 
considered as 1D, the 2D effects are retained by the use of 
two corrective parameters that will be introduced later. The 
use of Q1D approximation brings about many benefits: first, it 
provides for a set of equations that can be solved in a much 
easier way than the “integral methods” needed to compute the 
full 2D equations (see for example [15-16]); second, it allows 
for an easy connection with primary nozzle and diffuser 
equations (as these regions can legitimately be regarded as 
Q1D) to build a compact and coherent model of the complete 
ejector; last, by means of the Q1D approximation, the ejector 
can be seen as an equivalent “momentum exchanger” and 
many interesting conclusion can be drawn about the 
thermodynamic optimization of the system (see section 6).  

In order to derive the Q1D equations, equations 7 must be 
integrated over the cross sectional area: 
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The continuity equation is exploited to rearrange the 

equations in conservative form. In addition, all the equations 
are divided by the ejector depth (which is constant) to 
integrate over the sole y coordinate:  
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The continuity equation can be transformed as follows: 
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where the Leibniz rule was used to extract the derivatives 

from the first term on the RHS. The second term must be 
integrated between the internal and external surface 
surrounding each stream, i.e., between the axis of symmetry 
and the dividing streamline for the primary stream and 
between the dividing streamline and the ejector shroud for the 
secondary stream. In all cases, the mass fluxes across these 
surfaces are zero and the second term on the RHS vanishes.  

Thus, after multiplying back by the ejector depth, the Q1D 
equation of continuity becomes: 
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where the terms in angle brackets are the “spatially 
averaged” velocity and density: 
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The momentum equation becomes: 
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where pressure was assumed uniform in the transversal 

direction. As seen for the continuity equation, the second term 
on the LHS is zero. The term containing the shear stress 
depends on the position where the integration is performed.  

The Q1D momentum equation finally reads: 
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where the “spatially averaged squared velocity” is defined 

as: 
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It is now easy to show that the Q1D energy equation is 

given by: 
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where the “spatially averaged total enthalpy” and “spatially 

averaged cubed velocity” are defined by: 
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To summarize, the Q1D equations are as follows: 
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In the last equations all the average symbols have been 

dropped except those related to the average velocities. In this 
form, equations 19 clearly show what the unknowns of the 
problem are. In particular, two additional variables appear, 
i.e. the averaged squared and cubed velocities that do not 
allow closure of the equations system. In order to overcome 
this problem, two “shape coefficients” may be defined as 
follows:  
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In the simple case of a uniform velocity profile, i.e. for 1D 

flow, the average velocity can be taken out of the integrals 
and the shape coefficients become equal to one. However, 
such approximation is only valid in certain kind of flow, most 
importantly for fully developed turbulent flow inside constant 
section channels (as long as the small non uniformities due to 
the boundary layer are neglected) or in channels with slow 
area variations (e.g. Q1D flows). Unfortunately, the 
approximation is no longer valid in case of large non 
uniformity of the velocity profiles due to the presence of shear 
flows like mixing layers, jets and wakes. In these cases the 
flow is actually 2D but the problem may be worked around by 
the use of the above defined “shape coefficients”. By 
introduction of these parameters, the governing equations 
become: 
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where m is the mass flow rate which is constant for each 

stream.  
If the variation of the velocity profile is slow enough, the 

two shape coefficients can be considered approximately 
constant along a distance dx. This allows taking out the shape 
coefficients from the differentials. The coefficients will 
nevertheless be updated at the end of each calculation step. 
Moreover, by considering a calorically and thermally perfect 
gas, equations 21 can be assembled into two equations for the 
velocity and Mach variation: 
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                                                                 (22) 
where the signs of the terms inside round brackets must be 

adjusted for each stream according to the specific boundary 
conditions. In eq. 22, lx is the ratio between the cross sectional 
area and the wetted perimeter of the surface x. The two 
coefficients φ1 and φ2 depend solely on Mach number and 
shape coefficients, and are given by: 
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In order to calculate eq. 22 the shape coefficients, area 

variation, shear stress, shear work and heat transfer must be 
known on each surface surrounding the primary and 
secondary stream.  

Following Papamoschou [2], the shear stress at wall is 
computed through Van Driest correlation for compressible 
boundary layer on smooth walls [14]: 
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where Rex is the Reynolds number based on streamwise 

distance x and cf is the skin friction coefficient. The wall shear 
stress is computed as follows: 
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The shear stress on the dividing streamline is computed by 

means of eq. 6. 
In order to compute the heat transfer across the dividing 

streamline, the turbulent Prandtl number may be introduced as 
follows: 
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where μt and kt are the turbulent dynamic viscosity and 

conductivity. Cp is the specific heat capacity at constant 
pressure.  

A major simplification is obtained by considering that the 
turbulent Prandtl number is unity. This is known as Strong 
Reynolds Analogy (SRA) and amounts to say that the heat 
and momentum transfer by turbulent fluctuations are driven 
by the same transport mechanisms. In case of mixing layers, a 
better approximation is to consider Pt ≈ 0.77 ([7], [14]). The 
use of the Reynolds Analogy allows computing the heat 
transfer by the knowledge of the turbulent shear stress on the 
dividing streamline:  
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The only terms missing are now the shear work and the 

shape coefficients. These quantities may be computed once a 
profile is assumed for the density and velocity inside the 
mixing layer.  

Some experiments have shown that in fully developed 
mixing layers the shape of the velocity profile is virtually 
unaffected by compressibility [7-8]. This means that 
compressibility affects the spreading rate of the layer while 
maintaining the velocity distribution unaltered. Therefore, it 
is possible to use fitting curve derived for incompressible 
flows in order to describe the velocity distribution of the 
compressible case.  

Unfortunately, there are many different possibilities 
depending on the type of fitting curve (e.g. error function or 

hyperbolic tangent) and thickness definitions (e.g. vorticity 
thickness, velocity thickness, etc…). Barone et al. [17] made 
a clear comparison of many of these different solutions. One 
of these exploits a hyperbolic tangent distribution based on 
the vorticity thickness: 
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Where y0 is the mixing layer centerline, i.e., the location 

where the velocity is equal to the average of the two external 
isentropic velocities.  

In order to reach workable formulations for the shear work 
and shape coefficients, we make a further simplification and 
consider a linear approximation of the hyperbolic tangent 
profile (that corresponds to the first order truncation of the 
Taylor expansion):  
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        (29) 
 
where it was assumed that the origin of the coordinate 

system is on the mixing layer centerline and that the primary 
flow lies below the longitudinal axis.  

For a linear profile, the derivates of the axial velocity along 
the mixing layer is constant and the vorticity thickness 
immediately gives an estimation of the shear layer thickness: 
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By further assuming that the layer spread symmetrically 

with respect to the position of the dividing streamline, the 
edges of the mixing layer are found by adding and subtracting 
one half of the vorticity thickness to the dividing streamline 
location [3]. Moreover, the velocity at the dividing streamline 
can be easily computed and the shear work becomes: 
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Finally, in order to calculate the shape coefficients, eq. 20, 

the velocity and density profiles must be computed at each 
time step. A major simplification is obtained by assuming that 
the density variation inside the mixing layer is negligible with 
respect to the velocity variation. Under this condition, the 
density can be eliminated in eq. 20 and a closed form 
expression for the shape coefficients can be found. For the 
planar configuration these are given by: 
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Where x can be either 1 or 2, meaning the primary or 
secondary flow; δsl is the part of the shear layer thickness 
related to the primary or secondary stream; δtot represents the 
total thickness of the primary or secondary flow (isentropic 
plus shear region).  

At the beginning of this chapter, it was mentioned that a 
basic assumption for the model is that the mixing occurs at 
constant pressure. This condition is required by many of the 
correlation presented and is needed to find the position of the 
dividing streamline (see next section). By further assuming 
that the density of the two streams is approximately equal, we 
are implicitly imposing the same inlet static state for the 
primary and secondary streams. However, this restriction 
should not be regarded as a mere simplifying assumption, but 
rather as an optimal operating condition. The only energy 
exchange that is useful for the purpose of an ejector chiller is 
the mechanical energy transfer between the primary and 
secondary stream. By imposing the same static conditions, the 
entropy generation due to heat transfer mechanism and shock 
adaptations are reduced to a minimum.  

In conclusion, it is important to point out that the need for a 
shape coefficient derives from the attempt of applying a Q1D 
model to a flow that is actually 2D. This kind of flow may be 
solved by use of “integral methods” as long as the profiles of 
the velocity and of the other quantities are known [15-16]. 
The method illustrated here can be considered to lie 
somewhere between a pure Q1D scheme and a 2D integral 
method. 

In the next section we briefly illustrate the calculation 
procedure for the present model. 

4. SOLUTION METHOD 

The solution method for the mixing layer model quite 
precisely follows that delineated by Papamoschou [3]. Figure 
3 shows the flow chart of the process. Three nested loops are 
needed to perform the calculation. The outer loops over the 
inlet static pressure, the intermediate loops over the mixing 
chamber length and the inner loops over the position of the 
dividing streamline. A VBA code was written to perform the 
computations. 

The input data for the program are the same as those 
needed for CFD calculations, i.e., inlet stagnation conditions 
for both streams (pressure and temperature), outlet static 
pressure, geometry of the mixing chamber and of primary 
nozzle, type of fluid and type of symmetry (axial or planar). 
The output is represented by all flow properties along the 
mixing chamber as well as the ejector ER, the shear work and 
heat transfer between primary and secondary stream, the shear 
stress at wall, the thickness of the mixing layer and many 
other quantities (see section 5). 

As a first step, an initial value for the inlet static pressure 
must be guessed (equal for both primary and secondary 
stream). The primary mass flow rate and nozzle exit area are 
then computed by knowing the primary nozzle throat diameter 
and by applying the ideal Q1D nozzle equations. The 
secondary stream inlet area is computed subtracting the 
primary nozzle exit area to the total mixing chamber area. The 
secondary mass flow rate and all other properties immediately 
follow by application of the perfect gas isentropic relations. A 
first tentative value of ER is computed. The calculation of the 
mixing chamber can now proceed. The program computes the 
value of the shear stress at wall and on the dividing 
streamline, the shear work and heat transfer and the mixing 

layer spreading rate (eq. 6, 25, 27 and 31). Afterwards, a 
tentative slope of the dividing streamline is assumed in order 
to calculate a provisional value of the primary and secondary 
stream cross sectional areas. The initial value of all the shape 
coefficients is one, in that the inlet conditions are those of 
uniform isentropic flow. Hence, the program solves equations 
22 for both the primary and secondary stream by means of a 
fourth order Runge-Kutta procedure. From the ratio of the 
new velocity to Mach number the programs computes the new 
sound speed for both stream and calculates the pressure as 
follows: 

 




ma
p

MA
        (33) 

 
In general, the new pressure will be different for the 

primary and secondary flow. Hence, the program loops over 
the slope of the dividing streamline until the pressure 
difference between the primary and secondary stream is lower 
than a desired threshold. Once the new pressure is found, all 
other average properties can be computed easily by exploiting 
the equation of state and sound speed definition for perfect 
gases. Afterwards, the program calculates all the properties of 
the isentropic flow outside the mixing layer by the knowledge 
of the new static pressure and of the starting stagnation 
conditions. At this point the program has all the required 
information to proceed to the next step.  

In general, once the program arrives at the end of the 
mixing chamber, the outlet pressure will differ from that 
imposed as an input. Hence, the program goes back to the 
inlet, changes the value of the inlet pressure and loops again 
over the ejector length. The process goes on until 
convergence. 

5. COMPARISON WITH CFD RESULTS 

Comparison with CFD simulations are performed for a 
constant area axisymmetric mixing chamber of 0.4 meter 
length, with a radius of 54 mm. The working fluid is air. The 
length of the chamber was selected in order to model the sole 
region of free mixing layer, i.e., the region where the shear 
layer has reached neither the axis of symmetry nor the mixing 
chamber wall. In the first case, the primary isentropic region 
ceases to exist and a “jet type” of flow begins. In the second 
case, the secondary isentropic region ends and a new flow 
regime (that we may call “confined mixing layer”) begins. In 
both cases the Q1D model is unable to compute the shear 
stress on the dividing streamline (as the isentropic velocities 
and densities are undefined) and the program stops. Future 
work will be directed to extend the calculations to these types 
of flows in order to realize a complete model of the ejector.  

Simulations are performed using the commercial CFD 
package ANSYS FLUENT v15, which is based on a finite 
volume approach. The details of the numerical scheme, as 
well as its validation, are described thoroughly in [13]. In 
brief, the main characteristics of the scheme are as follows:  

 
o density-based implicit solver,  
o second order accurate discretization scheme,  
o structured grid of around 45 000 elements,  
o y+ <1 at the mixing chamber wall, 
o primary nozzle with finite thickness at the trailing edge 
o kω SST turb. model with Enhanced Wall Treatment, 
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o ideal gas equation of state, 
o adiabatic walls, 
 
In addition, a slip wall conditions was imposed at the 

primary nozzle walls. This is done in order to focus the 
comparison on the sole mixing zone. As such, both Q1D and 
CFD primary nozzle expansion are considered completely 
isentropic. On the contrary, the wall friction along the mixing 
chamber is evaluated through low Reynolds models for the 
CFD and by means of eq. 25 for the Q1D model.  

 

Table 1 shows the boundary conditions of the 4 cases tested 
herein. These were selected in order to guarantee the 
matching of the static state between the primary and 
secondary stream. The value of outlet pressure is raised from 
one case to another in order to test the model with 
increasingly challenging conditions. In order to correctly 
compare the results of the Q1D model with those from CFD 
calculations, a macro was built that extracts the local CFD 
data for several cross sections. These data are processed to 
compute the same average quantities that are calculated by the 
Q1D model. 
 

Table 1. Boundary conditions for the 4 tested cases 
 

 Unit Case 1 Case 2 Case 3 Case 4 

T01 - inlet °C 360 385 410 440 

T02 - inlet °C 0 0 0 0 

P01 - inlet kPa 1285 1435 1642 1900 

P02 - inlet kPa 66,2 66,2 66,2 66,2 

P - outlet kPa 44 50 58 66 

 
The global results of the comparison for the four cases are 

reproduced in table 2. In general, results for the first three 
cases show a good agreement in most of the parameters, with 
errors that grows with increasing pressure gradient. Most 
notably, the mass flow rates show an error that is generally 
well below 10%. This is most important as the Entrainment 
Ratio (the ratio between the secondary to primary mass flow 
rate) is one of the key ejector parameters, as it determines the 
efficiency and cooling power of the whole chiller. On the 
contrary, Q1D results for the last case appear to be 
completely in error with respect to CFD data. The reason for 
this discrepancy is the formation of a recirculation region near 
the ejector exit that considerably reduces the secondary 
stream mass flow rate and alters the pressure trends. The 
results for the shear layer spreading rate present somewhat 
larger errors. These may be ascribed to the inaccuracy of the 
experimental correlation for the spreading rate, eq. 4. 
However, it is important to note that CFD turbulence models 
are themselves unable to correctly predict the impact of 
compressibility on the shear layer turbulence. Notably, 
standard turbulence models require ad-hoc corrections that 
are calibrated on the same experimental results by which eq. 4 
was obtained. Barone et al. [17] compared several of these 
corrections and found that the one proposed by Wilcox [18] 
and used in this work gave the best results, but the error was 
still around 12%. 

Figure 2 shows the dividing streamline and shear layer 
edges for case 1. The edges for CFD results are calculated by 
the same method as explained for the Q1D (section 3).  

 
Although the agreement appear to be quite satisfactory, it is 
important to point out that the illustrated trends represent a 
rough approximation of the real shear layer. In particular, the 
assumption of a linear velocity profile causes an 
underestimation of the actual shear layer thickness. A better 
estimation can be obtained by means of different thickness 
definitions or by releasing the linear approximation in favor 
of a more appropriate hyperbolic tangent velocity profile.  

Figure 3 from a to c show the results in terms of mach, 
velocity, temperature and density variations. The oscillations 
of the CFD results for the primary streams are due to the 
presence of subsequent trains of expansions and shocks of the 
supersonic primary stream. These come from small residual 
pressure gradients due to an imperfect matching of the 
pressure conditions. Although in principles these could be 
reduced, in practice it is impossible to perfectly match the 
pressure conditions as gradients are produced internally by 
the strong shear exchange. This is also the cause of the 
turbulence production which allows for intense mixing 
between the two streams. Figure 3c shows that the density is 
approximately constant and equal for the two streams, partly 
validating the hypothesis made in section 3 for the 
calculations of the shape profiles. The greatest departure 
between the two methods is seen for the results related to the 
primary stream Mach number, where the data for Q1D model 
are quite above those from CFD results. The reason for this 
error becomes clear by looking at figure 4, which shows the 
variation of the shear stress at wall and on the dividing 
streamline.  

 

Table 2. Comparison of theoretical and numerical final results for the various cases 
 

 Case 1 Case 2 Case 3 Case 4 

Variable Unit Q1D CFD %Err. Q1D CFD %Err. Q1D CFD %Err. Q1D CFD %Err. 

m1 kg/s 0.168 0.168 0.4 0.184 0.184 0.3 0.207 0.206 0.3 0.234 0.234 0.3 

m2 kg/s 1.395 1.359 2.7 1.318 1.283 2.8 1.135 1.068 6.3 0.851 0.475 79.1 

ER - 8.3 8.1 2.3 7.2 7.0 2.4 5.5 5.2 5.9 3.6 2.0 78.6 
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Figure 2. Mixing layer edges and dividing streamline for case 1 
 

 
 

Figure 3. Mach (a), Temperature (b) and density profiles (c) 
along the mixing chamber for case 1 

 

 
 

Figure 4. Shear stress on the dividing streamline (left axis) 
and at wall (right axis) for case 1 

 
The Q1D model underestimates the shear stress by around 

30% with respect to CFD data. This causes a lower 
momentum transport from the primary to the secondary 
stream. Moreover, being the primary mass flow rate much 
lower than that of secondary flow, this error impacts almost 
exclusively the primary velocity. Conversely, results for the 

shear stress at wall show an excellent agreement with CFD 
results. This is important in that it demonstrates that the main 
source of error comes almost exclusively from the modeling 
of the momentum exchange along the dividing streamline. In 
particular, the lower shear stress predicted by the Q1D model 
is most likely due to excessive turbulence suppression by the 
compressibility correction, eq. 5. Although this could be 
calibrated to better match the numerical data, nevertheless, in 
much the same way as for the shear layer spreading rate, the 
CFD value of the shear stress is calculated by means of ad-
hoc corrections. Therefore, a more reliable comparison and 
calibration should be carried out by comparing the Q1D 
results directly with experimental data.  

Finally, figure 4 shows that the numerical shear stress at the 
entrance of the mixing chamber is almost zero. This is due to 
the presence of a developing region of the mixing layer. After 
a distance of around 5 mm the shear layer turbulence has 
grown to its fully turbulent state and viscous effects becomes 
negligible. This phenomenon cannot be captured by the Q1D 
as the correlation for the shear stress, eq. 6, is valid only in 
the region of fully developed turbulent mixing layer.  

6. MIXING CHAMBER DESIGN 

In order to optimize the mixing inside a supersonic ejector, 
the momentum exchange must be maximized while reducing 
irreversibilities. Sources of losses inside the mixing chamber 
include heat exchange between the two streams, supersonic 
shocks, friction and heat losses at wall, turbulence production 
and dissipation. As already discussed in previous sections, the 
first two sources can be minimized by matching the inlet static 
states of the two streams. As for friction losses, benefits can 
be achieved by reducing the wall roughness and by decreasing 
the mixing chamber length. Short mixing chambers can be 
obtained by increasing the mixing effectiveness, i.e., by 
increasing the mixing layer spreading rate and shear stress. 

There have been a number of attempts to increase the 
mixing rate by methods of mixing enhancement such as 
vortex generators, tripped boundary layers, swirlers and cross 
blowing [7]. However, in many cases it is unclear whether the 
benefits are worth the additional pressure losses.  

Looking at eq. 4, larger values of spreading rate can be 
achieved by: 

 
o increasing the free stream density ratio (ρ∞2> ρ∞1),  
o decreasing the free stream velocity ratio (u∞2<< u∞1),  
o decreasing the convective Mach number. 
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In case of constant pressure mixing of a single gas, 
increasing the density ratio would translate in larger 
temperature difference, thus resulting in heat transfer losses. 
As for the velocity ratio, the speed of the secondary stream 
should always be the least possible. This can be achieved by 
controlling the pressure along the mixing chamber, which 
must be as close as possible to the secondary stream total 
pressure (this also leads to lower recompression rate in the 
ejector diffuser). The Q1D model could be easily exploited 
for this purpose as it permits quick calculations of many 
different mixing chamber profiles. 

The problem becomes more complicated for the primary 
stream velocity. In the simplified case of constant pressure 
and temperature mixing of a single gas, the speed of sound of 
the two streams are approximately the same (this is true just at 
the beginning of the mixing region while at farther distances 
temperatures will change due to the slow down or 
acceleration of the streams, see figure 3b). In this case, the 
convective Mach number becomes: 
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If we further assume that secondary stream velocity is 

negligible with respect to primary speed, the shear layer 
spreading rate, eq. 4, simplifies to: 

 
2

130.085 0.25 0.75
    

 
Me          (35) 

 
which is a monotonically decreasing function of the primary 

stream Mach number. Therefore, increasing the primary 
stream speed necessarily causes a reduction of the mixing 
rate. As the nozzle exit pressure of the ejector must match that 
of the secondary stream, a reduction of the primary stream 
Mach number can be obtained by only two methods: 
increasing the secondary stream pressure or decreasing the 
inlet primary total pressure. As mentioned above, the first 
method should always be pursued. However, the secondary 
pressure can be raised only up to the value of inlet total 
pressure, thus limiting the extent of possible benefits.  

There are limits also to the reduction of inlet primary total 
pressure. Supersonic ejectors for heat powered chillers serve 
the purpose of transferring mechanical energy between the 
motive and the refrigeration cycle. When the primary total 
pressure is lowered, the amount of mechanical energy 
entering the ejector decreases and the refrigeration load is 
abated. This can be avoided by increasing the primary mass 
flow rate. However, this leads to a reduction of contact 
surface per unit volume of the primary flow that again reduces 
the mixing effectiveness inside the mixing chamber.  

One way to overcome these limitations is represented by 
the optimization of the shear surfaces between primary and 
secondary streams. As seen before, increasing the length of 
the mixing chamber is not a valuable solution as friction 
losses grow. In addition, the increase in contact surface is 
obtained in far regions where gradients and entrainment rate 
are lower. Therefore, more advanced solutions could derive 
from new design configurations of the primary nozzle, e.g., 
annular primary nozzle [19], petal nozzles [20] and multiple 
nozzles [21]. This last solution basically consists in a partition 
of the primary mass flow rate that is redirected through many 
smaller nozzles, whose sizes and positions must be carefully 
designed.  

In order to demonstrate these concepts, a simple 
optimization was tried for a planar mixing chamber of 
0.4x0.4x0.2m length, height and width respectively. By 
keeping the boundary conditions fixed, the primary stream 
was allowed to flow through an increasing number of primary 
nozzles (1, 2 and 4), uniformly spaced along the vertical 
direction. The boundary conditions are the same as those 
presented in table 1, except that the outlet pressure is 60 000 
Pa. 

Table 3 shows the global results of the optimization. The 
entrained secondary flow increases by 11.9% passing from 
the single nozzle configuration to the 2 nozzles design. The 
growth of secondary flow is even larger when splitting the 
primary stream into 4 nozzles, with 28% difference with 
respect to the original configuration. Passing from the single 
nozzle configuration to that with 4 nozzles, the Mach number 
of the primary stream increases while that of secondary flow 
decreases. This is a clear indication of greater mixing.  
 

Table 3. Global results of the planar mixing chamber 
optimization 

 

Variable Unit 1 nozzle 2 nozzles 4 nozzles 

m1 Kg/s 8.24 8.24 8.24 

m2 Kg/s 7.86 8.80 10.07 

ER - 0.95 1.07 1.22 

P – inlet kPa 56,7 53,2 44,7 

P – outlet kPa 60 60 60 

Ma1 – outlet - 2.5 2.4 2.2 

Ma2 – outlet - 0.47 0.53 0.63 

δω – outlet m 1x0.0132 2x0.0128 4x0.0121 

 
The main reason for these improvements is to be found in 

the significant increase in contact surface between the two 
streams. Although the shear layer of the single nozzle is 
greater than those of other configurations, the splitting of the 
primary stream increase the number of mixing layers, i.e., the 
total shear surface inside the mixing chamber. Figure 5 clearly 
illustrates this concept by showing all together the shear 
region for the 3 cases. 

The calculation presented above is only one example 
among many other possible applications. Indeed, by means of 
a simple mixing model like that presented here, a constructal 
optimization may be performed in order to find the best 
design in terms of sizes and number of primary nozzles, 
distance between the nozzles and from the external surface, 
length of the mixing chamber. In practice, the use of the Q1D 
approximation allows regarding the ejector as an equivalent 
“momentum exchanger” between two coflowing streams. 
Consequently, many of the Constructal design concepts that 
were developed for the optimization of heat exchangers [22] 
may be applied.  

 

 
 

Figure 5. Half section of the planar mixing chamber; 
colored regions represent the shear layers 
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7. CONCLUSIONS 

An analytical scheme that describes the turbulent mixing 
zone within an ejector was presented. The model is able to 
compute all flow properties inside an axisymmetric or planar 
mixing chamber with either constant or variable cross section. 
The amount of entrained flow, the work and heat exchange, 
pressure losses and mixing efficiency are computed as a 
function of the system geometry and without use of any 
arbitrary parameter. Consequently, this model is particularly 
suited for a thermodynamic optimization of the ejector 
system.  

The model was validated by comparison with CFD results 
for various operating conditions. Results generally showed 
good agreement in all parameters, with increasing errors as 
pressure gradient increases. In particular, discrepancy 
between numerical and theoretical Entrainment Ratio was 
generally well below 10%. 

One of the main problems in the optimization of a 
supersonic ejector is the decrease of mixing effectiveness with 
increasing primary stream Mach number. A way to work 
around this problem is to enlarge and optimize the contact 
surfaces between primary and secondary stream.  

A preliminary study was performed in this direction. 
Results demonstrated that splitting the primary mass flow into 
several smaller nozzles (ceteris paribus), notably increases the 
entrainment of the secondary flow. 

This result leads the way to new design configurations that 
may be optimized by means of a constructal approach. The 
Q1D model presented here is particularly suitable to this aim, 
in that it envisions the ejector as an equivalent “momentum 
exchanger”. Consequently, many of the Constructal design 
concepts that were developed for the optimization of heat 
exchangers may be applied.  
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