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Medical imaging is essential in contemporary healthcare as it assists in the identification of 

diseases, development of treatment strategies, and ongoing monitoring of patients. Over the 

years, deep learning (DL)techniques have emerged as a transformative force in medical 

image reconstruction, enabling the generation of high-quality images from noisy, 

incomplete, or under-sampled data. This review paper provides a comprehensive survey of 

recent advancements and applications of deep learning methods in medical image 

reconstruction. The key challenges in medical image reconstruction include issues related 

to reconstruction accuracy, noise sensitivity, and data limitation. A variety of deep learning 

models and their combinations are suitable for medical image reconstruction due to their 

unique capabilities, such as spatial hierarchy capture, adversarial learning, and other 

features, which allow them to address the complexities and challenges associated with 

medical image reconstruction. The paper analyses the key contributions of DL-based 

approaches in different imaging modalities, including computed tomography (CT) and 

magnetic resonance imaging (MRI). DL techniques are enabling image reconstruction in 

specialized medical fields like neuroimaging and cardiac imaging, but practitioners face 

challenges in training complex models and understanding their results. Finally, future 

research directions are suggested to improve the key limitations highlighted in this survey 

study.  
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1. INTRODUCTION

In the field of healthcare, Artificial Intelligence (AI) is 

offering significant advantages by enhancing productivity and 

efficiency through the automation of routine tasks. Moreover, 

it aids medical specialists in rapidly generating insights for 

early disease diagnosis, leading to valuable benefits. Medical 

image reconstruction plays an essential role in medical 

imaging because it aims to create high-quality and detailed 

images from raw data received by imaging systems like 

computed tomography (CT) and magnetic resonance imaging 

(MRI). This process is essential for precise diagnosis, 

treatment planning, and disease monitoring [1]. Several 

medical conditions require the use of high-quality 

reconstructed images for effective diagnosis, treatment 

planning, and monitoring. Advanced image reconstruction 

techniques using deep learning models have shown promising 

results in enhancing medical images. These models learn 

complex patterns and structures from large datasets, leading to 

better image reconstruction and clearer visuals for medical 

professionals. A variety of imaging modalities are available 

for the diagnosis and identification of diseases, including X-

ray, CT, MRI, ultrasound, and positron emission tomography 

(PET). MRI scans are widely utilized in the clinical setting due 

to their ability to provide accurate disease diagnosis without 

exposing patients to harmful radiation. Despite their numerous 

benefits, MRI scans can still suffer from limitations that 

impact their performance such as sensitivity to various 

artifacts and noise, which can degrade image quality. To 

address these limitations, AI-based image reconstruction 

techniques are being integrated into MRI scans for denoising 

and artifact correction, enhancing the overall image quality 

and diagnostic accuracy [2]. The integration of AI holds the 

potential to enhance the accuracy, speed, and efficiency of 

MRI reconstruction. In CT and X-ray imaging, patients are 

exposed to ionizing radiation. Image reconstruction 

algorithms aim to achieve high image quality with the lowest 

possible radiation dose, ensuring patient safety without 

compromising diagnostic information [3]. 

1.1 Deep Learning-based Reconstruction 

Deep learning algorithms can be used to reconstruct images 

from sparse and incomplete data. For example, CNNs can be 
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trained on large datasets of MRI or CT scan images to learn 

the underlying patterns in the data, and then use this 

knowledge to reconstruct high-quality images from under-

sampled data [1]. 

The main features of AI-based reconstruction models are 

described below: 

1. Model-based reconstruction: 

• Uses a mathematical model of the imaging 

process to reconstruct images from measurement 

data. 

• Optimizes the parameters of the model with AI 

algorithms. 

• Improves accuracy and speed in the 

reconstruction process. 

2. Image denoising: 

• Reduces the amount of noise in images. 

• Trains AI algorithms to recognize patterns in 

noisy images. 

• Removes the noise while preserving the 

underlying signal. 

3. Compressed sensing reconstruction: 

• Uses a mathematical framework called 

compressed sensing to reconstruct images from 

a smaller number of measurements. 

• Optimizes the process with AI algorithms. 

• Can reconstruct high-quality images from even 

fewer measurements. 

4. Deep learning-based reconstruction:  

• Uses deep learning algorithms (such as CNNs, 

GANs, and VAEs) to reconstruct images from 

sparse and incomplete data. 

• Trains the algorithms on large datasets of MRI 

images to learn underlying patterns. 

• Can reconstruct high-quality images from under-

sampled data [2]. 

Deep learning-based image reconstruction can enhance the 

speed and accuracy of medical imaging procedures, which is 

important in time-sensitive medical applications like 

emergency care. The requirement for huge volumes of training 

data, the computational intensity, and the possibility for 

overfitting are all challenges and limits of deep learning-based 

image reconstruction in medical applications. Despite these 

obstacles, deep learning-based image reconstruction has 

shown great promise in medical applications and is expected 

to play an important role in improving the accuracy and speed 

of medical imaging techniques in the future.  

The majority of the research is focused on image pre-

processing, classification, and exploring various applications 

of Convolutional Neural Network (CNN) techniques in 

medical imaging. Few studies reviewed the image 

reconstruction domain; therefore, we conducted a survey, 

analyzing various studies to present an updated and 

comprehensive synthesis of the latest advancements in the 

field. This review examined relevant publications published 

between 2018 and 2023. Moreover, it examines how deep 

learning techniques such as CNN, and adversarial networks 

are suitable for image reconstruction due to their unique 

capabilities, including spatial hierarchy capture, and 

adversarial learning, which help address the complexities 

associated with medical image reconstruction. Additionally, it 

highlights how DL have facilitated image reconstruction in 

specialized medical fields, including neuroimaging and 

cardiac imaging. The training of complex models can be 

challenging due to the limited availability of large, labeled 

datasets. Additionally, doctors are concerned about the 

difficulty of understanding deep learning results, as they 

require clear and understandable outcomes to make informed 

decisions. Overall, this study analyzed current advancements 

in this area and the associated major challenges. Additionally, 

the integration of DL-based approaches in medical images 

specifically MRI scans and CT has the potential to enhance the 

overall image quality and diagnostic accuracy by addressing 

limitations such as sensitivity to artifacts and noise. However, 

the lack of diverse and comprehensive datasets poses a 

significant challenge in training models that can successfully 

recreate images from unseen data, leading to overfitting issues. 

Recent studies in medical image reconstruction focus on 

enhancing computational efficiency through efficient 

architecture design, utilizing model compression techniques, 

and emphasizing integration with hardware accelerators like 

GPUs and TPUs, ultimately facilitating real-time processing 

in clinical applications. 

This article aims to investigate the following objectives. 

• Review and analyze deep learning approaches and 

challenges for medical image reconstruction. 

• Open research direction. 

 

 

2. BACKGROUND 

 

2.1 Overview of deep learning (DL) 

 

Deep learning (DL), a subfield of machine learning (ML), 

is driven by the data processing mechanisms observed in the 

human brain. Deep learning does not rely on predetermined 

human criteria to function; instead, it leverages a vast amount 

of data to associate the provided input with specified labels. 

DL is planned to utilize various layers of algorithms (artificial 

neural organizations, or ANNs), every one of which gives a 

different understanding of the information that has been fed to 

them [3].  

 

 
 

Figure 1. Difference between DL and ML 

 

Traditional ML techniques require a series of steps to 

achieve a single classification task. The steps include pre-

processing, feature extraction, wise feature selection, learning, 

and classification. However, the feature selection might 

degrade the performance of ML methods and prompt the 

wrong separation between classes. To overcome this issue, DL 

can mechanize the learning of features for a considerable 

length of time, dissimilar to traditional ML strategies. DL 

empowers learning also classification to be accomplished in a 

solitary shot. Figure 1 illustrates the difference between DL 

and ML ability, Robustness, Scalability, and Generalization of 

DL. DL has turned into an amazingly famous sort of ML 

calculation lately because of the immense development and 
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advancement in the field of big data [4]. It is as yet in persistent 

advancement in regard to novel execution for several ML 

assignments and has simplified the improvement of numerous 

learning fields, such as image reconstruction, image 

segmentation, object detection, and image super-resolution [5]. 

Moreover, the performance of DL is far much better than that 

of human beings in carrying out different tasks such as image 

classification, medical decisions, speech recognition, price 

prediction, stock preference, weather prediction, tracking, and 

biometrics. During the imaging process, various factors such 

as electronic interference, motion, and inherent system noise 

can introduce undesirable distortions into the images. Image 

denoising techniques aim to enhance the quality of MRI 

images by effectively removing or minimizing these unwanted 

elements, thereby improving the accuracy and clarity of the 

diagnostic information. DL algorithms can be used to reduce 

the amount of noise in images, resulting in clearer and more 

accurate images, due to the adaptable models, approaches, and 

frameworks used to carry out image denoising tasks. So the 

next part of this section defines the approaches, models, and 

frameworks for image denoising. CNNs have gradually 

improved their performance in AI vision tasks over the years, 

surpassing human vision with a 5% error rate in Figure 2 

below.  

 

 
 

Figure 2. Performance of DL Models error rate 

 

2.2 Frameworks for deep learning 

 

Deep learning frameworks provide a set of tools for testing, 

training, and building deep neural networks using a high-level 

programming interface. Broadly utilized DL structures, like 

PyTorch, TensorFlow, Theano, Caffe, Chainer, and Keras 

refer to Figure 3 [6]. This section explained the frameworks 

used for deep learning and how they are used in various 

applications. 

 

2.2.1 Tensorflow  

Tensorflow was developed by Google’s Brain, it utilizes 

data flow graphs to process the data. Its major strength lies in 

its expansive high-order machine learning library that supports 

Python, C++, and R. TensorFlow excels in tasks such as 

denoising, classification, and object detection. One notable 

advantage is its extensive community support and integration 

capabilities. However, some users find its learning curve steep. 

 

2.2.2 Theano  

Theano was developed by University de Montreal, it 

supports a Python interface, which allows the users to optimize, 

evaluate and define mathematical expressions for dealing with 

neural networks. While versatile in applications like denoising 

and classification, Theano's main advantage lies in its ability 

to handle complex mathematical expressions effectively. 

However, the disadvantage of Theano was that it is slower than 

TensorFlow. 

 

 
 

Figure 3. Frameworks for DL 

 

2.2.3 Keras 

 Keras was developed by Francois Chollet, basically, It was 

written in Python language, which supports high-level neural 

network API. Keras run on top of Tensorflow and Theano. Its 

advantage lies in its simplicity and ease of use, making it an 

ideal choice for quick prototyping. Keras is known for its user-

friendly design, facilitating rapid model development. 

However, its abstraction may limit fine-grained control in 

certain scenarios. 

 

2.2.4 PyTorch  

PyTorch was primarily built by Facebook’s AI Research lab 

(FAIR). Its advantages include seamless integration with 

Python, CUDA, and C/C++ libraries. PyTorch is favored for 

tasks ranging from image denoising to action recognition. Its 

disadvantage includes a slightly smaller community compared 

to TensorFlow. 

 

2.2.5 Caffe 

Yangqing Jia is the creator of Caffe, which stands for 

Convolutional Architecture for Fast Feature Embedding. The 

simplicity of the model makes it a superb option for jobs 

involving picture detection and classification. Nevertheless, 

Caffe can be seen as less adaptable for specific intricate 

network structures. Due to its ability to utilize both CPU and 

GPU, it is highly regarded for its rapidity and effectiveness. 

 

2.2.6 Chainer 

Chainer was created by Preferred Networks (IBM, Intel, 

Microsoft, and Nvidia) and written in Python. Chainer's 

unique feature is its dynamic computation graph, allowing for 

intuitive model design. It executes on top of the Numpy and 

CuPy Python libraries. However, it may not be as optimized 

for large-scale deployments as some other frameworks. 

 

2.2.7 Apache MXNet  

The deep learning framework called Apache MXNet 

focusees on efficiency and adaptability, allowing users to 

seamlessly combine imperative and symbolic programming. 

Its advantage lies in efficient memory utilization and scalable 

deployment options.  

 

2.2.8 Deeplearning4j  

Deeplearning4j is a comprehensive framework that intends 

to make deep learning application development on the Java 

Virtual Machine (JVM) easier. Its advantages include multiple 
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components, including DL4J for generating 

MultiLayerNetworks and ComputationGraphs, ND4J for 

linear algebra operations, and Python4J for Python integration. 

However, its ecosystem may be less mature compared to 

Python-based frameworks. 

 

2.2.9 CNTK  

Microsoft Cognitive Toolkit (CNTK) is a free and open-

source deep learning platform for building, training, and 

analysing neural networks. It supports a wide range of model 

types, such as feed-forward DNNs, CNNs, and RNNs/LSTMs. 

Its advantage lies in effective training, employs automatic 

differentiation and parallelization over several GPUs and 

servers. However, CNTK may be considered less user-friendly 

for beginners compared to some other frameworks. 

 

2.2.10 Torch 

Torch is an open-source ML library based in the Lua 

scripting language use for the creation of deep neural networks. 

It is one of the most popular platforms for deep learning 

research. Its advantage includes a dynamic computational 

graph and LuaJIT scripting language. Torch is favored for its 

flexibility, but its adoption may be limited due to the scripting 

language choice. 

A deep learning framework may provide a wide variety of 

features; the choice depends on the researcher's specific needs 

and priorities. Factors such as flexibility, community support, 

ease of use, performance, and compatibility with existing tools 

and environments all play a crucial role in determining the 

most suitable framework for a particular research project. New 

frameworks could appear as the area of deep learning develops, 

and as per the need old ones might get updated and improved 

to increase their functionality. 

 

 

3. MEDICAL IMAGE RECONSTRUCTION 

 

To support medical diagnoses and propose treatments, a 

number of medical imaging methods, including radiography, 

MRI, PET, and CT scans, are often utilized in clinical settings. 

These techniques provide pictures of biological, anatomical, 

and physiological features. With the use of these technologies, 

doctors can diagnose and treat patients more accurately, 

almost eliminating the chance of a false positive. Similar to 

this, AI models are revolutionizing the medical field by 

helping patients as well as physicians. In academic research 

settings as well as clinical settings, it has the capacity to tackle 

difficult medical issues [7]. AI significantly aids in image 

reconstruction by utilizing the power of deep learning models 

to address various challenges such as low resolution, noise, 

missing information, and artifacts. The application of AI in 

image reconstruction spans diverse domains, including 

medical imaging, and real-time processing, contributing to the 

generation of visually compelling and informative images. 

The MRI and CT scan are the most commonly used imaging 

techniques in medicine. The MRI scan has established itself as 

a reliable clinical tool due to its capacity to deliver precise 

illness diagnoses without subjecting patients to dangerous 

radiation. However, it may experience various problems that 

affect its performance. Many approaches have been used to 

improve the system's functionality and give patients comfort 

in order to meet these constraints. The fact that MRI scans take 

a long time to finish is one of the most difficult issues with 

them. The two most advanced techniques for speeding up the 

MRI scan are called CS and PI, however they also have certain 

drawbacks. As a result, it continues to confront difficulties 

caused by lengthy iterations and a slow rate of acceleration. 

Conversely, deep learning (DL) has experienced a 

significant increase in its use in medical imaging. CNN-based 

DL models have been the basis for AI solutions that rely on 

imaging. These solutions that are led by deep learning aim to 

provide help for clinical decision-making and offer numerous 

benefits. Firstly, CNN-based DL models can reduce the 

number of parameters required while maintaining model 

quality. Secondly, they do not require manual feature 

engineering as they can automatically extract features from 

images. Additionally, the literature supports the use of CNN- 

based DL for image classification and recognition with high 

accuracy [2]. 

In recent times, various imaging modalities, including MRI, 

PET, and CT scan, have effectively integrated DL algorithms 

for image reconstruction. This has not only resulted in 

enhanced image quality but has also enabled real-time imaging. 

Medical imaging requires real-time imaging to prevent 

protracted delays and provide a greater rate of acceleration for 

dynamic functions. DL has also excelled in low-rank computer 

vision models, image classification, image segmentation, and 

denoising [8]. Furthermore, DL enhanced the performance of 

undersampled MR image reconstruction by a substantial 

margin and demonstrated tremendous potential for further 

improvement. DCNNs reconstruct images from compressed-

sensing MRI and PI using distinct methods. The deep learning 

networks undergo training using sets of MRI k-space data that 

have been subsampled and entirely sampled, consisting of 

original and estimated images. 
Additionally, inverse image processing limitations such as 

accelerated MRI reconstruction have been successfully 

addressed using DL techniques in the last few years. Multiple 

strategies of Deep Convolutional Neural Networks (DCNNs) 

are incorporated with CS and PI to restore MRI and mitigate 

the challenges associated with them. These algorithms are the 

state-of-the-art to make accessible more MRI data and achieve 

performance more efficiently [9]. However, few studies have 

applied local interpretable model-agnostic explanation (LIME) 

and Shapley additive explanation (SHAP) techniques along 

with CNN to enhance interpretability. Deep learning models 

have already demonstrated the capacity to alleviate the 

workload of medical professionals, enhance patient care, and 

decrease expenses. For instance, deep learning algorithms 

such as Resnet50 have been utilized to differentiate COVID-

19 from X-rays in order to achieve a quicker diagnosis with a 

97% accuracy rate. DL has been employed in several research 

to perform tasks such as identifying brain tumors in CT scans 

and analyzing MRI data to predict subtypes. However, a major 

challenge in the implementation of DL-based solutions in 

medical settings is the lack of interpretability and transparency 

of algorithm-driven decisions. Despite numerous efforts to 

develop explainable AI- based Clinical Decision Support 

Systems (CDSS), there remains a lack of a universal notion of 

explainability and excluded material [10]. 

MRI reconstruction based on deep learning is divided 

mainly into two categories: data- driven and model-driven. 

The data-driven approach uses the redundant information in 

the original input to learn the mapping relationship from input 

to output, enabling flexible and adaptive reconstruction 

processes, robustness in diverse imaging scenarios, and the 

potential to learn from large datasets. However, data-driven 

methods may necessitate substantial training data, exhibit 
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limited interpretability, and face computational intensity, 

impacting real-time applicability. The model-driven approach, 

on the other hand, uses a pre-defined model to solve the 

reconstruction problem. This approach offers potentially more 

interpretable outcomes, suitability for scenarios with limited 

data, and computational efficiency, particularly in resource-

constrained settings. Nevertheless, model-driven approaches 

may struggle to adapt to complex mapping relationships and 

introduce biases or assumptions that could affect 

reconstruction accuracy and generalizability. However, DL 

models necessitate a large number of datasets and extensive 

training. It can be time-consuming, and obtaining fully 

sampled data can be challenging due to limitations such as 

organ motion or signal decay in the physiological or physical 

systems. Some studies attempt to overcome the data scarcity 

problem by employing transfer learning, though a limited 

amount of fully sampled data is still needed for fine-tuning the 

pre-trained network [11]. 

On the other hand, to deal with the problem of smaller 

datasets in deep learning, several strategies have been explored, 

including data augmentation and synthetic data generation. 

These methods rely on manipulating data artificially to expand 

the dataset's size. Patch- based training can also help with the 

problem of tiny datasets by dividing each piece of data into 

smaller patches. This substantially increases the sample size in 

the dataset without altering it artificially. Similarly, Transfer 

learning approaches, which involve re-proposing or altering a 

pre-trained model with fine-tuning, can be used to tackle the 

problem of insufficient training datasets [7]. The network 

learns the weights of one task, which can be used in another as 

pre-trained weights, and the network can then be trained or 

fine-tuned for the new task. Furthermore, the choice of a loss 

function is critical when training a DL model to determine the 

reconstruction error between the model's prediction and the 

matching ground-truth images [9]. 

In general, image reconstruction is an inverse problem that 

facilitates the conversion of a mediocre copy back into the 

original ideal image. Image reconstruction is the process of 

introducing two-dimensional images into a computer and then 

modifying them to a more functional and constructive form for 

the human observer's exploration or refinement. Iterative 

reconstruction and analytical reconstruction are the two 

fundamental categories of reconstruction techniques (IR). 

Iterative Reconstruction (IR). There are essentially two 

methods for restoring images. iterative reconstruction and 

analytical reconstruction. In the iterative method, the 

restoration question is limited to calculating a finite number of 

image values from a finite number of measurements.  

Although iterative reversal looks to need more processing 

resources, the procurement process is capable of dealing with 

increasingly complicated models [12]. 

 
3.1 Algebraic Reconstruction Technique (ART) 

 
ART is a well-known iterative technique for medical image 

reconstruction that solves equations in a linear system. 

 
𝑃1 = 𝑊31 ƒ1 + 𝑊31 ƒ1 + 𝑊31 ƒ1 … 𝑊31 ƒ1 (1) 

 
Eq. (1) deals with multilevel thresholding. Eq. (3) describes 

how ART determines the value of each pixel at each j-position 

by updating the projection values from Eq. (2) and applying a 

correction factor. 

 

𝑃1 = ∑ 𝑊𝐼

𝑁

𝐼=1

𝑙ƒ𝑖  (2) 

 

𝑓𝑗
𝑘=1 = 𝑓𝑗

𝑘 +
𝑃𝑖 − ∑ 𝑓𝑙

𝑘𝑊𝑖𝑙
𝑁
𝑖=1

∑ 𝑊𝑖𝑙
2𝑁

𝑖=1

 (3) 

 

where, f j stands for a pixel value at the j-position, wij for the 

jth pixel weighted ratio that the ith ray passes around, and k 

for the number of repetitions. Pi stands for the measured affect 

projection information. 

 

3.2 Characteristics of AI in medical images 

 

AI use in medical imaging is not restricted to disease 

identification; it also has the potential to improve other 

elements of medical imaging. AI algorithms, for instance, may 

be utilized to streamline the imaging procedure, leading to 

better picture quality, quicker scans, and less radiation 

exposure for patients. AI algorithms may also be used to 

automatically segment photos and highlight particular 

elements, which makes it simpler for medical professionals to 

recognize and analyse essential information. The application 

of AI in medical imaging can also lessen the workload on the 

medical staff, allowing them to spend more time with patients 

and come to more educated conclusions. In the end, this may 

lead to better patient outcomes and lower healthcare expenses 

[4]. 

However, using AI in medical imaging is not without its 

challenges. Verifying the accuracy of AI algorithms is one of 

the most challenging tasks since poor diagnosis can have 

disastrous consequences for patients. Furthermore, it's 

important to address ethical and legal issues, such as data 

privacy and the possibility that AI systems may discriminate 

against certain groups of people. A summary of key features 

of recently implemented deep learning models is found in 

Table 1. The table describes the literature on these features. 

 

 

4. PERFORMANCE EVALUATION METRICS FOR 

DEEP LEARNING MODELS 

 

4.1 Peak Signal-to-Noise Ratio (PSNR) 

 

Peak Signal-to-Noise Ratio (PSNR) is a common measure 

for evaluating the quality of medical image reconstructions. It 

determines the maximum potential power of a signal to the 

power of noise, which influences the effectiveness of the 

reconstructed image [13]. The performance of different 

algorithms and methodologies has been evaluated in the 

context of medical image reconstruction using PSNR. PSNR 

is favored in medical image reconstruction due to its 

sensitivity to subtle changes in pixel values, making it suitable 

for assessing the fidelity and effectiveness of reconstruction 

techniques crucial in medical diagnosis. For instance, an 

image reconstruction approach based on ℓ0 gradient reduction 

was developed in the field of limited angle computed 

tomography (CT) to reduce artefacts and improve image 

quality. This algorithm's performance was compared to that of 

other approaches using the PSNR, highlighting its benefits in 

terms of image quality [13]. 

PSNR has also been used to evaluate the performance of 

various image reconstruction procedures for medical imaging 

modalities such as MRI and CT. For instance, the software-
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equivalent PSNR values for MRI and CT images in a study on 

energy-efficient high-fidelity image reconstruct ion with 

memristor arrays for medical diagnosis were 40.21 dB and 

22.38 dB, respectively. The reconstructed pictures were 

verified to match the criteria for medical diagnosis using the 

PSNR values [14]. 

 

4.2 Structural similarity index (SSIM) 

 

The structural similarity measure (SSIM) was used to assess 

the quality of images rebuilt using deep learning-based image 

reconstruction in limited-angle computed tomography (CT) 

[15]. The SSIM calculates the similarity between the 

reconstructed picture and the original image by taking 

brightness, contrast, and structural modifications into 

consideration. [16]. It is preferred when assessing structural 

changes in images. These factors making it suitable for 

evaluating the perceptual quality and overall similarity. It 

provides a more perceptually meaningful metric than PSNR. 

The findings showed that the deep learning-based 

reconstruction approach outperformed standard reconstruction 

methods in terms of SSIM values, indicating improved image 

quality [15]. 

 

Table 1. Covers the literature of key features of deep learning models 

 
Sr.no Reference Applied DL Model Contribution Advantages Disadvantages 

1. [17] 

Deep residual-

constrained 

reconstruction (DRCR) 

framework for LDCT 

imaging using learnt 

convolutional sparse 

coding (LCSC). 

To further confine the 

image update process, the 

LCSC network is used for 

feature map and filter 

updating. 

Low dose computed 

tomography (LDCT) can 

greatly reduce radiation dose 

damage. 

LDCT decreases 

projection signal-to-

noise ratio (SNR) and 

degrades reconstruction 

image quality. 

2. [18] 

The low-rank tensor 

aided k-space 

generative model (LR-

KGM) is a parallel 

image reconstruction 

model. 

For learning, convert low-

rank information into 

high-dimensional 

previous knowledge. The 

multi-channel data was 

particularly constructed 

into a big Hankel matrix. 

Reduce the amount of training 

samples, which are then 

compacted into a tensor for 

the preceding learning step. 

When the singular value 

thresholding is set to a 

high value, the 

reconstruction result will 

not have a substantial 

local error. 

3. [19] 

Focuses on a Deep 

Learning (DL) model 

that has been optimised 

to increase picture 

quality and 

reconstruction from 

undersampled images. 

To improve the 

reconstructed picture 

quality, the model is 

combined with the self-

attention, normalisation, 

and data consistency 

layers. 

With better reconstruction 

images, a model with data 

consistency achieves a 

reasonable solution. 

The data samples are 

insufficient to improve 

the model's 

performance. 

4. [20] 
High- Resolution MR 

Image Restoration 

Deep learning for quicker 

MRI using sub-Nyquist 

sampling methods to 

reduce k-space data. 

High-resolution MR images 

were obtained from under-

sampled k-space data. 

Uniform subsampling was 

used in the phase-encoding 

direction, and a tiny amount of 

low-frequency k-space data 

was added. 

Only 29 of the k- space 

data can generate high- 

quality images as 

effectively as standard 

MRI reconstruction with 

fully sampled data 

5. [21] 

Transfer learning for 

MR image 

reconstruction 

An approach using 

transfer learning to 

supplement scarce 

training data in MR image 

reconstruction. 

The results show that transfer 

learning may be used in MRI 

reconstruction. Can overcome 

the issue of low training data. 

Theoretical analysis is 

still needed to explain 

the underlying 

mechanisms. 

6. [22] 
Nonlinear Feature 

Extraction 

A model for extracting 

nonlinear characteristics 

from visual pictures and 

collecting correlations 

between fMRI voxel 

activity. 

Robust in capturing 

correlations, useful for fMRI 

recordings 

Need to incorporate 

RNN to explore dynamic 

vision reconstruction. 

7. [23] 

End-to-end 

reconstruction model 

for fMRI 

An end-to-end model for 

reconstructing fMRI data. 

Extracts nonlinear features 

from fMRI recordings Robust 

in capturing correlations 

among voxel activities. 

Does not decode all of 

the visual information 

that the brain can 

decode. 

8. [24] AUTOMAP 

A deep learning 

framework for MR image 

reconstruction used 

automated transform by 

manifold approximation. 

Accurate compared to 

conventional methods Recasts 

image reconstruction as a 

supervised learning task 

Ability to learn reconstruction 

transforms for various MRI. 

Computationally 

intensive. 

9. [25] 

Faster MRI 

Reconstruction with 

Sub- Nyquist Sampling 

Reduces k-space data for 

faster MRI 

reconstructions. 

Improved speed compared to 

conventional methods. 

The algorithm requires 

theoretical study to 

describe it, and it is quite 

difficult. 
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10. [4] 
Under sampled 

Dynamic Cardiac MRI 

A reconstruction method 

for MRI data 

2x quicker than compressed 

sensing methods 

Not applicable to 

parallel imaging. 

11. [26] 
DNN model for image 

reconstruction 

Deep neural networks 

(DNN) are used to rebuild 

images from subsampled 

MRI data. 

Image denoising and super-

resolution are possible 

applications. It makes use of 

some picture attributes. 

Does not explicitly 

exploit all image 

properties. 

 

12. [8] 
Deep learning model for 

fMRI reconstruction 

A deep learning model for 

recreating perceived 

stimuli from fMRI brain 

responses 

Suitable for the development 

of new neuroprosthetic 

devices 

Not all aspects of brain 

responses are explicitly 

exploited 

13. [22] 

End-to-end framework 

for super- resolution 

MR reconstruction 

Reconstructed pictures of 

high quality from noisy, 

low-resolution clinical 

MRI scans An end-to-end 

modal 

Produces high-quality images 

Efficient and straightforward. 

Can handle low-resolution. 

clinical scans 

May not explicitly 

exploit all image 

properties. 

14. [27] 
Pre-trained DNN for 

Image Reconstruction 

A nonlinear feature 

extraction model for 

visual imagery 

Capable of capturing 

correlations among voxel 

activities of fMRI recordings 

Inadequate in exploring 

the reconstruction of 

dynamic vision 

15. [28] 
Variational Model 

using DL 

A model that integrates 

the mathematics of 

variational models with 

deep learning. 

Outperforms standard 

reconstruction algorithms. 

Various choices of error 

metrics still need to be 

studied. 

16. [29] 

Denoising and Data 

Consistency 

Enforcement 

A method for denoising 

and ensuring data 

consistency during picture 

reconstruction. 

Due to the decrease of 

trainable parameters, it does 

not require a large amount of 

training data. 

Different error metrics 

still need to be 

investigated. 

17.  [30] 

MR Image 

Reconstruction using 

DL Modal 

Assigning lower weights 

to noisy training images 

in the weighted loss 

function 

Outperforms standard 

reconstruction algorithms. 

Improved image quality of the 

reconstruction. 

Quality of 

reconstruction may still 

depend on the presence 

of noise. 

18. [31] KIKI-net 

Proposed cross-domain 

CNNs, outperforms 

conventional algorithms 

with K-net and I-net. 

Superior to single-domain 

CNNs with tissue-structure 

restoration and removal of 

aliasing artifacts. 

Only applicable up to a 

reduction factor of 3 to 4 

based on variable- 

density Cartesian under 

sampling. 

19 [32] 

Present a novel picture 

reconstruction 

approach from 

dispersed data based on 

multigrid relaxation of 

the Poisson equation 

and convolutional 

neural networks (CNN). 

Develop the image's 

reconstruction issue as a 

Poisson equation with 

irregular boundary 

conditions, then present a 

fast multigrid approach 

for solving it, and lastly 

improve the rebuilt 

image. 

The use of multigrid and CNN 

algorithms ensures that the 

output picture resolution has 

no effect on reconstruction 

speed. 

Unable to use the neural 

network on generic 

photos. 

20. [33] 

Provides a hardware 

technique for 

implementing image 

reconstruction tasks on 

disparate hardware 

platforms. 

The processor system 

(ARM) and the 

programmable logics 

are inextricably linked. 

Improve overall system 

performance and resource 

utilization. When using 

iterative and non-iterative 

methods, the suggested 

heterogeneous hardware 

architecture reach picture 

reconstruction speeds of 24 

and 1700 frames per second, 

respectively. 

Multiple types of 

hardware components 

can increase the cost of 

the system. 

synchronization 

overhead leads to 

inefficiencies and 

performance 

bottlenecks. 

4.3 Mean Squared Error (MSE) 

 

Mean Squared Error (MSE) is a common metric used to 

quantify the quality of image reconstruction or any type of 

regression task. This metric gauges the mean of the squared 

disparities between anticipated values and real values. Within 

the sphere of medical image reconstruction, MSE holds the 

potential to gauge the fidelity of the reconstructed image 

against the original. A diminished MSE value denotes superior 

reconstruction, implying proximity between pixel values in the 

reconstructed and original images. Conversely, an elevated 

MSE value signifies amplified disparity between the 

reconstructed and source images. A lower MSE value 

indicates better alignment between predicted and ground truth 

pixel values, signifying superior reconstruction quality [34]. A 

study [35] highlight the need for a nuanced approach, coupling 

MSE with advanced deep learning techniques to address the 

unique challenges posed by medical images. 

While MSE is a useful metric, it can struggle to identify 

perceptual distinctions that are important in medical imaging, 

such as minor variations in textures, edges, or forms. In certain 

circumstances, more complex metrics or even perceptual 

models that take into account human perception may offer a 

more thorough assessment of image quality. Metrics such as 

the Perceptual Index (PI) consider factors like color, texture, 

and spatial structure, aligning with human-centric evaluations 

[36]. Advanced models like Generative Adversarial Networks 

(GANs) create not only quantitatively similar but also 

perceptually realistic images, making them valuable in tasks 

requiring high-quality and visually convincing results and 
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metrics such as Fréchet Inception Distance (FID) and 

Perceptual Loss leverage sophisticated frameworks to ensure 

not only quantitative similarity but also perceptual realism 

[37]. FID provides a comprehensive assessment, considering 

both visual quality and diversity, essential in tasks where the 

variety of generated images is crucial [38]. Additionally, 

metrics based on natural image statistics ensure that 

reconstructed images not only resemble real images but also 

capture the statistical regularities observed in the natural 

environment. 

These metrics and models are selected based on the specific 

goals of the image reconstruction task, emphasizing human 

perception, realism, and the inherent properties of real-world 

scenes. The utilization of more complex metrics and 

perceptual models, such as GANs and FID is increasingly 

important in medical image reconstruction to address the 

limitations of traditional metrics and effectively capture the 

intricate details present in medical images. 

 

 

5. OPEN RESEARCH CHALLENGES 

 

This section presents a key open research challenges as 

future work directions in the field of medical image 

reconstruction. 

 

5.1 Data availability and reconstruction quality 

 

Data availability and quality pose significant challenges in 

medical image reconstruction. The limited availability of 

labeled and high-quality medical image datasets hinders the 

development and evaluation of reconstruction algorithms [39, 

40]. Large-scale labelled dataset acquisition is costly and time-

consuming, making it challenging to efficiently train deep 

learning models [40]. Additionally, due to the low frequency 

of abnormal results, medical imaging datasets frequently 

exhibit class imbalance. This mismatch makes it difficult to 

develop models that can precisely rebuild and categorize 

anomalous results [41]. 

Furthermore, noise, artefacts, and differences in imaging 

methods can all affect the quality of medical image data [42]. 

These variances may have an impact on the process of 

reconstruction's correctness and dependability [42]. 

Additionally, privacy and ethical concerns around the sharing 

of patient data for research purposes might restrict the 

availability of varied and comprehensive datasets [41]. 

Researchers have investigated methods like data 

augmentation, generative adversarial networks (GANs), and 

partial supervision to improve the training process and the 

caliber of reconstructed pictures in order to overcome these 

issues [40, 41]. These methods aim to overcome the 

restrictions of small training datasets, broaden the diversity 

and volume of data that is accessible, and enhance the 

generalization of models [40]. 

 

5.2 Interpretability and explainability 

 

Medical picture reconstruction presents challenges and 

constraints due to its interpretability and explainability. 

Although deep learning models have performed remarkably 

well at reconstructing images, they are sometimes viewed as 

"black boxes" since their decision-making process is opaque 

[40]. Concerns concerning trust, accountability, and the 

capacity to comprehend and confirm the results are brought up 

by this lack of interpretability [43]. 

Black box models for medical picture reconstruction are 

difficult to comprehend, which prevents their widespread use 

in clinical settings. To trust these models' accuracy and assure 

patient safety, healthcare practitioners need explanations and 

justifications for the judgments they make [2]. In addition, 

regulatory and ethical reasons require for accountability and 

openness in medical decision-making procedures [43]. It has 

been suggested to use methods like LIME (Local Interpretable 

Model-Agnostic Explanations) to faithfully and 

comprehensibly explain any classifier's predictions [44]. With 

the use of these techniques, the characteristics and patterns that 

contribute to the reconstruction process may be better 

understood, and the findings can be validated [44, 45]. 

 

5.3 Generalization to unseen data 

 

In medical image reconstruction, generalizing to unknown 

data is a substantial difficulty. The capacity to train models 

that can successfully recreate pictures from unseen data is 

hampered by the lack of varied and comprehensive datasets 

[46, 47]. Over fitting is a problem with deep learning models 

that occurs when they get too adept at remembering the 

training data and struggle to generalize successfully to new 

and unknown input [48]. When used in real-life scenarios, this 

constraint might result in poor performance and inaccurate 

outcomes [49]. Researchers have suggested a number of 

approaches to overcome this problem. Even with little training 

data, adversarial counterfactual augmentation may be used to 

create powerful pictures that enhance the performance of 

downstream tasks [47]. It has been applied successfully in 

medical image reconstruction to address limited dataset 

challenges. In scenarios with scarce labeled data, this 

technique generates diverse yet realistic synthetic images to 

enhance model training. Notably, it has been employed in 

improving the performance of deep learning models even with 

minimal training data, ensuring robust reconstruction 

outcomes [Machine learning and deep learning approach for 

medical image analysis: diagnosis to detection]. Additionally, 

explicit uncertainty measurements added to the models can 

better generalize and reflect the inherent ambiguity in medical 

pictures. Techniques such as Bayesian approaches introduce 

explicit uncertainty quantification, aiding models in handling 

unseen data more effectively [50]. Effective methods for 

evaluating the generalization potential of reconstruction 

algorithms include cross-dataset comparison and testing on 

previously undiscovered categories [48]. 

 

5.4 Computational complexity 

 

Medical image reconstruction's computational complexity 

is a serious hurdle in the area. Because of the high cost of 

forward and adjoin operators and the complexity of hyper 

parameter selection, traditional iterative reconstruction 

techniques can be computationally costly. Because of their 

complexity, these algorithms may be difficult to implement in 

real-world circumstances. To solve this problem, scholars 

have looked into other techniques. Deep learning-based 

methods, such as CNNs, have demonstrated promise in terms 

of lowering computing complexity while maintaining 

reconstruction performance. These techniques take advantage 

of GPUs' parallel processing capabilities to achieve quick 

reconstruction rates, even for big-picture sizes [46]. 
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Furthermore, developments in computing technology have 

led to the viability of iterative reconstruction approaches for 

clinical applications. While considering processing economy, 

the application of Bayesian iterative algorithms and statistical 

iterative reconstruction approaches has proven considerable 

increases in picture quality [51]. 

Compressed sensing and generative adversarial networks 

(GANs) have also been developed to minimize computational 

complexity in picture reconstruction. These approaches take 

use of sparsely and picture structure to enable effective 

reconstruction with fewer measurements or lower computing 

needs [52]. The computational complexity of medical picture 

reconstruction creates practical deployment and real-time 

processing issues. However, advancements in deep learning, 

iterative algorithms, compressed sensing, and GANs offer 

potential solutions to reduce computational requirements 

while maintaining reconstruction quality [53]. 

Efficient architecture design involves the development of 

novel model architectures such as EfficientNet, MobileNet, 

and Squeeze-and-Excitation Networks, tailored for medical 

imaging tasks to balance computational efficiency and 

reconstruction performance [54]. Model compression 

techniques, including knowledge distillation and pruning, aim 

to reduce the size of deep learning models without 

compromising their reconstruction capabilities, enabling faster 

and more resource-efficient deployment [55] Integration with 

specialized hardware accelerators, such as GPUs and TPUs, 

has been emphasized to enhance the computational speed of 

medical image reconstruction models, crucial for real-time 

processing in clinical applications [56]. 

 

5.5 Integration with clinical workflow and decision 

support 

 

The integration of image reconstruction with clinical 

workflow and decision support is a complex research 

challenge [57]. The fastMRI challenge, which aimed to reduce 

MR examination times, provided researchers with a large-

scale dataset of MRI scanner raw data from a clinical patient 

population. The challenge primarily focused on supervised 

machine learning approaches, leading to advancements in 

image reconstruction and identifying remaining obstacles for 

clinical adoption. Addressing various aspects is crucial for 

integrating image reconstruction with clinical workflow and 

decision support. The evaluation of reconstruction methods 

involves quantitative image metrics and evaluation by a panel 

of radiologists [57]. Deep learning-based approaches can be 

integrated with reconstruction to enable complex post-

processing tasks, such as radionics, which can improve 

diagnostic, prognostic, and predictive accuracy [58]. The 

development of deep learning-based classification 

frameworks supports clinical decision-making and addresses 

challenges like over fitting [59]. Additionally, accurate 3D 

reconstruction of face models is essential for providing 

reliable feedback for clinical decision support. 

The study [50] shows that Through deep learning-based 

reconstruction, intricate post-processing tasks such as 

radiomics are facilitated, enabling the extraction of 

quantitative features from medical images. This process 

enhances diagnostic, prognostic, and predictive accuracy, 

offering valuable insights crucial for informed clinical 

decision-making. However, the integration process faces 

challenges, including the imperative need for model 

interpretability and justifiability. Ensuring compliance with 

regulatory requirements for accountability and addressing 

potential biases in clinical decision-making adds complexity 

to the integration effort. 

 

5.6 Multi-modal image reconstruction 

 

Multi-modal image reconstruction in medical imaging is a 

challenging and evolving research area. Multiple imaging 

modalities, such as MRI, CT, and PET, can give 

complimentary information and increase diagnostic accuracy 

when used together. In various fields, compressed sensing (CS) 

techniques have been developed for multi-modal image 

reconstruction, making use of picture sparsity [60]. CS allows 

for the reconstruction of high-quality pictures from sparsely 

sampled data, hence lowering acquisition time and increasing 

efficiency [61]. 

In multi-modal image reconstruction, dictionary learning 

has been presented as a method for adaptive sparsifying 

transform. The reconstruction algorithm may successfully 

eliminate aliasing and noise by learning the sparsifying 

lexicon, resulting in better picture quality [62]. 

Furthermore, future research should focus on the integration 

of multi-modal image reconstruction with clinical workflow 

and decision support systems. By providing complete and 

complementary information from several imaging modalities, 

this integration can improve the accuracy and efficiency of 

diagnosis and treatment planning [60]. The researcher should 

focus on compressed sensing, dictionary learning, and 

integration with clinical workflow and decision support 

systems. 

 

5.7 Addressing issues of data bias and fairness 

 

Addressing data bias and fairness problems in image 

reconstruction is an important open scientific subject. 

Addressing issues of data bias and fairness in picture 

reconstruction is a significant scientific concern. Data bias 

may be caused by a variety of factors, including an uneven 

representation of specific demographics or diseases in the 

training data. Fairness refers to the fair treatment of persons 

from various demographic groups as well as the avoidance of 

discriminating effects. Several ways may be used to reduce 

data bias and assure fairness in picture reconstruction. One 

strategy is to carefully select varied and representative datasets 

covering a wide range of people and diseases [63, 64]. This 

can aid in reducing bias and ensuring that reconstruction 

models generalize effectively across patient groups. Another 

method would be to include fairness-aware algorithms and 

approaches in the picture reconstruction process. These 

strategies seek to identify and minimize biases in the 

reconstruction process, guaranteeing equal outcomes for all 

persons [65]. Differential privacy strategies can also be used 

to safeguard patient confidentiality while allowing for data 

sharing and analysis [66]. Furthermore, the transparency and 

interpretability of image reconstruction models can aid in the 

identification and mitigation of biases. Potential biases can be 

identified and corrected by providing explanations and 

insights into the decision-making process of the models [65].

 

 

6. DISCUSSION 

 

This study provides a detailed evaluation of the 

transformational influence of deep learning-based approaches 
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in the domain of medical picture reconstruction. We looked 

into how the power of artificial intelligence may be combined 

with cutting-edge imaging technologies, such MRI, CT scans, 

and PET scans, to significantly improve clinical diagnosis and 

patient care. How these methods offer vital information on 

biological, anatomical, and physiological structures, assisting 

in precise diagnosis and efficient treatment. Traditional 

medical imaging workflows are being transformed by the use 

of deep learning models in this field. One important issue we 

studied was the efficiency and speed of medical picture 

reconstruction. Despite being time-consuming, conventional 

techniques like MRI scans are trustworthy. On the other hand, 

deep learning algorithms can dramatically speed up the 

imaging process. MRI scans may be completed more quickly 

by using methods like Parallel Imaging (PI) and CS. The 

assessment, however, also highlighted the difficulties and 

restrictions that come with these approaches. By providing 

real-time imaging and improving overall picture quality, deep 

learning (DL) techniques have enormous potential for 

overcoming these constraints. 

Convolutional Neural Networks (CNNs) were highlighted 

while discussing the various deep learning modalities. These 

networks, which have outstanding skills in feature extraction, 

classification, and identification, have become the cornerstone 

of imaging-based AI systems. Additionally, CNN-based DL 

models eliminate the requirement for manual feature 

engineering, which accelerates the algorithm development 

process. The review discussed the drawbacks of DL-based 

medical picture reconstruction in addition to outlining its 

achievements. Since deep learning models are sometimes 

complicated interpretability and transparency have arisen as 

important challenges. Their inclusion into clinical processes, 

where accountability and explainability are crucial, is 

hampered by this lack of transparency. The debate emphasized 

the significance of approaches like LIME and SHAP, which 

aim to improve the interpretability of DL-based judgements by 

increasing trust and confidence in algorithmic results. 

The paper also emphasizes how important it is to evaluate 

deep learning models. Performance measures like PSNR, 

SSIM, MSE, GAN, and FID were proposed as instruments to 

evaluate the calibre of reconstructed pictures quantitatively. 

These measures give academics and industry professionals 

unbiased standards to compare various algorithms against 

when making judgement calls. The intricacy and diversity of 

the area are the open research problems. As significant 

obstacles, generalization to unknown data, data availability 

and quality, and computational complexity developed. These 

difficulties have an effect on both algorithm development and 

the incorporation of these methods into clinical settings. 

Multidisciplinary collaboration including AI specialists, 

medical practitioners, and legislators is necessary to address 

these difficulties. Finally, clinical validation is necessary to 

demonstrate the practical usefulness of DL architecture. 

Therefore, future studies should focus on validating the 

performance of the various proposed architecture on a large-

scale clinical dataset. Overall, this review serves as a valuable 

resource for researcher of medical imaging. By consolidating 

insights from various methodologies, it provides a basline for 

researchers, healthcare practitioners, and industry 

professionals to development novel reconstruction techniques, 

and ultimately improving diagnostic accuracy and patient care. 

Healthcare practitioners can make better decisions through 

these advanced and efficient reconstruction methods. In turn, 

patients benefit from expedited and accurate diagnoses, 

improving treatment outcomes and overall healthcare 

experiences.  

 

 

7. CONCLUSIONS 

 

Medical image reconstruction is a critical process for 

accurate diagnosis and treatment planning in healthcare. Deep 

learning techniques, such as Generative Adversarial Networks 

(GANs), autoencoders, and Convolutional Neural Networks 

(CNNs), have shown great promise in improving the accuracy 

and efficiency of medical image reconstruction. However, 

challenges in terms of data availability, interpretability, 

generalization, and computing efficiency still remain. 

Overcoming such challenges is critical to realizing the full 

promise of deep learning-based medical image reconstruction. 

In this study, we anticipate the development of more 

sophisticated algorithms that address the challenges and 

deliver improved results. The problems of data availability and 

quality in medical image reconstruction need the development 

of novel ways to overcome the lack of labeled data, class 

imbalance, and variability in picture quality. Techniques like 

data augmentation, GANs, and partial supervision may be 

used to improve the training process and the quality and 

reliability of reconstructed medical images. Techniques like 

adversarial counterfactual augmentation, uncertainty 

estimation, and cross-dataset assessment can help increase the 

generalization and reliability of reconstructed pictures. Image 

reconstruction integration with clinical processes and decision 

support systems will be critical in ensuring that these 

technologies have a significant influence on patient care. In the 

context of ethical and responsible medical imaging practices, 

the pursuit of justice, accountability, and transparency in 

algorithmic judgments is a continuing effort. Further 

improvements in deep learning techniques, as well as 

improved collaboration among medical professionals, 

researchers, and technologists, are expected in the future years. 

By tackling the problems and developing the procedures, we 

are on the verge of witnessing a new era of medical imaging 

that will benefit both patients and healthcare practitioners. 
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