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ABSTRACT 

 
It is a well-known fact that there are several possible convecting patterns for a given Rayleigh number, when a saturated 
porous square section is heated from below and cooled at the top, with adiabatic side boundaries. The question is which 
pattern among them is selected preferably or naturally by the system for a fixed value of the Rayleigh number. A pseudo-
spectral numerical method was employed in order to investigate the problem. There are two important findings. One is that 
the convecting pattern carrying the greatest heat from the bottom to the top boundaries is more stable against disturbances 
than other possible patterns. This finding is consistent with the Constructal law, as well as the Maximum entropy production 
hypothesis proposed by Malkus. The other one is that once the system has selected a certain pattern, it persists despite the 
more heat carrying pattern exists, unless sufficient disturbances are introduced into the system. The system exhibits a strong 
initial value dependency. 
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1. INTRODUCTION 

It is a very intriguing fact that there exist several convection 
patterns that are realizable in the fluid saturated porous layer, 
when it is subject to bottom heating and top cooling thermal 
boundary conditions, with the same geometric and heating 
rate (or cooling rate) conditions [1,2]. Now the immediate 
question that comes to our mind is if there is a preferred mode 
among several possible convection patterns for a given 
geometric condition and a given set of thermal boundary 
conditions. Malkus [3] claimed that, among many possible 
convection patterns in the clear fluid layer, the system 
naturally choses the one which can carry the heat most. This 
hypothesis is often termed as the entropy production 
maximum, since for the given top and bottom boundary 
temperatures, the maximum heat flux condition is equivalent 
to the maximum entropy production in the system. The 
research interest has been mounted on this problem in 
connection with geophysical fluid dynamics, where the 
atmospheric circulation takes a particular flow pattern among 
many possible ones [4, 5]. Are they truly stable in a time-scale 
of large enough comparable with the earth’s environmental 
evolution, i.e. global climate change? In order to make our 
discussion simple in this paper, however, we restrict ourselves 
to two-dimensional square cross section of saturated porous 
medium, with the Darcy flow model and the Boussinesq 
approximation. Within this strict condition, the convection 
system is controlled by the single non-dimensional parameter, 
the Rayleigh number [6]. In the present paper, we numerically 
investigate about relative realizability among possible 
convection patterns for the given values of the Rayleigh 
number. 

2. DESCRIPTION OF MATHEMATICAL MODEL 

The detailed physical assumptions made and the associated 
mathematical formulation are the same as those described in 
papers [2, 7]. Therefore, we will not repeat them all here. 
However, it should be noted that the Darcy flow model, the 
thermal equilibrium between the porous matrix and the 
saturating fluid, and the Boussinesq approximation for the 
buoyant force are assumed. In this case, referring to Fig. 1, it 
is possible to introduce a potential  , whose derivative with 

respect to   is equivalent to the two-dimensional stream 

function. The Darcy’s law and the energy equation can be 
combined to yield the following single equation for the 
potential  . 
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The impermeable boundary conditions, adiabatic sidewalls 

and isothermal top and bottom temperature conditions are 
 

0     ( 0,  1  ), 
2 0      ( 0,  1  ),     (2) 

 
where Ra is the Rayleigh number defined in porous media 
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where the symbols have the usual meanings in porous 

media convection. The dimensionless quantities were 
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introduced based on the size of the cross section and the 
diffusion time, 

 

   , / , /   x d z d , and 2/t d                         (4) 

 
We employ the Galerkin technique to solve for the potential 

 , satisfying the boundary conditions eq.(2). The solution 

can be expressed with the following Fourier-series expansion, 
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Because of the purpose of the present paper, the numerical 

results are characterized by the average Nusselt number, i.e. 
the non-dimensional averaged heat flux, 
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In actual computations, the Fourier-series were truncated by 

an appropriate number N. The truncation number was 
determined by comparing the average Nusselt numbers with 
those reported in previous works [2,7]. It was found that 
N=64 is in fact large enough to reproduce the previously 
reported average Nusselt numbers within the Rayleigh 
number range less than 400. 

3. HEAT FLUXES OF DIFFERENT MODES OF 

CONVECTION 

Nondimensional heat fluxes are summarized as the average 
Nusselt numbers in Fig. 2. It is generally clear that the higher 
modes of convection with multiple cells are capable of 
carrying greater heat fluxes than the lower modes at high 
Rayleigh numbers. For example, the double cell convection 
carries more heat than the single cell above Ra=150. The 
triple cell Nusselt number takes over that of double cell at 
Ra=300. 

4. A TEST OF RELATIVE STABILITY AMONG 

DIFFERENT MODES OF CONVECTION 

According to the linear stability analysis, six different 
modes of convection are possible in a range of the Rayleigh 
number up to 500 in a square cross section, among them we 
concern with the first three modes, i.e. single cell, double cell 
and triple cell patterns. In order to quantify the robustness of 
the respective patterns against another, we introduce 
numerical disturbances, and then observe how the system 
responds to the external excitements, i.e. if the disturbances 
decay, or grow steadily and eventually transform the current 
convecting mode into another. Probably there are several 
ways regarding how the disturbances can be introduced in the 
system. In the present work, after steady state with a 
particular mode of convection has been reached, we add a 

certain amount of disturbance, on the Fourier coefficient of 

nj , representing a possibly realizable another mode. If the 

system is easily susceptible to the disturbance, the magnitude 
of the added disturbance on the Fourier coefficient can be 
small in order to transform the system to another mode. On 
the contrary, if the system is robust to the added disturbance, 
a significantly large magnitude of disturbance needs to be 
introduced. In this way, we are able to quantify the relative 
stability of a particular mode of convection against another 
mode. In the present paper, we are concerned with relative 
stabilities among the first three different convecting modes. 

Fig. 3 shows how the relative stabilities of single cell 
convection mode against double cell convection mode vary in 
the course of increasing the Rayleigh number. The ordinate 
axis indicates the magnitude of disturbance introduced on the 
Fourier coefficient, representing the mode to which the 
system may be transformed. The magnitude of introduced 

disturbance is calculated by 21r , when we test the stability 

of single cell against double cell. A descending line indicates 
the boundary at which the introduced disturbance on the 
Fourier coefficient of the double mode can transform the 
system from single mode to double mode. The descending 
trend proves that the system (a single cell mode) becomes 
more and more susceptible to the added disturbances on the 
double mode as the Rayleigh number increases. On the 
contrary, the double cell convection becomes more and more 
robust against the single cell disturbances as the Rayleigh 
number increases. Since the double cell convection has higher 
Nusselt number than the single cell in the region of the 
Rayleigh number above 150, it can be said that the convection 
mode of higher heat flux is more robust against the external 
disturbances than that of less heat flux. The same trend is 
found among the double and the triple cells in Fig. 4. 

5. CONCLUDING REMARKS 

Different modes of convection pattern in a fluid-saturated 
porous square cross section, heated from below and cooled at 
the top, with insulating side boundaries have been studied 
numerically. Introducing the external artificial disturbances 
on a particular Fourier coefficient, the relative robustness of a 
particular convection mode has been determined against the 
other possible one. Since the single cell convection starts 
losing its stability easily against the double mode as the 
Rayleigh number becomes large, where the double cell can 
carry higher heat fluxes, it can be concluded that the 
convecting system with higher heat fluxes is more stable than 
that carrying less heat fluxes, when the both modes are 
realizable in the system. The same trend is found between 
double and triple cells. It is also noted that once a particular 
mode of pattern is established in the system, it continues to 
exist unless a sufficiently large external disturbance is 
introduced, regardless of relative magnitude of heat fluxes 
between the two competing modes. 
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Figure 1. Saturated porous medium square cross section, the coordinates and thermal boundary conditions. All boundaries are 
impermeable to the saturating fluid 
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Figure 2. Average Nusselt numbers of different modes of convection as a function of Ra 
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Figure 3. Relative robustness between single and double cells, against externally exerted disturbances. The ordinate r indicates the 

relative magnitudes of disturbance added on the representative Fourier coefficient, to which we want to transform the system 
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Figure 4. Relative robustness between double and triple cells at different Rayleigh numbers 
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