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ABSTRACT 

 
Basketball game flow and its design can be described as in many others natural systems. The structure, shape and 
functionality evolve in time and are closely related to performance in several sports. Basketball is a collaboration-opposition 
sport, thus games present critical points. Non-linear local interactions among players are reflected in the score evolution, the 
order parameter. Some researchers often presume that scoring in basketball is a random process, meaning memoryless, 
described using Poisson Model. Scoring cannot be described by a unique distribution. We examined 6130 NBA games and 
analyzed time intervals between points and scoring dynamic. In the NBA, the most competed games are decided in the last 
minute, where fouls play a main role (94.02%). Both teams try to keep their advantage solely in order to reach the last 
minute, where a different game will be played, which can be considered as an example of Red Queen Hypothesis. We also 
measured the game flow through players real interactions: passes, screens and space creations. Data follow a homogeneous 
distribution up to a certain value, suggesting that teams resolve the situation with a few steps (diffuse flow). But, if the 
situation becomes more critical, the dynamics turn into a Power Law Distribution, they modify the game flow spontaneously 
into a Scale-Free flow (hierarchical flow). These processes take place simultaneously and continuously during game time. 
Therefore teams would be considered as self-organizing systems. 
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1. INTRODUCTION 

Sports have proven to be a good field for analyzing 
dynamic systems, Sports provide a rich laboratory in which 
to study competitive behavior in a well-defined way [1]; e.g. 
random walk, complex statistics or extreme events [1, 2], 
game theory [3] and also in the construction and exploration 
of models, dynamics of competition [4]; particularly in 
basketball. In the context of analyzing adaptation, this 
conceptual linkage can be described by the Constructal Law. 
Constructal Law states that all systems evolve into the 
direction to maximize access for all flows through it. 
Constructal Law is also that systems that keep the capacity for 
structural adaptation will be favoured enhanced. In other 
words, flow-maximizing structures need to maintain 
evolvabilit y [5]. 

In basketball, most investigations have focused in the 
classic statistic, based on Poisson Model, Negative Binomial 
or Extreme Events. And also, statistical models more related 
to complexity such as Power Laws (PL), q-statistics, etc.  [4, 
6–8]. A priori, as most of authors point out, scoring in 
basketball can be considered as a random process, meaning 
memoryless [1, 4].  

Nevertheless, scoring in basketball present some specific 
features e.g. fouls dynamic (free throws), which comes up 
from the  game. This  fact  gives  to  the  game  a  much  more  

 
complex character, thus the issue of exclusive use of 
statistical models may be challenged. 

For that reason, in the first part of this paper we focused on 
the consecutive points scored by any of both teams in each 
game. Therefore a game can be considered as an arrival 

process; where in a time interval (T) is scored a number n of 
field goals. Using the Poisson model as a reference, the 
complex dynamic will emerge from the edge of this model. 
Therefore, to understand the underlying Poissonian process, if 
exists, it is important to define the time interval that we used 
to determine the rate or speed at which the game is conducted. 

That is, we determine with what T we "observe" the game. 

Hence for a time interval T a  value is defined as the mean 

number of events for time interval or =µ*T, being µ the 
number of events per seconds. 

The sample analyzed were 5 NBA Regular Seasons (no 
play-off), a total of 6130 games that we considered enough to 

be able to analyze short time intervals, minimum T=2 
seconds. We excluded the over-times in order to analyze a 
homogeneous sample, which contain all kind of games with 
several competitive realities. The over-times and play-off 
correspond to different games somehow, which would bias 
our analysis. Also we examine the possible presence of scale 
free or PL distributions, a type of ubiquitous behavior in 
dynamic systems and in the basis of statistical type [9]. 
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The second part of this work deal with the real game flow 
in a basketball game. A long-standing problem in biological 
and social sciences is to understand the conditions required 
for the emergence and maintenance of cooperation in 
evolving populations [10, 11]. The aim should be cooperation 
without reciprocity, without selfishness. As Phil Jackson said: 
to put the "me" in service of the "we” [12]. In fact, 
collaboration among teammates allows team to compete 
against other teams. But at the same time confrontation 
between teams produces a critical situation, which leads to 
players selection. It can seem simple but it does not. The 
selection of roster, coaches, staff, etc., by basketball teams is 
vital (for instance the combination between veterans and 
rookie players and great head coaches). 

In a basketball game, game flow does not remain stable. 
Teams try to modify their shape and structure in order to 
enhance their attributes; consequently, actions of players 
contain information. We assume that teams behave as a 
whole. Game flow is expressed by real interactions of players. 
These interactions are Passes, Screens and Space Creations. 
We consider each possession (each play) as a particular 
situation; so in a single game there are numerous plays. In 
consequence, we measured how many manifestations of the 
system took place in a critical game. Self-organization is 
patent when a team modifies his structure or game flow 
(cooperation) spontaneously through local interactions in 
order to overcome the critical situation. Usually, discussions 
about functionality are based on team structure, which 
possesses inherent characteristics. Here are shown a great 
example of how indeed each model displays different 
properties and the self-organization is based in the plasticity 
from a model to other according to an order parameter: 
Scoring [2]. 

We study the last game of 2011 Eastern Conference NBA 
Finals, Chicago Bulls vs. Miami Heat, as sample of a high 
competed game (score difference remained lower 10 points) 
which displays a critical profile (de Saá Guerra et al., 2013). 
We measured for each team the number or Passes, Screens 
and Space Creations performed per play. Passes represent the 
clearest example of players interaction. Screens are aimed to 
neutralize a teammate defender, in order to provide a 
superiority situation. This point is related whit next. After a 
screen, or just itself, Space creation happens when a player is 
occupying a court location and leaves that space to perform a 
clear out play, or a curl cut play (e.g. the famous UCLA cut).  

2. BASKETBALL PERSPECTIVE AND ANALYSIS. 

When a process follows a Poisson distribution, the events 
must be random and independent. But if the independence is 
broken, this can lead to Pareto or PL distributions. As 
Andriani and Mc Kelvey [13, 14] suggest, within competitive 
systems the PL type distributions can show up under two 
conditions: when the competitive intensity increases and when 
the cost of connections or of information transmission 
decreases. A specific structural design can facilitate the 
transmission of information much more efficiently, improving 
the self-organization ability and the recovery capacity of the 
system against perturbations [15]. 

A basketball game is a competitive system. During the 
game time, this competitiveness can fluctuate; hence 
competitive intensity may be much higher at certain times of 
the game than others. In the final moments of greatly 
competed games, one team has a small advantage over the 

other and tries to keep it the remaining time. The team which 
does not lead the score will try to wipe out this difference. 
The issue is that in the final moments of the game, the 
uncertainty (officials, fatigue, injures, wrong decision, etc.) 
could be key. Thus, is in these moments when an effective 
management and make decision are more necessary, the 
information among all elements of the system and the 
interrelation between them should flow more easily. The 
complexity of the game hence, may increase, which in some 
way be reflected in the number and type of points that are 
achieved. The struggle to regain the relative advantages in a 
complex environment, which seems to have some 
resemblance to a Red Queen's race, has many solutions: keep 
the possession, forcing shots, make quick fouls, etc. Thus we 
can expect to emerge avalanche events in the number of 
points achieved, affecting the tail of the distribution and the 
probability of power law distributed phenomena increases 
substantially. 

There are several paths to analyze a basketball game from a 
Poissonian point of view. First at all, we selected different 

values of T and the number of points scored in each time 
interval for both teams in all competitions considered. In 
Table 1 are shown, for each time interval, the mean values 

(, the variance values, the Index of Dispersion (ID) 
(variance mean ratio) and the ratio between the number of 
zeros expected by Poisson and the number of real zeros or 
Index of Zero (I0),) of the entire sample. A linear fit between 
the first two columns, 

 

 = µ T+c, 

 

gives us the mean value  μ = 0.038 in points scored per 

second, c = -0.0008 and R2=1. 

 

Table 1. Statistics for the number of baskets (points) in the 

set of all the games in different time intervals (T) 
 

 dT in 
seconds 

Mean 

() 
Variance 

ID 
(Var/Mean) 

IO 

2 0.077 0.095 1.23  0.99 

3 0.115 0.138 1.19  0.98 

4 0.154 0.179 1.16  0.98 

5 0.192 0.218 1.13  0.98 

6 0.231 0.254 1.10  0.98 

8 0.308 0.321 1.03  0.99 

10 0.385 0.379 0.98  1.00 

15 0.578 0.512 0.88  1.05 

20 0.771 0.655 0.84  1.11 

30 1.157 0.971 0.83  1.22 

40 1.543 1.288 0.83  1.34 

48 1.852 1.554 0.83  1.43 

60 2.315 1.955 0.84  1.59 

90 3.473 2.999 0.86  1.91 
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Taking into account that the ID value in a Poisson process 
is 1, we can obsever that the ID values decay linearly up d t = 
10 sec., remaining almost constant from dt = 30 sec. The I0 
value is almost constant and slightly less than 1 for small 
values of dt, it is 1 around dt = 10 sec. and then increases 

linearly. For values  T <8 the variance is greater than 
average, but as the value of I0 is maintained close to 1, the 
over-dispersion is due to increase in the tail of the 
distribution. 

The ID values approach to 1 in values around 8-10 seconds, 
then drops below 1 (sub-dispersion). In this case, the ratio 
between the number of zeros expected by Poisson and the 
number of real zeros increases, which means a lower number 
of zeros respect to Poisson, reflecting that in basketball 
scoring is not an event as rare as in other sports, with a lower 

variance and also a lower probability in the tail than the 
Poisson distribution. We will discuss this deeply later.  

 
 

3. FINAL POINT DIFFERENCES. 

In a recent paper [2], we noted that the final point 
differences seems to follow several Power Laws (PL). Most 
of them ended with differences lower than 10-11 points, 
which were distributed almost uniformly and correspond to 
the most competed games.  
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Figure 1. Histogram of final point differences. The upper panel represents the log-log of the histogram. This displays three 
different PL which points out three different game profiles 

 
The Figure 1 shows the histogram of the final point 

differences for the entire sample analyzed. The log-log (upper 
panel) suggests the presence of more than one PL, with two 
crossovers located around final difference of 11 and 27 
points.  A total of 3846 games (63%) concluded with a 
difference between 1 and 11 points, 1854 games (30%) had a 
difference between 12 and 26 points approximately, and only 
7% (431) did so with a difference of 27 or more points. Here 
we use Power Law only conceptually. We do not mind its 
exact fit. The appearance of these PL helps us to classify the 
entire sample in competed games and non-competed games. 
In the competed zone (0-11 pts.) the PL presents a slope close 
to 0, the distribution is approximately uniform and the 
probability of finishing a game by 2 points is the same as 10 
points; this is a notable fact. In turn, games finished in zero 
are relatively scarce in basketball (excluded over times), 
while finishing by two points difference has a higher 
probability because the scoring mechanism breaks the 
symmetry (2 pts or free throws). We defined this kind of 
games as competed games. It is notable that there are not a 
number of points that characterize the end of a competitive 
game, having the same probability between 1 and 11. A 
typical final score does not exist. From 12 to 27 there is 
another region where the PL has a negative exponent; there is 
any superiority of one team over another. These games are 
more predictable than the previous but still competed. The 
last case, point difference higher  than  27, are  games  with  a  

 
clear dominance of a team. These games (7%) are few 
compared to the rest, for that reason we consider games 
finished by 0-11 points as competed games, and with point 
differences higher than 11 as non-competed games.  
 

4. THE DISTRIBUTION OF TIME INTERVALS 

BETWEEN POINTS REVISITED. 

In [1, 2, 4] are shown the distribution of time intervals 
between points (dt), that in a Poisson process would be an 
exponential distribution. In Figure 2, we represent the same 
distribution in a semi-log-plot, but with an important 
difference. In the upper panel we highlight the detail for dt < 
30 seconds. Note that beyond 26 seconds the data follows an 
exponential distribution (solid line in figure and µ value) with 
µ = 0.048 slightly higher than that obtained before by linear 
fit. We noted [2] that after 100 seconds, the probability of 
remain without scoring is greater than that provided by the 
exponential distribution, this seems to be a memory effect that 
exponential distribution does not have (memorylessness). I.e. 
if the game gets complicated and neither of teams scores after 
a critical time, the probability of not scoring in the next few 
seconds seems to increase, which occurs in the first minutes 
of each quarter and especially in the fourth quarter. 
 

S53



0 50 100 150 200 250 300

10
0

10
1

10
2

10
3

10
4

10
5

Time intervals in seconds

lo
g
(F

re
q
u
e
n
c
y
) 

1 6 10 17 24

10
4

lo
g
(F

re
q
.)

 

Time intervals
slope = -0.048

 
 

Figure 2. Semi-log plot of point time intervals frequency. Apparently, there are three different behaviors. The data follow a 
distribution with a maximum (peak) around 20 seconds. Beyond 30 seconds follows an exponential distribution. The upper panel 

represents a detail for the first 30 seconds
 

Table 2 shows the percentage of points with time 
difference between them dt = 1, 2..., 8 seconds; and the 
minute in which take place. "Others" represents the values for  

 
remaining minutes in the game. The lower part shows the 
result for the same time differences but for each type of points 
(1, 2 or 3). 

 

Table 2. Percentage of points for different dt. And for 1pt, 2pt and 3 pt 
 

Minute of the game dt=1 dt=2 dt=3 dt=4 dt=5 dt=6 dt=7 dt=8 

11-12 1.52 4.38 5.45 6.28 5.38 5.13 5.12 4.26 

23-24 3.45 5.99 7.92 7.98 7.92 6.44 6.27 5.56 

35-36 2.98 3.76 5.96 6.50 6.16 4.15 4.88 4.49 

46-47 3.39 4.61 6.40 6.61 6.27 5.48 5.89 5.30 

47-48 69.68 57.07 45.64 40.53 32.36 22.80 19.96 12.95 

Others 18.98 24.19 28.63 32.10 41.91 56.00 57.89 67.45 

1 89.18 69.39 54.76 45.54 44.78 39.97 39.62 37.49 

2 8.01 20.84 33.09 42.13 44.26 48.98 48.65 50.27 

3 2.81 9.08 12.15 12.33 10.96 11.06 11.73 12.24 

 
The point type with dt = 1 sec. are free throws mainly and 

take place in the last minute of the game. From dt = 5 the 
trend is reversed, the percentage of 2 points shots starts to be 
the percentage of free throws. This is reflected in the change 
of growth around the central circle in the subplot of Figure 2.  

5. EVOLUTION IN TIME 

To better understand the limitations of the Poisson Model, 
let ś assume that every minute in a basketball game behaves 
as a Poisson process. Consequently, we could calculate the 
probability of number of points scored in the first minute for 
the entire games, in the second, in the third and so on. Every 
minute is considered an independent Poisson process. The 
following  Figure  (Figure  4)   displays  the  ID  every  single  

 
minute. In general, the variance values are lower than the 
mean values, a sub-disperse case, and hence is more 
predictable than the pure Poisson process. The ID increases 
along with game evolution, pointing out more randomness.  
Particularity, the last minutes of the three first quarters 
approach to 1; as well the minute 47, which presents value 1. 
The upper panels illustrate the frequency of the number of 
scored points in a semi-log plot (dotted solid line) for two 
cases: minute 20 and minute 47. We both compared to 
Poisson distribution (dash line (o)). In the first case the 
variance is lower than predicted by Poisson. The minute 47 
behaves similar to final minutes in previous quarters and 
matches the Poisson distribution but for some tail values, with 
a low weight in the total distribution. The case of minute 48 is 
totally different from the rest of the game.  
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Figure 4. Index of Dispersion of the point scored by minute
 

We can observe that the trend of the values is to rise over 
time. Only at the end of each quarter there are a significantly 
increase, closer to 1, but only at the minute 47 reach the value  
1 (pure Poisson). The minute 48 is completely out the range 
of the rest of the game, reaching values higher than 1. The 
behavior of this minute is very complex. The two upper 
panels represent the point  frequencies  semi-log  plot  (dotted  
 

 
solid line) and Poisson distribution (dash line (o)) for the 
minute 20 (left) and the minute 47 (right). 

In order to a better understanding, we have selected some 
cases with representative Index of Dispersion. We analyze 
two minutes intermediate 6 and 32, a quarter final minute 36 
and the minute 47, with Index of Dispersion values 0.63, 
0.75, 0.90 and 1.02 respectively. 
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Figure 5. Histograms of the point scored in the minutes 6, 32, 36 and 47, corresponding to Index of Dispersion values 0.63, 
0.75, 0.90 and 1.02 

 
The solid line represents the Poisson theoretical 

distribution. The two upper cases show under-dispersion, 
whereas the lower cases present an Index of Dispersion close 
to 1, with a Poissonian behavior. 

In the two upper Figures, we observe that do not fit well to 
the Poisson distribution, ID < 1, and data are clustered around 
mean value, with less zeros and a lower probability values in 
the tail than Poisson, characterizing an under-dispersed 
Poisson distribution. In general, are  more  predictable  than  a  

 
pure Poisson process.On the other hand, in the two cases 
below, the Poisson distribution fits better (Index of 
Dispersion 0.90 and 1.02). Note that the number of zeros 
matches better and decays as Poisson.  The minute 47 
represents the most unpredictable moment of the game, 
except the last minute, which will be treated separately 
because the nature of the distribution is different. This seems 
to be an indicator of the risk assumed by teams. Teams tend to 
risk more at these times, and defensive intensity increases 
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(more fouls) which indicates greater likelihood of failures, 
more zeros than in previous times or greater number of points 
(longer tail), meaning great randomness and explain its 
proximity to the Poisson distribution. In the cases with less 
risk (two upper subplots), the game seems more predictable 
and the number of failures is lower; which would justify the 
least number of zeros and the shorter tail. 

In the last minute the variance is significantly higher than 
the mean, indicating an over-disperse case which can be 
modeled by a Negative Binomial Distribution. The Figure 6 
shows the scored points histogram and the Negative Binomial 
Fit (parameters 3.86 +/- 0.27; 0.48 +/- 0.02). The source of 

this behavior could be the clusterization of scored points and 
focused in some specific games where the number of scored 
points increases. We carried out a scaling analysis by a log-
log plot (upper panel) which reveals that the data can be fitted 
by a PL as well, with a crossover around 9 points, and it is 
shown only for qualitative purpose. Hence, we can deduce 
that there are three situations: less than 4 points, between 4 
and 8 points and more than 8 points in the last minute. Even it 
its possible reaching 20 points or more in the last minute, 
which points out the complexity of the game and importance 
of as is shown in Table 2. 
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Figure 6. Histogram of point scored in the last minute of the game 
 

The solid line represents negative binomial distribution fit. 
Note that the values are better fitted at the tail of the 
distribution. For further analysis, we carried out a log-log 
plot, in the upper panel, which displays two Power Laws with 
a crossover (straights lines). The dashed line in the upper 
panel represents the negative binomial fit. 

6. REALITY OF BASKETBALL.  

As we just have seen, basketball is not a random game. The 
reality is much more complex that we might think in advance, 
where the game flow does not remain stable or predictable. 
The second part of this work tries to figure out the basketball 
team reality in a real basketball game. We analyzed a 
competed game and measured the game flow through 
interactions of players. 

The Figure 7 represent the histogram of the number of 
Passes, Screens and Space Creations. The x-axis represents 
the number of events in a single play. The y-axis represents 
the number of plays with the number of events happened. 
Regarding Passes, Chicago (right column) reaches up to eight 
passes per play, whereas Miami (left column) only achieves 

five passes maximum. The absolute number of Miami plays is 
lower than Chicago. The scaling analysis (upper panels) 
reveals that the distributions decay as a Power Laws 

. The presence of this truncated Power Laws 

points out different dynamics regarding passing. Note that the 
cut for Chicago is located in four passes, but for Miami is 
located around three. 

Regarding screens, the histogram of Chicago decays; while 
that the predominant situation in Miami is one single screen. 
Moreover, sometimes Chicago performs plays with up to five 
screens; one more than Miami. When we carried out a log-log 
plot, note a cut in two screens for Chicago and two cuts in 
Miami. This fact gives us a lot of information about the 
Miami game style. The core situation for Miami is one screen 
mainly, or no screens. Chicago and Miami display different 
profiles regarding space creations. Chicago seems to behave a 
homogeneous region from zero to two space creations, and 
the values drops from this point. In contrast, Miami shows a 
predominance of one space creation even though zero space 
creations values are similar. The log-log plot reveals two 
different areas in Chicago and three in Miami. 
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Figure 7. Histograms of Chicago (right column) and Miami (left column) passes, screens and space creations respectively.  

 
X-axis represents the number of events in a single play and 

the y-axis represents the number of plays with that number of 
events. The log-log plots (subplots) show several tipping 
points in the sample analyzed. This fact reveals different 
realities. The tails of the distributions follow an approximate 

Power Law to Chicago with exponent Chipasses  3.8; Chiscreens1 

 2.2; Chiscreens2  7.2; Chispaces  1.7; and to Miami with 

exponent Miapasses  5.8; Miascreens1  1.2; Miascreens2  4.2; 

Miaspaces1  0.6; Miaspaces2  3.2. 
The conclusion than can be draw is if players are able to 

resolve the situation despite the opposition of rival team with 
a few interactions (number of interactions with a 
homogeneous probability, the game flow can be considered as 
diffuse, in the sense that only with a few steps, they resolve 
the situation. Game flow preserves their inherent structure 
despite a substantial number of attacks or disturbances [16]. 
This can be interpreted as that, indeed, when a team is in a 
stable situation, suffers constantly attacks by the other team, 
but maintains its structure throughout the game. 

But when team exceeds the first tipping point, the 
distribution decays as a Power Law with a degree distribution 

to Chicago: Chipasses  3.8; Chiscreens1  2.2; Chiscreens2  7.2; 

Chispaces  1.7.and to Miami Miapasses  5.8; Miascreens1  1.2; 

Miascreens2  4.2; Miaspaces1  0.6; Miaspaces2  3.2. The Power 

Laws indicate that now they behave as a Scale-Free flow 
meaning that some players absorb more game flow than the 
others. Therefore, game flow is focused in some players. The 
team becomes from a diffuse flow to a concentrated flow, a 
hierarchical flow. 

This does not necessarily means that the player who focuses 
the game is the player who carries out all shoots. It also can 
be a game distributor or game creator. Or just an emergency 
from the game caused by time (time runs out) or specific 
game situation. Given the high degree of randomness that 
exists in most games with an 11-point difference or lower, we 
could suppose that the majority of games have a high degree 
of uncertainty. Therefore it is very difficult to know in 
advance how players will behave. But we observed that there 
are patterns that emerge spontaneously in response to needs or 
survival tactics in the game. In fact, the team success (attack 
or defense) depends on those action sequences. 

In sort, a basketball team can be considered as a good 
example of self-organization. Defenders collaborate in order 
to hamper the flow of the attackers. But at the same time 
attacking players try to overcome this opposition through their 
skills as team. It is a collaboration-opposition sport. The 
multiple local interactions among teammates and opponents 
(mainly non-linear type) influence on each other and confer 
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the game a critical profile. All these processes take place 
simultaneously and continuously during game time. In fact, 
that is what make sport attractive to fans and media (and 
enables to survive and improve), the ability of teams of 
arising out new behaviors. 
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