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ABSTRACT 
 
Open flow network is a weighted directed graph with source and sink to depict flux distributions in the steady state of an 
open flow system. Energetic food webs, global trade networks, input-output networks and clickstreams, are open flow 
network models of energy flows, goods flows, money flows, and collective attention flows respectively. Based on the 
Markov chain techniques, a set of quantities, such as influx, total through-flow, dissipation flow, first-passage flow 
distances, and first-passage flows can be defined to characterize flows and interactions between nodes. Under this 
framework, some universal patterns have been found in open flow networks, such as allometric scaling law, generalized 
Kleiber law, dissipation law, and gravity law, etc. We suppose constructal law cannot only be applied to flow systems with 
explicit spatial structures like rivers, vascular networks, animal movements, but also can be applied to open flow networks 
without explicit spatial structures such as energetic food webs, input-output networks, and clickstreams of attention flows. 
We try to formulate constructal law in the open flow network framework and test it by the real data. 
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1. INTRODUCTION 

Complex networks surround us — from national power 
grids and airline networks to social contact disease networks, 
neuronal networks and protein-protein interactions [1-4]. 
However, due to the limitation of the traditional binary graphs 
for describing the complexity of the various real systems, 
more networks, as weighted networks [5-6], bi-partite graphs 
[7], temporal networks [8] for instance, are emerging in the 
past decade as novel extensions of graphs. Especially, open 
flow network as a particular kind of directed weighted 
networks to depict the open flow system plays an important 
role in flow systems. 

As we all known, openness and flowability are the most 
significant features in the open complex systems in common. 
On one hand, The system needs to exchange energy and 
material with environment [9] to maintain itself in the ordered 
state. On the other hand, Energy and material flows are 
delivered to each unit of a system by the flow network [10-
11]. Open flow network is an ideal tool to understand open 
flow systems, in order to answer the questions like system 
stability, transportation efficiency in a quantitative way. The 
distribution of these flows in the entire body of a system is 
described by directed weighted edges. Two special nodes 
which called ”source” and “sink” are added to represent the 
external environment of the system and to reflect the openness 
of the system. Because the flow system is supposed to be in a 
steady state, the flow network is always balanced which 
means that the total inflow of each node equals to its total out 
flows except for the source and the sink. We also abbreviate 
open flow network as flow network in this paper. 

 
Economic input-output model [12] proposed by the famous 

economist Leonief [13-14] in 1950s is essentially an open 
flow network indeed. Input-output relation-ship between 
industries can be seen as a kind of flows(money or material), 
and all of them are conservative. Money flows from the final 
demands compartment, circulates in different sectors of an 
economic system, and eventually flows to the value added 
compartment(or goods flow in an inverse direction) [15]. 
Thus, value-added compartment can be regarded as the sink, 
and final demands sector can be regarded as the source.  

Energetic food web is another typical example of the flow 
network. H. T. Odum [16-17] used to engage in depicting 
energy flows between species due to the predatory 
interactions in an ecosystem as a circuit. The sunlight is the 
source of energy for the whole system, and all the energy will 
be converted to the waste heat by respiration and dissipation. 
Later on, Patten et. al put forward a systematic “Ecological 
Flow Analysis” method [18-22] to investigate energetic food 
webs in ecosystem. They not only proposed a series of 
methods to measure the direct or indirect interactions, but also 
gave a bunch of indices to depict the flow properties of 
circulation of the food webs [23-26]. 

Other examples of open flow networks include trade 
networks, clickstream networks [27,28] and so on. In the 
trade networks [29], each node represents the country in 
transactions and the flux means the volume of a trade between 
two countries. While in the clickstream networks, the node 
denotes a web, and the flux is the times of the successive 
clicks between two webs. Anyhow, open flow networks can 
provide a unified view to understand a variety of open flow 
systems.  
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2. OPEN FLOW NETWORK 

2.1 Mathematical representation 

In this section, we will give a mathematical description of 
open flow network. As mentioned above, an open flow 
network is a special directed weighted network, in which 
weight denotes flow. Fig. 1 is a simple example: 
 

  
 

Figure 1. A simple example of flow network. The number 
beyond the edges is the flow, and the orientation of the edges 

is the flow direction 
 

Any open flow network can be represented as a flow matrix 
F={fij}, here, fij means the flow from i to j. The two special 
node source and sink, respectively denoted by 0 and N+1( 
where N is the total amount of the nodes in the network 
except for source and sink). In flow matrix, we stipulate that 
the first row and the first column correspond to the source, 
and the last row and column correspond to the sink. Because 
the source has no inflow , all the elements in the first column 
are all 0s. Similarly, all the elements in the last row 
corresponding to the sink are also 0s. Therefore the flow 
matrix of the network in Fig. 2 can be shown as below. 
 

  Source 1 2 3 4 5 sink 
 0 80 0 0 0 0  

1 0 0 50 30 0 0 0 
2 0 0 0 0 20 30 10 
3 0 0 10 0 0 0 25 
4 0 0 0 0 0 10 10 
5 0 0 0 5 0 0 35 

sink 0 0 0 0 0 0 0 
        

 

Figure 2. The flow matrix of the Fig. 1 

2.2 Flow balance condition 

Open flow networks are always balanced because they are 
used to represent the system in a steady state. Therefore, for 
any node except the source and the sink, the summation of 
inflows equals to the summation of its outflows and we call 
this balance condition. We can describe it with the formula: 
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Because the flow network is balanced, we can then define 

an N * N matrix M from F follows: 
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Where, mij represents the transition probability that a 
flowing particle transfers from i to j after it visiting i. Thus, 
the flow network can be also treated as a Markov chain, and 
the matrix M is called the Markov matrix. 

Another important matrix which will be used widely is 
called the Fundamental matrix, it can be expressed by the 
Markov matrix as 
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Where I is the unity matrix. Any element uij in U matrix 

denotes the influence from i to j along all possible pathways 
including direct and indirect paths. 

Thus, several important quantities defined on the open flow 
networks can be expressed by M and U. 

2.3 Basic quantities 

In this subsection, we will introduce several basic quantities 
on flow networks. 
2.3.1 Total Throughflow Total throughflow is the total flux 
through any node. Because the network is balanced, node i’s 

total throughflow Ti is identical to the gross inflow , 

and the gross outflow . that is : 
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2.3.2 Dissipation The dissipation of node i is defined as the 

flow from i to the sink, that is: 
 

, 1i i ND f                                                                         (5) 

 
In most open flow networks, dissipations always have very 

large proportions to the total throughflows [22]. 
2.3.3 Node’s Impact Ci is also an vertex-related index, it 

reflects the total indirect effects. If all the particles that flow 
through node i will be dyed red, then Ci is just the number of 
the red particles in the network. It seems that the larger the Ci 
is, the greater node i’s influence to the entire network. 
Therefore, Ci is interpreted as the impact of node i [30]. it can 
be calculated as: 

 

 0
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f and u are the elements of flow matrix and fundamental 

matrix U. The variable Ci is extended from the approach of 
Garlaschelli et al. [31] to calculate the allometric scaling of 
food webs. 

 
 

3. UNIVERSAL LAWS IN THE OPEN FLOW 

NETWORK 

3.1 Allometric law 

Allometric law is a universal law in flow systems. It 
describes a set of power law relationships between various 
features of organisms such as metabolism, heart rate, etc. and 
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their body mass. Particularly, the biologist Kleiber has found 
that an organism’s metabolism F, and its size M follow a three 
quarters power law which is also named Kleiber’s law [32]. 

Banavar et al. and Garlaschelli et al. further pointed out that 
Kleiber law can be explained by a self-similar tree embedding 
the organism’s body [11,31]. And the self-similarity of this 
tree can be characterized by an allometric scaling for nodes. 

Although the structures of open flow networks are much 
more complicated than trees, the similar allometric law can 
also be found. However, there two types of allometries in 
flow networks, namely the allometric scaling for one single 
flow network, and the allometric growth for the growth of 
network. 

3.1.1 Allometric scaling The allometric scaling of a flow 
network is a power relationship between Ci and Ti, it can be 
written as: 

 
i iC T                                                                             (7) 

 
η is the exponent of the allometric scaling. This scaling 

reflects the self-similar nature of flow networks, and the 
exponent indicates the hierarchicality of the flow network. We 
found that this pattern is ubiquitous for almost all the flow 
networks that we have collected, and their exponents are very 
different for different types of networks. 

Fig.3 shows the scaling between Ci and Ti for Mondego 
energetic food web. In the figure, Ti represents the 
metabolism of node i, and Ci is the equivalent body mass of 
the sub-system rooted from vertex i. 
 

 
 

Figure 3. Allometric scaling law for the ecological network 
and the null model (inset) 

 

To test whether the allometric scaling pattern is significant 
compared to random flow networks, we build a null model in 
which the numbers of nodes and edges are maintained, all 
links are re-connected randomly and all flows on edges are 
also randomly assigned on the interval (0,fm) evenly, where 
fm is the maximum flux of the original network. From the 
inset of Fig. 3. we can note that the null model network does 
not show a significant allometric scaling law. 

The same allometric scaling law can be found in 
clickstream networks as shown in Fig. 4, 

 

 
 

Figure 4. The allometric scaling in the three clickstream 
networks of the top 1000 websites for different periods. The 

data points from three networks are plotted in different 
colours and styles. The values of η are 0.95, 0.92 and 0.96, 

respectively 
 
We found the allometric scaling is also ubiquitous across 

the three studied flow networks. Nodes in different colours 
correspond to different networks. The values of η are 
estimated to be in the range of 0.92~0.96 and all of them are 
smaller than 1,which are distinct from that in the ecological 
flow networks. 

As demonstrated above, the exponent η reflects the degree 
of centralization of the whole flow network, and also depicts 
the shape of an open flow network: hierarchical or flat. We 
can roughly classify the flow networks that we have studied 
into three universal classes according to the exponent, as 
shown in table 1: 
 

Table 1. The comparison of different open flow networks with exponent η 
 

network η classes implication 

Ecosystem network ≈1 neutral The impact of species is proportional to their flows 

Clickstream network ＜1 flat The impact of large websites do not match with their flows 

Industrial product 
trade network 

＞1 hierarchical The position large countries in the trade exceed their matching flows 

Agriculture-product 
trade network 

＜≈1 flat The impact of large countries do not match with their flows 

 
3.1.2 Allometric growth Another type of allometric law 

between the metabolism (i.e., the total inflow IS) and the 
body mass (the total systematic throughflow TST) in the 
process of network’s growth. IS indicates the degree of 
openness of the network, while TST indicates the capacity for 
storing flows in the entire network. Therefore, if a flow 
network is viewed as an organism the scaling between IS and 
TST  is  the   counterpart  of  the  Kleiber’s  law,   the  scaling  

 
between the metabolism and body mass, in the organism. 
Thus, we also name this scaling as the generalized Kleiber 
law for flow networks. Now, we will give the concrete 
definition of the two quantities as follows: 

 

0,

  i ij

i i j

TST T f                                                         (8) 
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This equation illustrates TST is the sum of the total 
throughflow of nodes, and IS is the sum of the inflows by 
‘‘Source’’ to i. 

 

0 i

i

IS f                                                                        (9) 

 
Therefore, for each time t, we can measure IS(t) and TST(t) 

in any time to get an empirical scaling: 
 

( ) ( )TST t IS t                                                               (10) 

 
the index θ is the exponent of the allometric growth. The 

greater the θ is, the larger the relative speed of TST increasing 
to the IS. 

Fig. 4 (A, B) show the empirical scalings between TST and 
IS for five clickstream networks. In which IS denotes the 
number of unique users who visit the online forum or the 
community in one hour (day) (UV), while TST stands for the 
total number of clicks(or tagging activities) generated by 
these users in one hour (day) (PV). So θ characterizes the 
stickiness [33] of a forum or an online community, because, it 
indicates the percentage of how many visits or tagging 

activity will be increased when the number of users increased 
by 1%. 

Θ for all 29,993 baidu online forms, and the distribution of 
the exponents and the R-squares of the scalings are shown in 
Fig. 4. B and C respectively. More than 86% of forums have 
R2>0.8 in the fitting, which suggests that the users of different 
forums obey similar behaviours in browsing threads 
collectively. Besides, 82% of the forums have a θ>1. Thus 
most of the studied forums are “sticky”, in the sense that users 
are more likely to remain in the forums when the forums grow 
in size. 

Figure (A) The allometric growth across three forums. Data 
points of different forums are shown in different colours. The 
values of θ are 1.15 (blue circles), 1.21 (green triangles), and 
1.29 (orange diamonds), respectively. (B) The allometric 
growth of Delicious (pink circles) and Flickr (purple 
triangles). Each data point corresponds to a pair of daily UV(t) 
and PV(t). The values of θ are 1.23 and 1.10, respectively. 
(C) The distribution of θ of 29,993 forums (the estimation of 
the rest 7 forums are removed due to a lack of data). The 
mean value is 1.06 and the standard deviation (SD) is 0.10. 
(D) The distribution of R2 in fitting the scaling of Baidu 
forums. The mean value is 0.89 and the SD is 0.10. 

We also observed the same allometric growth patterns for 
other flow networks, but the results are not published yet. 
Therefore, we discard those results. 

 

 
 

Figure 4. 

3.2 Dissipation law 

As pointed by the earlier ecological studies [16,34], a large 
fraction of energy flows dissipates to the environment in the 
whole ecosystem. The dissipated energy flow can be captured 
by the variable Di which is also available from the original 
data. Empirically, Di scales with throughflow Ti in the 
following way: 

 
i iD cT                                                                         (11) 

 

 
This equation is called dissipation law in this paper, where 

c and γ are parameters to be estimated. 
We observe that the estimated exponents γ are all slightly 

smaller than 1 in the energetic food webs , therefore the 
dissipation rate (dissipation per throughflow) decreases with 
the throughflow of the species slightly. If γ =1, c is the 
average energy dissipation rate of the whole food web. Since 
the empirical exponents in Table 2 are approaching to 1, the 
coefficient c’s are almost the dissipation rate of the specific 
food web. 
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From Table 2, we can read c’s are fractional numbers that 
are smaller than one except the food web Narragan whose 
exponent γ deviates 1 significantly. 

Dissipation law is also found in other flow networks. For 
example, we report the pattern and the exponents in the 

clickstream networks of Baidu forum [27]. And we found that 
compare to the energetic food webs, the dissipation law 
exponents in clickstream networks have wider range. 

 

 

Table 2. Fitting exponents and goodness of power law relationships (the webs are sorted by their number of edges, γ, α are 
exponents of dissipation law and gravity law. And α 1, α 2 are exponents of bi-gravity law) 

 

networks c γ R2 diss α R2 gra α1 α2 R2 bi 

CrystalD 0.67 0.96 1.00 0.63 0.70 0.57 0.75 0.74 

CrystalC 0.68 0.96 0.99 0.53 0.65 0.50 0.57 0.65 

ChesLower 0.49 0.95 0.99 0.70 0.75 0.61 0.84 0.76 

Chesapeake 0.50 0.99 0.98 0.68 0.84 0.62 0.77 0.85 

ChesMiddle 0.47 0.88 0.85 0.67 0.77 0.60 0.78 0.78 

ChesUpper 0.58 0.95 0.99 0.64 0.64 0.62 0.67 0.64 

Narragan 2.05 0.81 0.94 0.54 0.81 0.49 0.60 0.81 

Michigan 0.67 0.99 1.00 0.62 0.86 0.57 0.72 0.87 

StMarks 0.43 0.99 0.95 0.68 0.74 0.76 0.56 0.75 

Mondego 0.53 0.98 1.00 0.79 0.85 0.83 0.70 0.86 

Cypwet 0.46 0.97 0.99 0.70 0.84 0.85 0.55 0.87 

Cypdry 0.41 0.96 0.95 0.68 0.81 0.81 0.57 0.83 

Gramdry 0.58 0.97 1.00 0.66 0.76 0.61 0.73 0.77 

Gramwet 0.59 0.98 1.00 0.71 0.81 0.66 0.79 0.81 

Mangdry 0.45 0.98 0.98 0.58 0.77 0.60 0.56 0.77 

Mangwet 0.44 0.98 0.98 0.59 0.77 0.60 0.57 0.77 

Baywet 0.33 0.92 0.95 0.62 0.79 0.67 0.54 0.80 

Florida 0.33 0.92 0.95 0.62 0.79 0.67 0.54 0.80 

Baydry 0.32 0.91 0.95 0.61 0.78 0.68 0.52 0.78 

 
3.2.1 Relationship between exponents Interestingly, we 

further find the exponent γ of dissipation law as negative 
relationship with both scaling exponent η and allometric 
growth exponent θ. 

In the energetic food web study, we simply plot ηs against 
γs across all the collected empirical flow networks. The result 
is shown in Fig. 5. 

 

  
 

Figure 5. The relationship between γ and η in original and 
adjusted ecological flow networks 

 
In Fig. 5, the blue dotted curve is the original flow network, 

and the solid red line is for the adjusted networks based on the  

 
same network structure and the dissipation law according to 
flow adjusted algorithm (based on the Mondego’s topology 
but assigning flows randomly) [36]. We observe the 
allometric scaling exponent decreases with the dissipation law 
exponent in a similar manner no matter the original network 
structures are. 

 

 
 

Figure 6. The negative correlation between γ and θ. We 
plot both of the linear-binned data (orange circles) and the 

original data (heat map) 
 

Another interesting phenomenon that we noticed in the 
research of clickstream networks is that the dissipation 
efficiency γ and the allometric exponent θ are related. A small 
γ indicates when a node’s through-flow increases, the 
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dissipation rate may decrease and thus increase the network 
storage capacity. Fig. 6. demonstrates that the empirical data 
support the negative correlation between them. 

So, we suppose the reversed chronological displaying order 
of threads seems to decrease the dissipation efficiency γ and 
increase the ‘‘stickiness’’ θ of the studied forums. This may 
be the reason why such displaying order is so common among 
forums. The web masters may or may not have noticed that, 
this strategy beats its competitors by generating flow structure 
that attracts more users and thus spreads out in the evolution 
of forums. 

In summary, the dissipation index γ is very significant in 
the open flow networks. It can not only connect with 
allometric laws, but also may determine other important 
network properties, such as robustness, the efficiency of 
transportation and the growth of the network. 

 

3.3 Gravity law 

Another important common pattern found in flow networks 
is called gravity. It depicts the relationship between the flux 
on edges and nodes. 

We confirm this pattern in energetic food webs. We 
actually uncovered that the large throughflow nodes can 
exchange large energy flows. This effect is reflected by the 
so-called gravity law, namely, the energy flow between i and j 
scales with the product of the total throughflows of i and j, i.e. 

 

 


ij i jf TT                                                                   (12) 

 
In the case of food webs, the throughflow of each node Ti is 

treated as the size of a node comparable to the population of a 
city. It has similar forum as the famous Newton’s gravity law 
in which Ti and Tj are treated of two nodes, and the flux fij is 
treated as the force between the two. However, the distance d 
has no correspondence because spatial information is not 
included in our energetic food webs. 

Fig. 7. shows this pattern for a specific food web as an 
example. And all the results of exponents for all the food 
webs we have collected are shown in the fourth column of 
Table 2. 
 

 
 

Figure 7. Univariate and bivariate gravity law of 
Mangwet food web(a); The bivariate scaling relationship 
 

From Fig. 7(a), we could observe that there are several 
straight bands in the clusters of data points which indicate that 
the energy flow between two nodes fij may be predicted by 
other variables rather than the product of Ti and Tj . 

In order to fit better with the real data, we suggest that the 
following bivariate scaling relation holds: 

 
1 2 ij i jf T T                                                                    (13) 

 
Where α1 and α2 are two estimated parameters. This form 

of gravity law implies that the start nodes and the end nodes 
are asymmetric in the flow networks. Fig. 7(b) shows this 
bivariate gravity law. All the estimated exponents α1 and α2 
and the corresponding R2 are shown in the last 2nd, 3rd and 
4th columns in Table2. We can observe from Table 2 that the 
exponent α2 is larger than α1 for small food webs but smaller 
than it for large food webs except Gramdry and Gramwet. 
Thus, we can conclude that the large energy flows prefer to 
link nodes with large throughflow in all energy flow networks.  

All of these observed patterns of energy flows exhibit 
statistical significance and universality for all 19 empirical 
food flow networks and this scaling relation is also exists in 
other open flow systems like traffic flow networks or trade 
flow networks and so on. 

4. CONSTRUCTAL LAW 

A basic principle in all flow systems first proposed by the 
famous scientist Bejan. It claims that the generation of images 
of design in nature is a phenomenon of physics and this 
phenomenon is covered by the principle that all systems 
evolve in such a way that they provide easier access to flow 
[35]. 

Until now this principle has been widely applied from river 
networks, meridian networks to the animal behaviour 
networks. Consequently, it is reasonable to suppose that the 
general open flow networks may also obey this law in the 
process of evolution. 

To quantify this law in the framework of flow networks, the 
first thing we should do is to formulate it and to figure out 
what does easier access to flow mean for flow networks. 

Two important quantities will be defined in advance. they 
are the flow distance Lij and the total flux Tij. Here, the flow 
distance Lij is defined as the average steps that a particle flow 
from node i to j on all paths(directed and indirected) , it can 
be calculated by the following equation: 

 
2 2( ) ( )

 
ij jj

ij

ij jj

MU MU
L

u u
                                               (14) 

 
M, U are the matrices introduced in the section 2.  
Similarly, the total flows Tij is defined by the total flux from 

i to j along all possible paths (directed and indirected), which 
can be expressed  

 

0
0 i

ij ij

ii

u
T f u

u
                                                                (15) 

 
Where, u and f are the elements in matrix U and F. 
If the constructal law holds for open flow networks, then 

the flows may access the system easier means that the flow 
distance between any two nodes i and j will become shorter, 
and the total flows between them will become larger as the 
network evolve. This is the formulation of the constructal law 
in flow networks. 
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Next, we will test this hypothesis by evolving clickstream 
networks (Baidu online forum). First, for each node i in the 
network as a reference, at any time t, we can plot two 
variables Tij and Lij for any other node j on a plot (shown in 
Fig. 8). While under the evolution, after a period of time, 
there is another corresponding pair: T’ij and L’ij for the same 
node pair. We draw both of them on the picture and marked 
the direction from (Lij , Tij) to (L’ij , T’ij). Second, we color 
the directions that are consistent with the constructal law blue, 
and other directions as yellow. All these directions are 
pointing up or left because according to the formulation of 
constructal law, the distances will be shorter and the total flux 
will be larger. In Fig. 8, we show arrows for two 
representative nodes as references: a hub (left) and a 
nobody(left).  
 

  

 

Figure 8. The changes of Tij and Lij in the study on EXO 
forum. The time interval is about 2 hours 

 
From Fig. 8, we know the hub node is consistent with the 

law, meaning that L’ij is smaller than Lij or T’ij is greater than 
Tij or both happened. However, It seems that the nobody 
nodes not obey the constructal law. Because hubs always 
dominate large flows, they have large weights, thus the 
constructal law is approximately hold for the entire network. 

5. DISCUSSION 

The underlying reasons behind these phenomena are still 
not clear. In the study of allometric law, an interesting and 
still unexplained finding is that the allometric exponents of 
empirical ecological networks are all close to 1. They are 
neither centralized nor decentralized. We conjecture that this 
finding can be explained by an optimization between flow 
structure stability and energy transport efficiency, but this 
hypothesis will require additional study. 

Moreover, although the constructal law can be formulated 
by the conceptions of flow distances and total flows, more 
empirical studies on flow network evolution are needed. The 
results in this paper are very rough to make some scientific 
conclusion. However this is the first step which is meaningful. 
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