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 Optical Character Recognition (OCR) systems find it challenging to generate accurate text 

for highly inflectional Indic languages such as Hindi. Inflectional languages possess an 

extensive vocabulary. Words in these languages can assume different forms based on 

factors like gender, meaning, or other contextual cues. To enhance the accuracy of OCR 

and correct the errors resulting from the inflectional nature of language, it is crucial to 

perform post-processing on output of the OCR. This work focuses on correcting errors in 

the OCR output specifically for the Hindi language. To overcome existing challenges, an 

error correction model has been proposed in this work that uses the Masked-Language 

Modeling with BERT (MLM-BERT). It utilizes the context to provide accurate word 

suggestions for the incorrect word or masked word. The proposed model has been tested 

using the Hindi OCR test dataset from IIITH. It achieved an improvement of 3.58% word 

accuracy over the baseline OCR word accuracy, which demonstrates its effectiveness in 

enhancing the accuracy of the OCR output text. 
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1. INTRODUCTION 

 

Hindi, being a major regional language in India with over 

500 million speakers worldwide, requires an accurate Optical 

Character Recognition (OCR) solution to address automatic 

document analysis problems. OCR refers to the identification 

of text from digitally scanned documents. Preserving the 

meaning of the text and the content can effectively be utilized 

for natural language applications. In the context of Indic 

languages such as Hindi, the accuracy of OCR output is often 

low and requires additional post-processing to refine it further. 

Hindi poses several challenges for OCR systems. These 

challenges include the complexity of the scripts (complex 

syllables formed by various combinations of vowels, 

consonants and conjunct consonants), the highly inflectional 

nature of the language [1], and the errors that can occur within 

the context of a sentence. In some cases, an incorrectly 

recognized word may still be valid in the same language, 

which can further complicate the task of OCR. Moreover, due 

to the poor availability of language resources, having good 

accuracy can make it difficult to train the systems. 

Currently, available OCR for Hindi are Tesseract OCR [2], 

Indsenz OCR which is a commercial product [3], eAksharaya 

OCR [4] and Multilingual OCR for Indian languages [5]. 

Among these most reasonable OCRs are Tesseract OCR and 

Multilingual OCR for Indian languages. They showed around 

89.29% and 91.6% word accuracy on the available Hindi OCR 

test dataset from IIITH, respectively [5-7]. The word accuracy 

achieved by them needs substantial improvement, which can 

be achieved through post-processing of the OCR output. 

Recent post-processing approaches that have been utilized 

to improve the accuracy of Hindi OCR are dictionary-based 

[8], statistical language models [8, 9], Syllable and confusion 

matrix based [7], Deep learning LSTM [10], Word Embedding 

& Levenshtein distance [11] and sub-word embedding [12]. 

However, these approaches do not address contextual errors. 

To address this limitation, we propose a context-sensitive 

automatic error correction approach to improve the accuracy 

of Hindi OCR output. In this work, the goal is to correct errors 

found in scanned documents generated via Tesseract Hindi 

OCR system, specifically focusing on providing suggestions 

for incorrect words based on contextual information, as 

Tesseract is a freely available OCR providing reasonably good 

accuracy. 

The paper is organized as follows: Section 1 briefly 

introduces challenges of Hindi OCR, emphasizes the 

significance of post-processing and briefly introduces the 

proposed error correction approach. Section 2 discusses the 

relevant existing work on OCR error correction approaches. 

The motivation behind the current work is outlined in section 

3. Section 4 presents the methodology for developing an 

automatic error correction model for Hindi OCR. The 

experimental results and error analysis are presented in section 

5. Lastly, the conclusion and future scope are mentioned in 

section 6. 

 

 

2. RELATED WORK 

 

Error correction is a necessary step to improve the accuracy 

of the OCR output text. This section discusses the various 

OCR error correction approaches used for post-processing the 

OCR output for Indian languages.  

Post-processing techniques have been extensively used in 
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the past to enhance OCR accuracy. Various OCR post-

processing techniques are explored by Nguyen et al. [13]. 

These techniques can be grouped based on usage of (i) 

Dictionaries or Lexicon (ii) Syntactic or Semantic rules of the 

language/word morphology (iii) Statistical Language Models 

usually represented as n-grams etc., and (iv) Deep Learning 

approach. Some of the methods find the best alternative, while 

other methods find the top-n possible alternatives.  

Dictionary-based approach on the Hindi OCR recognized 

document showed a character accuracy of 93% [14] The 

problem with the dictionary-based approach is that it assumes 

the word suggested as true if it is present in the dictionary and 

also it cannot correct the contextual errors.  

Syntactic and semantic-based approaches for error 

correction can be found here. A Morphological analyzer was 

utilized for Bangla (Indian script) to find the root words and 

provide correct suggestions [15]. The corrections made here 

are based on a fast dictionary access method and suggest the 

correct word in 82.44% of cases.  

The shape-based post-processing technique was applied to 

Gurmukhi (Indian script) and achieved a 3% improvement, 

attending to 97.34% character accuracy [16]. Here, consonants 

are categorized into groups based on shape similarity, each 

assigned a unique number. The input word is encoded 

accordingly. If the code is found in the dictionary, a matching 

operation is executed between the input word and words stored 

under that specific code. In cases without a match, structurally 

similar words to the input are suggested as alternatives. This 

approach finds difficulty in providing suggestions to similar 

characters.  

Locality Sensitive Hashing (LSH) was used to create word 

clusters to improve the Telugu language OCR accuracy [17], 

resulting in 79.12% word accuracy. Here the OCR outputs of 

word images within a cluster are compared, and improvements 

are achieved through methods such as Character Majority 

Voting or Dynamic Time Warping Technique. This technique 

fails to provide suggestions for unique words (words 

appearing only once in a cluster). 

The Weighted Syllable-based Spell Correction Approach 

(WSSC) was applied to Hindi OCR-recognized text, resulting 

in 88.22% word accuracy [7]. In this method, a syllable 

confusion matrix was generated, taking into account the 

frequency of each syllable substitution. Word was looked up 

in the dictionary to check whether it is correct or incorrect. If 

the word is incorrect, then based on the confusion matrix, 

appropriate syllables are substituted for all syllables in the 

words. Forming many words and assigning the weight to 

words based on the frequency of syllables. Again, these words 

were looked up in the dictionary for their correct combination, 

suggesting the best word based on the weight assigned. It will 

not suggest contextual suggestions. All these OCR post-

processors implement post-processing at the Unicode (or 

character) level.  

A graph-based, sub-character level language model was 

applied to rectify OCR word errors in Malayalam [18]. In this 

approach, edges represent the language information, and nodes 

represent visual similarities. The optimal path from source to 

destination provides suggested words. Through this approach 

word accuracy of 95.0% is achieved [18]. This approach fails 

to provide suggestions for rare words, proper nouns and 

foreign words.  

Statistical language models (SLM) and Dictionary-based 

methods have been used in error correction for Indian 

languages such as Hindi, Punjabi (Gurmukhi script), Telugu, 

and Malayalam [9]. This approach reported Improvements in 

errors in ranges between 38% to 66% for the above languages. 

The limitation of this work is that a dictionary and character n-

gram alone cannot effectively suggest the correct word due to 

the inflectional nature of Indian languages.  

Sub-word embeddings have also been applied for OCR 

error correction in Hindi, Sanskrit, Kannada, and Malayalam, 

resulting in 90.42% word accuracy for Hindi [12]. Further 

intersection of error rectification and cluster analysis was 

observed in the clustering of similar words within documents 

for error correction, particularly in Hindi and English [8]. This 

approach lacks contextual suggestion.  

Spelling correction in OCR-generated Hindi text, utilizing 

methods like Word Embedding and Levenshtein Distance [11]. 

This uses the Continuous Bag-of-Words (CBOW) model. It 

does not consider the order of words in a given context. Thus, 

it will struggle to provide contextual suggestions for incorrect 

words.  

Recently, deep learning techniques were used for OCR error 

detection and correction spanning four languages—Hindi, 

Malayalam, Sanskrit, and Kannada—specifically an LSTM 

approach, particularly relevant when languages are written in 

distinct scripts [10]. It showed 92% of word accuracy for Hindi. 

LSTMs can capture dependencies over longer sequences than 

simple RNNs, but they still have a limited context window. 

The above literature review indicates that post-processing 

of OCR output for Indian languages is challenging due to 

context-dependent errors and the inherent nature of highly 

inflectional languages. The abundance of words due to the 

inflectional nature of the Indian language also poses a 

challenge in OCR error correction. 
 

 

3. MOTIVATION  

 

Literature reviews have shown that there is still scope for 

improving the OCR output of Indian languages. The review of 

the existing literature has indicated that post-processing in 

OCR output is crucial in enhancing the performance of Hindi 

OCR. However, the most commonly used approaches do not 

address context-sensitive error correction, as indicated by the 

three examples shown in Table 1. The red color indicates an 

incorrect word. Example 1 where the incorrect word is क ां. Here, 

the existing bigram model can show suggestions as क , के, की, 

etc. Likewise, in example 2, रनप is an incorrect word. Existing 

models can suggest a word like ब द, स थ, लिए etc. Similarly, in 

example 3 the incorrect word is एफटीआहँआई, which is an English 

foreign word. For such cases, we need an approach that can 

suggest a word based on context. 

This can be achieved using state-of-the-art techniques such 

as Masked Language Model (MLM) with Bidirectional 

Encoder Representations from Transformers (BERT), which 

have not yet been explored for OCR error correction in Indian 

languages. The MLM BERT model has been utilized for tasks 

such as detection [19-21] and correction [22], demonstrating 

its ability to simplify the model’s architecture and provide 

contextual suggestions [23]. MLM BERT masks words 

containing errors and offers suggestions for the masked word, 

based on available contextual information. To build the MLM 

BERT for Hindi, it is necessary to have a BERT tokenizer and 

MLM BERT model for Hindi. In this paper, an OCR error 

correction approach using an advanced MLM with BERT to 

suggest contextually aware correction is discussed in section 

4. 
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Table 1. Some examples of OCR recognized errors that 

require contextual suggestion 

 
Example 1 

Actual text (Hindi)  उत्प दों को पेश कर रहे हैं। 

Transliteration (English)  UTPADOM KO PESa CaRa RaHE 

HAiM. 

Translation (English)  Presenting products. 

OCR recognized text  उत्प दों क ां पेश कर रहे हैं 

Example 2 

Actual text (Hindi)  व यसर य के अांगरक्षक के रूप में गलित यह भ रतीय सेन  क  

सबसे पुर न  रेजीमेंट है। 

Transliteration (English)  VAYaSaRAYa KE aMGaRaKSaKa KE 

RuPa mEM GaThita YaHa BhARatIYa 

SENA KA SaBaSE PuRANA REJImEMTa 

HAi. 

Translation (English)  Formed as the bodyguard of the Viceroy, 

it is the oldest regiment of the Indian 

Army. 

OCR recognized text  व यसर य के अांगरक्षक के रनप में गलित यह भ रतीय सेन  क  

सबसे पुर न  रेजीमेंट है।. 

Example 3 

Actual text (Hindi)  एफटीआईआई की वततम न छ त्र  

Transliteration (English)  EFaTIAI KI VaRTaMANa ChATRA 

Translation (English)  Current student of FTII 

OCR recognized text  एफटीआहँआई की वततम न छ त्र  

 
 

4. METHODOLOGY  

 

This section discusses two main parts of the experimental 

setup. The first part describes how the dataset was created for 

testing the error correction model. The second part provides 

details of the experimental setup.  

 

4.1 Test dataset creation  

 

The procedure to create datasets to evaluate the error 

correction model is discussed here. Two sets of test data were 

utilized to evaluate the performance of the proposed error 

correction model. The first dataset is the Hindi OCR dataset 

obtained from IIITH [5]. It comprises a total of 100 pages 

presented in image format, along with their respective text 

files. For the sake of convenience, we have named this dataset 

as Hindi-IIITH-dataset. This dataset showed 91.6% word 

accuracy on OCR for Indian languages [5] and 89.29% on 

Tesseract Hindi OCR [7]. The second dataset is created from 

a part of Hindi text within the same domain, which has been 

utilized for training in this work. The total number of words 

available in the Hindi-IIITH-dataset is 29884. The 

characteristics of this dataset is presented in Table 2. It shows 

the distribution of words based on the type of syllable present 

in the word. The eight categories of words found in the dataset 

are presented below -  

Words without modifier: Words with Devanagari numerals 

or vowels or consonants with no modifiers. e.g. मन (maNa), 

हिचि (HaLaCaLa), 2023.  

Words with Matra: Words with Matra (Matra is a 

Dependent vowel sign. ◌े(े[e]), ◌े(ै[ai]), ◌ेो ([o]), and ◌े  

([au]) in Devanagari [24]) e.g. वैर (VAiRa).  

Words with Eekar: Words with modifier Eekar (Eekar is a 

Dependent vowel sign. ले◌ ([i]) and ◌ेी ([e:]) in Devanagari 

[24]) e.g. सीप (SIPa).  

Words with Ookar: Words with modifier Ookar (Ookar is 

a Dependent vowel sign. ◌े(ु[u]) and ◌े ([u:]) in Devanagari 

[24]) e.g. अनभुव (aNuBhaVa).  

Words with Conjunct consonant: words, which have 

Conjunct consonant (Conjunct consonant have more than two 

consonant letters [25]) e.g. पल्िव (PaLLaVa).  

Words with Anusvara: Words having Anusvara 

(Devanagari sign ◌ेां (Anusuvar. Bindi) [24]) e.g. पांप (PaMPa).  

Words with Candra: Words with Candra (Devanagari sign 

◌ेaँnd letter ”Candra A” [24].) e.g. च ँद (CaMDa).  

Words with multiple modifiers: Words which have more 

than one modifier Ookar or Anusvara or Eekar and does not 

belong to any of the other categories e.g. मलिक  (manIKA), लनत र  

(NITARA). 

 

Table 2. Characteristics of data used to create dataset to test 

error correction model  

 

Category/Dataset Hindi_test_dataset  
Hindi-IIITH-

dataset [5] 

Without modifiers  5274  9930 
Matras  7140  7849 
Eekar  4872  4723 

Ookars  792  1340 
Conjunct consonant  1869  1083 

Anusvara  571  248 
Candra  65  298 

Words with multiple 

modifiers  
9301  5868 

Total  29884  31339 

 

The process that is used to create the Hindi test dataset 

(Hin_test_dataset) to test proposed error correction model is 

discussed below:  

(1) The part of Hindi text sourced from [26] containing 

29884 words is saved in the file named merged_text. The 

merged_text document was divided into total N_text files, 

where each file consists of 22 lines. This splitting was done to 

ensure that the text could be accommodated on a standard A4-

sized sheet of paper.  

(2) Additionally, the N_text files underwent a conversion 

process to generate N_Img files in the ”.png” format. The 

conversion involved utilizing the Nakula font style which is of 

size 12pt and a resolution of 150 DPI ”X” and ”Y” dimensions 

[27, 28].  

(3) The data generated in steps 1 and 2 was named as 

Hin_test_dataset having N_text and N_Img Hindi files.  

(4) Next the N_Img files were given as input for Tesseract 

OCR (Hindi). The output of the OCR process was a collection 

of corresponding OCR-recognized text files, which is referred 

to as N_OCR files. In order to assign a label (0 for correct, 1 

for incorrect) to each OCR recognized word, the original 

N_text and N_OCR files were aligned using Recursive Text 

Alignment system (RETAS) [29]. It does alignment at both the 

word and character levels. We utilized word-level alignment. 

The aligned words, i.e., the ground truth word and OCRed 

word, are checked. If these two words are equal, then OCRed 

word is assigned label 0. Otherwise, the word gets labeled 1. 

The Hin_test_dataset has been created for the purpose of 

testing the proposed error correction approach on data within 

the same domain on which it is trained. The proposed error 

correction approach is discussed in section 4.2.  
 

4.2 Experimental setup for error correction approach 
 

BERT originally developed for two main tasks: next 

sentence prediction and MLM to predict the masked word in 
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the sentence. The word to be predicted is masked with a token 

[MASK] and the model generates contextual suggestions for 

the masked word [30].  

In this proposed error correction approach, we initially 

mask the incorrect word, and further, the proposed error 

correction approach suggests the contextually appropriate 

word for the masked word. Figure 1 describes the proposed 

system, which consists of three modules: I) Training BERT 

tokenizer, II) Training MLM BERT model, and III) Error 

Correction using MLM BERT. 

A detailed explanation is provided for each phase involved 

in the process: 

Ⅰ. Training BERT tokenizer: The BERT model requires 

the input data in a suitable format to obtain the corresponding 

embedding of the sentence. The input to the BERT model is a 

sentence of a fixed length. Each token was given a distinct ID 

when the BERT model was trained. So, in order to employ a 

pre-trained BERT model, each token in the input sentence 

must first be converted into its corresponding unique ID. 

Sentences are padded to achieve a fixed length for input. To 

obtain a unique ID for a token, a BERT tokenizer is needed. 

The BERT tokenizer will split the word into two subwords 

(token). The first token is a frequently seen word (prefix) in a 

corpus. Two hashes are prefixed to the second token to 

indicate that it is a suffix following some other subwords. 

Further, we can convert subwords to unique IDs using the 

BERT tokenizer. The BERT tokenizer for Hindi has been 

created using BertWordPeiceTokenizer and the respective data 

which is shown in Table 3. 

 

 
 

Figure 1. Proposed hindi error correction system 

 

Table 3. Data used for Training Dev-Hindi tokenizer and 

Hindi_Error_Correction_Model 

 
Language  Total Words  Source of Data 

Hindi  8215774  Hindi dataset [24] 

Ⅱ. Training MLM BERT model: Here the 

BertForMaskedLM architecture is employed specifically 

utilizing the BERT Model known as ‘bert-base uncased’. Here 

we have chosen ‘bert-base uncased’ as Devanagari is an 

uncased script. This particular model consists of 12 layers, 768 

hidden units, 12 attention heads, and a total of 110 million 

parameters. It was trained on lowercase English text. Despite 

utilizing this model, it was challenging to achieve satisfactory 

accuracy in correcting OCR errors in Hindi text. To support 

Hindi text, the BERT Dev-hindi tokenizer as created in Phase 

I, is used and a corpus for additional training of the pre-trained 

BERT model ”bert-base-uncased” is also employed, which is 

the same as the one used during Phase I for constructing the 

tokenizer. The training parameters were configured as follows: 

Gaussian Error Linear Unit (GELU) as hidden activation 

function, the maximum position embeddings were limited to 

512, the attention dropout rate was set to 0.1, the number of 

epochs was set to 3, the instantaneous batch size per device 

was 8, the gradient accumulation steps were set to 1, the 

number of sentences was 539134 and the total number of 

optimization steps was 50500. The GELU was chosen as an 

activation function as it is a high-performing neural network 

activation function [31]. The choice of dropout rate and epoch 

configuration was influenced by a study demonstrating good 

performance results in the context of BERT [32]. After 

training the training loss was 1.54.  

 

Table 4. Example of Hindi_Error_Correction_Model output 

Hindi language 

 

Actual  

Word 

OCR 

Recognized 

Word as 

Input 

Top 6 Suggestion 

by 

Hindi_Error_Corr

ection_Model  

Probability  

Proposed 

Model 

Output * 

नई लदल्िी र ई लदल्िी 

नई 0.06 

नई लदल्िी 

आज 0.04 

आईआईटी 0.02 

नयी 0.014 

र जध नी 0.012 

पुर नी 0.008 

* Hindi_Error_Correction_Model  

 

Ⅲ. Error Correction using MLM BERT: In this module, 

a lookup dictionary is utilized to identify incorrect words and 

the correction model suggests the appropriate word for every 

incorrect word. All the incorrect words were masked using 

[MASK] token. The word correction was achieved by utilizing 

the ”Dev-Hindi” model and its corresponding tokenizer 

i.e. ”Dev-Hindi”. Initially, the input OCR text having masked 

token is tokenized using the ”Dev-Hindi” tokenizer, resulting 

in token IDs, and the”Dev-Hindi” model generates a set of 

predictions for the word in the form of token IDs and their 

associated probabilities. These token IDs are then converted 

back to words using the ”Dev-Hindi” tokenizer. Employing 

the Levenshtein distance for the top 6 candidate words, the 

similarity between the original token and the predicted token 

was assessed by selecting those having a similarity score of 

more than 0.8. Ultimately, the word with the highest 

probability among the suggested options is selected by the 

system as the most suitable word. An example is shown in 

Table 4. The word selected by the system can be either correct 

or incorrect. In some cases, the system may not provide any 

suggestions, and in those instances, the word remains 

unchanged. Examples for each of these cases are discussed in 
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section 5. The correct words are indicated in green, the 

incorrect words are underlined and marked in red and the 

words for which no suggestions were provided are indicated 

in blue.  

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS  

 

5.1 Performance of Hindi_Error_Correction_Model on 

Hin_test_dataset and Hindi-IIITH-dataset 

 

The proposed error correction approach has been evaluated 

with Hin_test_dataset and Hindi-IIITH-dataset [5], the 

characteristics of which are detailed in Table 2. The ISRI 

analytic tool was used to calculate the word accuracy during 

the evaluation process [33]. The following evaluation metrics 

are used: 

(i) Accuracy (word accuracy): Word accuracy is the 

percentage of the words recognized correctly from the total 

words in the ground truth dataset. 

(ii) Word Error Rate (WER): WER is the percentage of 

words incorrectly recognized from the total words in the 

ground truth dataset. It is also equal to 100 minus word 

accuracy. 
 

Table 5. Performance of Hin_test_dataset and Hindi-IIITH-

dataset 
 

Dataset 

Word Accuracy 

Tesseract OCR 

(Hindi) 

Hindi_Error_ 

Correction_Model 

Hin_test_dataset  87.23% 89.65% 

Hindi-IIITH-dataset [5] 89.29%  95.18% 

 

Table 6. Category-wise word error rate (WER) on 

Hin_test_dataset and Hindi-IIITH-dataset 

 
 Hin_test_dataset  Hindi-IIITH-dataset 

[5] 

 Tesseract 

Hindi 

OCR 

Error % 

Hindi_Erro

r_Correctio

n_Model 

Error % 

Tesseract 

Hindi 

OCR 

Error % 

Hindi_Error

_Correction

_Model 

Error % 

Without 

modifiers  

1.38 0.45 3.5 0.67 

Matras  2.11 1.35 2.14 1.02 

Eekar  0.96 0.82 0.92 0.75 

Ookars  0.13 0.12 0.14 0.12 

Conjunct 

consonant  

0.99 0.87 0.98 0.5 

Anusvara  0.68 0.68 0.65 0.65 

Candra  0.05 0.05 0.03 0.03 

Words with 

multiple 

modifiers  

6.47 6.01 2.35 1.08 

Total WER  12.77 10.35 10.71 4.82 

 
It was observed that Tesseract Hindi OCR word accuracy 

on Hin_test_dataset and Hindi-IIITH-dataset were 87.23% 

and 89.29%, respectively. On performing error correction 

using Hindi_Error_Correction_Model on the dataset 

Hin_test_dataset the word accuracy increased from 87.23% to 

89.65%. Additionally, when conducting error correction on 

the Hindi-IIITH-dataset, using the 

Hindi_Error_Correction_Model, it was observed that word 

accuracy increased from 89.29% and 95.18%. as shown in 

Table 5. Therefore, it can be observed that there is an 

improvement in word accuracy on both testing dataset 

Hin_test_dataset and Hindi-IIITH-dataset. The difference in 

word accuracy between the Tesseract OCR results obtained 

from the Hin_test_dataset and the Hindi-IIITH-dataset [5] has 

been noticed. It observed the increase in word accuracy from 

91.60% to 95.18%, having an improvement of 3.58% over the 

baseline Hindi OCR word accuracy [5]. 

Table 6 shows the category-wise WER for the output of the 

Tesseract OCR and Hindi_Error_Correction_Model. It is 

observed that Hindi-IIITH-dataset had more errors in words 

without any modifiers. This is because of the existence of 

punctuation mark “।“ in the Hindi-IIITH-dataset which is 

constantly misclassified by Tesseract OCR output. Our 

proposed error correction approach corrects it, indicating 

proper punctuation marks for all the instances of the sentence. 

Thus, the Hindi_Error_Correction_Model  corrects most of the 

words that have no modifiers. 

Further, it is observed that there is a decrease in error for 

words with Ekar, Ookar, Conjunct consonants, and words with 

multiple modifiers. Words with anusvara error rate have 

remained the same. However it is important to note that these 

error words were masked and the 

Hindi_Error_Correction_Model’s correction is based more on 

contextual information.  

 
5.2 Error analysis 

 
The results of this research work indicate that the proposed 

model delivers accurate recommendations, as demonstrated by 

the data presented in Table 7. For example, the actual word को 

(KO) is recognized as क ां (KAM) via tesseract OCR systems, 

whereas the Hindi_Error_Correction_Model corrects it to को 

(KO). 

 
Table 7. Performance of Hin_test_dataset and Hindi-IIITH-

dataset 

 
Actual  

word 

OCR  

recognised 

output 

Hindi_Error_Correction_

Model output 

को  क ां  को  

और  ओांर  और  

इन  हन  इन  

कह   केह   कह   

इजर यि  इज़र यि  इजर यि  

बध ई  व ई  बध ई 

द र   दोस  द र  

स थस थ  स थस्न थ  स थस थ 

इस  हस  इस 

 
Let us consider another example to illustrate the 

effectiveness of the Hindi_Error_Correction_Model: The 

actual word बध ई (BaDhAI) is recognized by OCR as व ई (VAI), 

while the correction provided by the suggested model is बध ई. 

Additionally, the Hindi_Error_Correction_Model exhibits 

contextual-based corrections, as evidenced by the information 

provided in Table 8 and Table 9. For example, the actual text 

6 हज र (6 HaJaRa) was incorrectly recognized as ह हज र (Ha 

HaJARa), and the proposed model suggests 10 हज र (HaJARa). 

However, the suggested word is incorrect. It is interesting to 

note that the suggested word is number and not any other word 

close to ह (Ha).  
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The Hindi_Error_Correction_Model also provides 

incorrect suggestions including cases where incorrect 

suggestions are given based on the context, as illustrated in 

Table 10. However, the suggested word is very similar to the 

correct word or contextually appropriate. Here is an example 

of the observation, i.e., the actual word लवच रों (VICAROM) and 

OCR recognized word as लवच  रो (VICARO) and 

Hindi_Error_Correction_Model suggestion is लवच रो (VICARO) 

which is a quite similar suggestion to the actual word. Another 

example of a similar suggestion is with actual word उद्घ टन 

(UDGhATaNa), OCR-recognized word उद्ध टन (UDGhaTaNa) 

and proposed model suggestion is उदघ टन (UDaGhATaNa). 

 
Table 8. Output of Hindi_Error_Correction_Model 

indicating suitable output as per context 

 
Actual text (Hindi)  उत्प दों को पेश कर रहे हैं। 

Transliteration 

(English)  

UTPADOM KO PESa CaRa HAiM. 

Translation (English)  Presenting products. 

OCR recognized text  उत्प दों क ां पेश कर रहे हैं 

Hindi_Error_Correctio

n_Model Output  

उत्प दों को पेश कर रहे हैं। 

Actual text (Hindi)  व यसर य के अांगरक्षक के रूप में गलित यह भ रतीय सेन  

क  सबसे पुर न  रेजीमेंट है। 

Transliteration 

(English)  

VAYaSaRAYa KE aMGaRaKSaKa KE 

RuPa mEM GaThita YaHa BhARatIYa 

SENA KA SaBaSE PuRANA 

REJImEMTa HAi. 

Translation (English)  Formed as the bodyguard of the 

Viceroy, it is the oldest regiment of 

the Indian Army. 

OCR recognized text  व यसर य के अांगरक्षक के रनप में गलित यह भ रतीय सेन  

क  सबसे पुर न  रेजीमेंट है।. 

Hindi_Error_ 

Correction_Model 

Output  

व यसर य के अांगरक्षक के रूप में गलित यह भ रतीय सेन  

क  सबसे पुर न  रेजीमेंट है। 

Actual text (Hindi)  6 हज र न कररयों क  सजृन होग । 

Transliteration 

(English)  

6 HaJARa NAuCaRIYOM CA 

SRUJaNa HOGA 

Translation (English)  6 thousand jobs will be created. 

OCR recognized text  ह हज र न कररयों क  सजृन होग  |  

Hindi_Error_Correctio

n_Model Output  

10 हज र न कररय ां क  सजृन होग । 

 
Table 9. Output of Hindi_Error_Correction_Model showing 

correct suggestion 

 
Actual text (Hindi)  पोत पररवहन मांत्र िय  

Transliteration (English)  POTa PaRIVaHaNa maMTRALaYa 

Translation (English)  Ministry of Shipping  

OCR recognized text  गोि पररवहन मांत्र िय  

Hindi_Error_Correction

_Model Output  

पोत पररवहन मांत्र िय  

Actual text (Hindi)  एफटीआईआई की वततम न छ त्र  

Transliteration (English)  EFaTIAI KI VaRTaMANa ChATRA 

Translation (English)  Current student of FTII 

OCR recognized text  एफटीआहँआई की वततम न छ त्र  

Hindi_Error_Correction

_Model Output  

एफटीआईआई की वततम न छ त्र  

 
Furthermore, an instance that demonstrates contextual-

based recommendations is when real words is इसे (ISE), OCR 

recognised word is हरने (HaRaNE) and model suggested the 

word as मह मलहम (maHAmaHIma), where the system suggested 

word was suitable for the sentence as shown in Table 11. 

Table 10. Output of Hindi_Error_Correction_Model having 

quite similar suggestion to actual word or appropriate 

based on context 
 

Actual word OCR Recognised Output Model Correction 
आयोजन प्र योजन   पररयोजन  

ग ांवों म ांओ ां भ रत 

उद्घ टन उद्ध टन उदघ टन 

लवच रों लवच  रो लवच रो  

करोड़ कसड करोड 

 

Table 11. Output of Hindi_Error_Correction_Model 

although incorrect suggestion 
 

Actual text 

(Hindi)  

 27 जनवरी 1950 को इसे र ष्ट्रपलत क  अांगरक्षक न म लदय  गय ।  

Transliteration 

(English)  

27 JaNaVaRI 1950 KO ISE RAsRaPaTI KA 

aMGaRaKsaKa NAma DIYA GaYA 

Translation 

(English)  

On 27 January 1950, it was named the 

President's Bodyguard. 

OCR recognized 

text  

 17 जनवरी 1950 को हरने र ष्ट्रपलत क  अांगरक्षक न म लदय  गय ।  

Hindi_Error_C

orrection_Mode

l Output  

 17 जनवरी 1950 को मह मलहम र ष्ट्रपलत क  अांगरक्षक न म लदय  

गय ।  

 

And cases where suggestions were not offered for words are 

depicted in Table 12 and Table 13. For example, having actual 

word लहस्स  (HISSA) and OCR recognized word लिरुस  

(DVIRUSA), the proposed model did not provide any 

suggestion for word लिरुस  (DVIRUSA), result in retaining same 

word. Thus, it is observed that 

Hindi_Error_Correction_Model fails for numbers and mostly 

words whose first character of word is incorrectly recognized. 

Additionally, when the majority of neighboring words were 

incorrect, the Hindi_Error_Correction_Model fails to provide 

appropriate suggestions, as shown in Table 14.  

 

Table 12. Output of Hindi_Error_Correction_Model 

provided no suggestion 
 

Actual text (Hindi)  2008 में 

Transliteration (English)  2008 mEM 

Translation (English)  In 2008 

OCR recognized text  1008 में 

Hindi_Error_Correction_Model Output  1008 में 

 

Table 13. Examples of Hindi_Error_Correction_Model 

output providing no suggestion 
 

Actual 

Word 

OCR Recognised 

Output 

Model Correction 

लहस्स  लिरुस  लिरुस  

रस्मी ररब्बेमी ररब्बेमी 

स्व गत रत्र गत रत्र गत 

प्रि िी प्य िी प्य िी 

 

Table 14. Output of Hindi_Error_Correction_Model with 

incorrect suggestion 

 
Actual text (Hindi)  गिम न्य व्यलि भी इस अवसर पर उपलस्थत थे। 

Transliteration 

(English)  

GanamANYa VYaKTI BhI ISa 

aVaSaRa PaRa UPaSThITa ThE. 

Translation (English)  Dignitaries were also present on the 

occasion. 

OCR recognized text  गिम नय व्यलि भी हस अबर र पर उपलस्थत थे। 

Hindi_Error_Correctio

n _Model Output 

गिम नय व्यलि भी शरी अबर र पर उपलस्थत थे। 
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6. CONCLUSION AND FUTURE SCOPE 

 

In this research paper, the problem of automatic error 

correction of OCR output of highly inflectional Hindi 

language is addressed. Error correction model utilizing state-

of-art Masked Language Modeling (MLM) with BERT is 

proposed. The model selects the best word among the top 6 

candidates based on assigned probabilities. The proposed 

automatic error correction model improved word accuracy by 

3.58% over Tesseract OCR. There is more improvement in 

words without any modifiers. And negligible improvement for 

the words consisting of Ekar, Ookar, Conjunct consonant and 

words with multiple modifiers. Model outperforms its 

counterparts by providing context-sensitive suggestions. 

Nevertheless, the incorrect suggestions often align closely 

with the actual word or most likely based on context. It was 

also observed that in some cases, such as numbers, the MLM 

BERT model fails to provide appropriate suggestions. The 

model does not provide any suggestions especially when there 

exist two or more incorrect consecutive words. Also if most of 

the neighboring words are incorrect with very low edit 

distance measure then the model is not able to provide proper 

suggestions. Moving forward, future work will prioritize 

improvements through ensemble approaches and exploring 

better language models for Hindi OCR error correction. Also 

MLM BERT with other similarity functions can be explored. 
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