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Efficient mineral transportation is critical for sustainable open-cast mining operations. 

Queuing theory offers a practical approach to optimizing truck-shovel systems and address 

truck waiting times at loading and unloading sites. This research evaluates the excavator-truck 

system at an Algerian open-pit phosphate mine using an M/M/1 queuing model. The model 

reveals relationships between truck fleet size and queue length, waiting time, shovel 

utilization, and overall production. Moreover, loading and transportation costs are analysed to 

determine the optimal truck fleet size that minimizes costs and emissions. The match factor 

further evaluates fleet compatibility for sustainable planning. This systems analysis provides 

insights into achieving efficient, low-emission truck-shovel operations through optimized fleet 

sizes, reduced waiting times, and cost-emission optimization. The integrated queuing model 

and planning techniques presented can guide sustainable planning of open-pit mining 

transportation systems. Focusing on efficiency, costs, and emissions allows strategic 

optimization for both economic and environmental sustainability.  
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1. INTRODUCTION

The global economy is significantly impacted by the mining 

sector. The five primary stages of mining process are 

exploration, development, exploitation, reclamation, and 

prospecting. Among the techniques employed in surface 

mining are dredging, mountaintop removal, open-pit, open-

cast, and strip mining. Interestingly, over 60% of total surface 

output comes from open-pit operations [1]. Loading, loaded 

transit, dump maneuvering, dumping, and returning to the 

loader are the steps involved in open-pit mining. The choices 

about when and how to complete these tasks are made by 

mining engineers or planners [2].   

The primary duties in mining transportation involve loading 

and hauling, commonly performed through the use of a truck 

and shovel technique [3]. This system is precisely tailored to 

meet the company's production goals, both in the short and 

long term. The design considers the size of the fleet and the 

loaders in order to obtain the optimal equipment combination 

[4]. Equipment selection is an optimization technique that 

identifies the fleet size with the lowest total haulage cost and 

maximum equipment utilization [5].  

Queuing theory has been used in the past to improve truck-

shovel systems, but more research needs to be done on how it 

can be used in open-pit mining operations [6]. Specifically, it 

needs to be looked at how changing the size of the truck fleet 

affects things like queue length, waiting time, shovel 

utilization, and overall production efficiency [7]. This study 

aims to fill that gap by looking at the excavator-truck system 

at an open-pit phosphate mine in Algeria using an M/M/1 

queuing model [6]. It will show how to make truck-shovel 

operations more efficient and low-emission by adjusting fleet 

sizes, cutting down on wait times, and finding the best balance 

between cost and emissions [8]. 

At loading and unloading locations, there are occasionally 

wait durations. The waiting periods at these stations raise the 

unit cost per material carried since they lower operating 

capacity [9]. It is clear that when there is over- or under-

trucking, waiting times happen. Overtucking the system 

results in higher loader utilization but lower truck utilization, 

whereas under-tucking lowers shovel utilization and hence 

lowers production. For instance, excessive trucking reduces 

truck productivity while increasing shovel production until the 

service rate reaches its ideal level [10-12]. 

Queuing theory stands out as a commonly used method in 

optimizing shovel-truck production, primarily for its capacity 

to handle randomly increasing demands [13]. Previous studies 

have applied various queuing models to optimize truck-shovel 

systems in mining operations. Abbasian-Hosseini et al. [14] 

and Sheikh et al. [15] utilized queuing approaches to 

determine the optimal truck fleet size by employing more 

precise productivity estimates, thereby minimizing idle 

equipment costs. Alkass et al. [16] and Mohamed and Ali [17] 

introduced the FLSELECTOR queuing model, which 
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considered server utilization in computing haulage system 

production. Grosse et al. [18] and Seyyedhasani et al. [19] 

adapted the "Machine Repair Model," a finite source queuing 

model, to effectively estimate fleet size and produce accurate 

results. In a separate study, Khasanah et al. [20] and Ramdani 

et al. [21] used a single-channel queuing model to establish 

correlations between truck numbers, shovel utilization, system 

production, and queue length. The M/M/1 queuing model 

employed in this research is well-suited for the specific case 

study due to its simplicity, effectiveness in real-world 

applications, and ability to handle randomly increasing 

demands within the truck-shovel system. 

Its effectiveness lies in offering enhanced estimations for 

wait times within a haulage system. Compared to simulation 

techniques, queuing theory boasts faster computation times 

and simpler formulation, expediting the transmission of 

crucial information for more efficient operations [22]. In 

queuing theory, two primary service channel types are 

recognized: the single-server channel and the multi-server 

channel. Within a single-server channel, trucks are directed to 

a lone loader within the system [23].  

Koenigsberg [24] pioneered the utilization of queuing 

theory within mining operations, specifically modeling 

conventional and mechanized room-and-pillar mining setups 

to establish a closed-loop queuing system. This system 

accounted for a finite number of mine faces, assuming 

exponential service time distributions. Despite simulation's 

prevalence in the 1960s, queuing theory gained popularity due 

to the substantial computer memory and CPU (central 

processing unit) demands of simulations at that time. 

Consequently, analytical modeling methods like queuing 

theory, requiring minimal or no computational resources, 

emerged as a viable alternative to computer simulation models. 

Karshenas [25] adapted the queuing approach for 

equipment selection, which was further investigated by Sabha. 

Their aim was to create a model for determining the optimal 

truck fleet size by employing a more precise productivity 

estimate, thereby minimizing the expenses related to idle 

equipment. El-Moslmani [26] introduced a queuing model, 

termed FLSELECTOR, that factored in server utilization in 

computing haulage system production. This computer-based 

model facilitated the selection of the optimal fleet size based 

on cost minimization and maximizing production output. 

Krause [27] and Musingwini et al. [28] demonstrated that a 

modified version of the "Machine Repair Model," an example 

of a finite source queuing model, could effectively estimate 

fleet size and produce accurate results. They tailored the 

equations of this model to suit loading and hauling scenarios, 

adjusting the average time trucks spent waiting for repair to 

represent the average queuing time at dumpsites or loading 

sites. In a separate study, Hai [29] utilized a single-channel 

queuing model to establish correlations between varying truck 

numbers, shovel utilization, system production, and queue 

length. This model's applicability extends to any haulage 

system provided the data on truck arrival times and shovel 

service times conform to an exponential distribution. 

The primary objective of this study is to improve decision-

making by optimizing the truck loader system using queuing 

theory. The specific aims of this research encompass: 

• Assessing the efficiency of the shovel-truck system.

• Investigating the effects of varying the truck fleet size

on parameters such as queue length, waiting time, shovel 

utilization, production, and operating costs.  

2. METHODOLOGY

2.1 Queuing theory 

The basic sequence delineated in the queuing models is as 

follows [30]: Trucks requiring loading services are 

consistently generated by an input source. Upon arrival, these 

trucks join a queue if no loaded truck is currently present. The 

initial truck in the queue is selected for service, undergoing the 

requisite loading operation, after which the truck departs from 

the queuing system (Figure 1). 

Figure 1. Single server queue system 

The subsequent analytical equations were formulated to 

represent the practical loading and hauling procedures through 

the application of the queuing model (M/M/1), which was 

employed for the truck-shovel system at the Open Pit Mine 

[31]. 

Probability that the system operating without any trucks. 

The primary queuing model used in our study is the M/M/1 

model, which is suited for systems with a single server where 

arrivals and services are Markovian. Here, the equations 

include: 

λ: Average arrival rate of trucks per hour, representing the 

frequency at which trucks arrive at the loading station, derived 

from empirical data collected at the Djebel Onk mine over a 

continuous 30-day period. 

µ: Service rate of the shovel per hour, calculated based on 

the average loading time per truck as observed directly and 

recorded during our data collection phase. 

Lq: Expected number of trucks in the queue, calculated 

using the formula: 

2

( )
q

L


 
=

−
(1) 

Wq: Expected waiting time in the queue for trucks, given by: 

( )  
q

W
µ µ




=

−
(2) 

These parameters and their interactions are critical for 

optimizing the truck-shovel system at the mine, aiming to 

reduce waiting times and operational costs." 
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The utilization of the shovel, denoted as 𝜂𝑆 , and the

utilization of the trucks, denoted as 𝜂𝑡𝑟, are provided in Eqs.

(4) and (5), respectively [13].
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λ is average number of trucks washed per period. 

µ is the service rate. 
Probability of “n” trucks in system 

.C C N CtrT shovel
= + (14) 

Ctruck: Cost of operating truck and shovel per hour. 

Cshovel: Cost of operating shovel per hour 

2.2 Method to find a mismatch of equipment 

Match factor (MF) is the most commonly used method to 

measure efficiency and productivity of an equipment fleet. It 

is defined as the ratio of truck arrival rate to shovel service. 

Match factor is commonly used to measure the compatibility 

among trucks and shovels in terms of fleet size, truck cycle 

and shovel loading times [32]. 

The calculations made to get the match factor for trucks are 

given  

Average Truck cycle time
Match Number

Average Shovel Load cycle time
= (15) 

3. CASE STUDY

The research area, located in the Djebel Onk mining basin, 

is positioned in the Tebessa region, approximately 600 km 

southeast of Algiers and just 20 km from the Algerian-

Tunisian borders (Figure 2). The Djebel Onk mining basin, 

situated within the Tebessa region roughly 600 km southeast 

of Algiers and 20 km from the border with Tunisia, 

encompasses an area of about 15 square kilometers. The mine 

annually extracts approximately 1.2 million metric tons of 

phosphate from the Kef Essenoun deposit, one of five 

identified deposits in this area. Selected for its suitability for 

applying queuing theory and for the scale of its operations, this 

site serves as an exemplary case of large-scale mining with 

readily available operational data essential for the empirical 

validation of our model. As reported in 2019, this mine's total 

phosphate resource is estimated at 2.2 billion metric tons [33]. 

Data collection involved both direct observation and 

historical data analysis. We recorded the times of truck arrivals 

and service completions through direct monitoring over a 

month and analyzed past records from the mine's operational 

database to determine the average service and arrival rates 

over the past year. This comprehensive method allows for 

robust analysis and reliable model inputs, ensuring 

consistency and reliability in applying the queuing model to 

real-world scenarios. 

Table 1 displays the input data, with the arrival and service 

rates being derived from experimental data. 

Figure 2. Satellite image (Google Earth Map) depicting the 

position of the phosphate-ore mine 
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Table 1. The input data, with the arrival and service rates 

being derived from experimental data 

DATA Values 

Arrival rate (λ) 2.66 trucks/hour 

Service rate (μ) 22.47 trucks/hour 

Number of shovels (s ) 1 

Traffic of shovels (ρ = λ/ μ) 0.1183 

Cost of operating shovel, Cshovel 250 $ (33600 DA) 

Cost of operating trucks; Ctruck 180 $ (24192) 

Shovel average loading time (min.) 2.67 

Truck average cycle time (min.) 22.47 

Truck capacity 55 ton 

Loading capacity 6 m3 

4. ANALYSIS AND RESULTS

In the current research, the transportation system within the 

mine utilizes a queuing model characterized by a single service 

parameter, specifically conforming to the M/M/1 queuing 

model format. This analytical approach was meticulously 

applied to generate a comprehensive set of results, which are 

critical in understanding the dynamics of the haulage system. 

The calculated outcomes from this model include detailed 

assessments of the waiting times for truck loading (denoted as 

Wq), the utilization rates of the servers (shovels), and the 

overall production output from the shovels. Additionally, the 

model facilitated a thorough evaluation of the associated 

operational costs linked to these parameters. These results are 

crucial for optimizing the efficiency and cost-effectiveness of 

the mining operations. The detailed numerical values derived 

from these computations are methodically organized and 

presented in Table 2, providing a clear and structured 

overview of the key performance indicators for the haulage 

system. 

Table 2. Queuing model outputs 

Truck 

Fleet 

Size 

Lq 

(trucks) 

Ls 

(trucks) 

Wq 

(min) 

Ws 

(min) 

Shovel 

Utilization 

ηs 

Production 

Qn, ton/h 

Cost of 

Loading, 

Csh/Qn 

Cost of 

Hauling 

KCtr/Qn 

Total 

Cost, 

DA/h 

Truck 

Utilisation 

ηt 

2 0.022 0.232 0.283 2.95 0.2094 258.730 129.865 187.006 316.871 0.9876 

3 0.072 0.382 0.618 3.29 0.3100 383.056 87.716 189.466 277.182 0.9732 

4 0.155 0.562 1.025 3.71 0.4070 502.936 66.808 192.406 259.214 0.9564 

5 0.281 0.780 1.537 4.27 0.4995 617.328 54.428 195.941 250.369 0.9360 

6 0.458 1.044 2.192 5.00 0.5866 724.997 46.345 200.210 246.555 0.9111 

7 0.697 1.364 3.038 5.95 0.6672 824.543 40.750 205.379 246.129 0.8809 

8 1.009 1.749 4.118 7.14 0.7400 914.479 36.742 211.635 248.377 0.8451 

9 1.402 2.206 5.441 8.56 0.8043 993.976 33.804 219.048 252.851 0.8051 

10 1.896 2.754 7.057 10.25 0.8578 1060.153 31.694 228.193 259.887 0.7610 

11 2.483 3.384 8.854 12.069 0.902 1114.2056 30.156 238.836 268.992 0.7173 

12 3.165 4.100 10.775 13.959 0.935 1155.7676 29.072 251.179 280.250 0.675 

Graphs illustrating the impact of variations in fleet size on 

queue length, waiting time for trucks in the queue, shovel 

utilization, and costs can be generated and observed in Figures 

3 to 7. 

Figure 3. Trucks in queue length, and in system 

The graphs reveal an increasing trend in the correlation 

between the number of trucks and various outputs from the 

queuing model, including queue length, waiting time in queue, 

shovel utilization, and production. With an expansion in fleet 

size, there is a corresponding rise in the number of trucks 

awaiting service at the shovel, leading to an increase in queue 

time. Interestingly, a greater number of dispatched trucks 

results in a more efficient performance of the shovel.  

As illustrated in Figure 6, adding two more trucks to the 

system resulted in an approximately 20% rise in shovel 

utilization, leading to increased production. Conversely, the 

addition of five more trucks to the system resulted in a nearly 

10% decrease in truck utilization. 

Figure 4. Relationship between waiting time and number of 

truck 

Figure 5. Relationship between production and number of 

trucks 
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Analyzing the relationship depicted in Figure 7 between the 

number of trucks and operational costs, it becomes apparent 

that loading costs and hauling costs are in direct opposition. 

Increasing the number of trucks leads to a reduction in loading 

costs but an elevation in hauling costs. The total cost is derived 

by combining the hauling and loading cost curves. This cost is 

minimized at the curve's lowest point, indicating the optimal 

number of trucks in the queue system. Referring to Figure 7, 

the optimized position is at 7 trucks. In other words, deploying 

7 trucks for 1 shovel in this scenario ensures the system 

operates at the most cost-effective level. 

This optimized fleet configuration not only enhances 

production efficiency but also significantly affects the 

environmental impact of mining operations by reducing idle 

times and lowering fuel consumption. By balancing the 

number of trucks and shovels, the system can achieve an 

equilibrium where operational efficiency and environmental 

sustainability intersect. The strategic management of fleet size 

thus becomes crucial in mitigating excessive costs and 

promoting eco-friendly practices. The insights from these 

graphical analyses underscore the importance of precise 

equipment scheduling and capacity planning in reducing 

operational bottlenecks and optimizing resource allocation 

within the mining industry. 

These graphs not only demonstrate the dynamics of fleet 

management but also support strategic decision-making. By 

optimizing truck numbers based on performance data, the 

mine can significantly boost productivity and cost-efficiency. 

This approach shows how analytical tools can transform 

traditional mining operations into more economically 

sustainable systems, providing key insights for continuous 

improvement in the sector. 

 

 
 

Figure 6. Correlation between shovel utilization and truck 

utilization in relation to the number of trucks 

 

 
 

Figure 7. Relationship between cost and number of trucks 

 

From Figure 8, it's evident that the efficiency of the system 

correlates directly with the match factor. A match factor of 

precisely 1.0 signifies a perfect alignment, resulting in optimal 

efficiency at 100% within the system. However, any deviation 

from this value indicates a degree of mismatch between the 

components. Here's a detailed breakdown of the insights 

provided: 

1. Perfect match (Match factor = 1.0): 

- System efficiency achieves peak performance at 100%. 

- Both the loader and hauler operate at their maximum 

efficiency levels. 

2. Match factor < 1.0: 

- Indicates a form of mismatch. 

- Excess loading capacity is observed within the system. 

- While loader efficiency remains near 100%, transporter 

efficiency experiences a reduction. 

3. Match factor > 1.0: 

- Signals a different type of mismatch. 

- Shovel efficiency reaches 100%. 

- However, hauler efficiency declines in this scenario. 

In essence, it's apparent that the match factor serves as a 

pivotal parameter in evaluating the system's efficiency. A 

match factor of 1.0 symbolizes an ideal equilibrium between 

the loader and hauler, whereas deviations from this value 

highlight imbalances leading to either surplus loader capacity 

or compromised hauler efficiency. 

Upon reviewing the results presented in Table 3 and 

analyzing Figure 8, it becomes evident that the most 

advantageous scenario emerges with the utilization of 8 trucks. 

This conclusion closely aligns with the outcomes derived from 

the queuing method, as evidenced by the closely matching cost 

values. This finding underscores the significance of carefully 

considering the match factor in optimizing transportation 

systems within the studied context. 

 

Table 3. Efficiency and match factor 

 
N (trucks) MF % Efficiency 

2 0.23712256 23.7122558 

3 0.35568384 35.5683837 

4 0.47424512 47.4245115 

5 0.59280639 59.2806394 

6 0.71136767 71.1367673 

7 0.82992895 82.9928952 

8 0.94849023 94.8490231 

9 1.06705151 93.294849 

10 1.18561279 81.4387211 

11 1.30417407 69.5825933 

12 1.42273535 57.7264654 

 

 
 

Figure 8. Efficiency and match factor analysis 
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5. CONCLUSION  

 

In conclusion, the mining industry's focus on transportation 

and packaging systems, which collectively represent about 60 

percent of production costs, underscores the critical 

importance of optimizing these processes. This study delves 

specifically into the shovel-truck system within an open-cast 

phosphate mine located in eastern Algeria. By employing the 

queuing model (M/M/1), we have significantly advanced our 

understanding of the transportation system's performance and 

identified optimal solutions. 

Practical experimentation conducted on-site provided 

crucial input parameters, including arrival and service rates, 

which were essential for modeling the system accurately. 

Through this method, we were able to obtain various outputs, 

shedding light on critical system parameters such as queue 

length, waiting time, shovel utilization, and overall system 

production. 

A key finding of this study was the discernible correlations 

observed between these variables and the size of the truck 

fleet. As the fleet size increased, the number of trucks waiting 

for the shovel and the time spent within the system also 

increased. However, this led to noteworthy improvements in 

shovel utilization rates and overall production efficiency. 

The determination of the optimal number of trucks to be 

dispatched into the system within the queuing model was 

pivotal. This optimization was achieved by minimizing the 

total operating cost, which was derived by graphically 

summing the loading and hauling expenses. The point where 

the total cost curve reaches its lowest represents the optimized 

number of trucks for this queuing system. 

Furthermore, the utilization of the match factor allowed us 

to assess the compatibility between trucks and shovels. By 

considering fleet size, truck cycle, and shovel loading times, 

we gained valuable insights into the efficiency and synergy 

between these components of the transportation system. 

In essence, this study not only provides practical insights 

into optimizing transportation systems within open-pit mines 

but also underscores the importance of utilizing mathematical 

models such as queuing theory to enhance operational 

efficiency and ultimately drive sustainable practices within the 

mining industry. 
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