

Automatic Hindi OCR Error Correction Using MLM-BERT

Teja Kundaikar* , Swapnil Fadte , Ramdas Karmali , Jyoti D. Pawar

Discipline of Computer Science & Technology, Goa Business School, Goa University, Goa 403206, Taleigao Plateau, India

Corresponding Author Email: teja.kundaikar@unigoa.ac.in

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290223

ABSTRACT

Received: 6 September 2023

Revised: 10 January 2024

Accepted: 22 January 2024

Available online: 25 April 2024

 Optical Character Recognition (OCR) systems find it challenging to generate accurate text

for highly inflectional Indic languages such as Hindi. Inflectional languages possess an

extensive vocabulary. Words in these languages can assume different forms based on

factors like gender, meaning, or other contextual cues. To enhance the accuracy of OCR

and correct the errors resulting from the inflectional nature of language, it is crucial to

perform post-processing on output of the OCR. This work focuses on correcting errors in

the OCR output specifically for the Hindi language. To overcome existing challenges, an

error correction model has been proposed in this work that uses the Masked-Language

Modeling with BERT (MLM-BERT). It utilizes the context to provide accurate word

suggestions for the incorrect word or masked word. The proposed model has been tested

using the Hindi OCR test dataset from IIITH. It achieved an improvement of 3.58% word

accuracy over the baseline OCR word accuracy, which demonstrates its effectiveness in

enhancing the accuracy of the OCR output text.

Keywords:

Hindi, devanagari, MLM BERT, OCR, error

correction, natural language processing,

deep learning, post-processing

1. INTRODUCTION

Hindi, being a major regional language in India with over

500 million speakers worldwide, requires an accurate Optical

Character Recognition (OCR) solution to address automatic

document analysis problems. OCR refers to the identification

of text from digitally scanned documents. Preserving the

meaning of the text and the content can effectively be utilized

for natural language applications. In the context of Indic

languages such as Hindi, the accuracy of OCR output is often

low and requires additional post-processing to refine it further.

Hindi poses several challenges for OCR systems. These

challenges include the complexity of the scripts (complex

syllables formed by various combinations of vowels,

consonants and conjunct consonants), the highly inflectional

nature of the language [1], and the errors that can occur within

the context of a sentence. In some cases, an incorrectly

recognized word may still be valid in the same language,

which can further complicate the task of OCR. Moreover, due

to the poor availability of language resources, having good

accuracy can make it difficult to train the systems.

Currently, available OCR for Hindi are Tesseract OCR [2],

Indsenz OCR which is a commercial product [3], eAksharaya

OCR [4] and Multilingual OCR for Indian languages [5].

Among these most reasonable OCRs are Tesseract OCR and

Multilingual OCR for Indian languages. They showed around

89.29% and 91.6% word accuracy on the available Hindi OCR

test dataset from IIITH, respectively [5-7]. The word accuracy

achieved by them needs substantial improvement, which can

be achieved through post-processing of the OCR output.

Recent post-processing approaches that have been utilized

to improve the accuracy of Hindi OCR are dictionary-based

[8], statistical language models [8, 9], Syllable and confusion

matrix based [7], Deep learning LSTM [10], Word Embedding

& Levenshtein distance [11] and sub-word embedding [12].

However, these approaches do not address contextual errors.

To address this limitation, we propose a context-sensitive

automatic error correction approach to improve the accuracy

of Hindi OCR output. In this work, the goal is to correct errors

found in scanned documents generated via Tesseract Hindi

OCR system, specifically focusing on providing suggestions

for incorrect words based on contextual information, as

Tesseract is a freely available OCR providing reasonably good

accuracy.

The paper is organized as follows: Section 1 briefly

introduces challenges of Hindi OCR, emphasizes the

significance of post-processing and briefly introduces the

proposed error correction approach. Section 2 discusses the

relevant existing work on OCR error correction approaches.

The motivation behind the current work is outlined in section

3. Section 4 presents the methodology for developing an

automatic error correction model for Hindi OCR. The

experimental results and error analysis are presented in section

5. Lastly, the conclusion and future scope are mentioned in

section 6.

2. RELATED WORK

Error correction is a necessary step to improve the accuracy

of the OCR output text. This section discusses the various

OCR error correction approaches used for post-processing the

OCR output for Indian languages.

Post-processing techniques have been extensively used in

Ingénierie des Systèmes d’Information
Vol. 29, No. 2, April, 2024, pp. 619-626

Journal homepage: http://iieta.org/journals/isi

619

https://orcid.org/0000-0002-1694-0158
https://orcid.org/0000-0001-6364-4629
https://orcid.org/0000-0003-3677-0341
https://orcid.org/0000-0002-7881-6857
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290223&domain=pdf

the past to enhance OCR accuracy. Various OCR post-

processing techniques are explored by Nguyen et al. [13].

These techniques can be grouped based on usage of (i)

Dictionaries or Lexicon (ii) Syntactic or Semantic rules of the

language/word morphology (iii) Statistical Language Models

usually represented as n-grams etc., and (iv) Deep Learning

approach. Some of the methods find the best alternative, while

other methods find the top-n possible alternatives.

Dictionary-based approach on the Hindi OCR recognized

document showed a character accuracy of 93% [14] The

problem with the dictionary-based approach is that it assumes

the word suggested as true if it is present in the dictionary and

also it cannot correct the contextual errors.

Syntactic and semantic-based approaches for error

correction can be found here. A Morphological analyzer was

utilized for Bangla (Indian script) to find the root words and

provide correct suggestions [15]. The corrections made here

are based on a fast dictionary access method and suggest the

correct word in 82.44% of cases.

The shape-based post-processing technique was applied to

Gurmukhi (Indian script) and achieved a 3% improvement,

attending to 97.34% character accuracy [16]. Here, consonants

are categorized into groups based on shape similarity, each

assigned a unique number. The input word is encoded

accordingly. If the code is found in the dictionary, a matching

operation is executed between the input word and words stored

under that specific code. In cases without a match, structurally

similar words to the input are suggested as alternatives. This

approach finds difficulty in providing suggestions to similar

characters.

Locality Sensitive Hashing (LSH) was used to create word

clusters to improve the Telugu language OCR accuracy [17],

resulting in 79.12% word accuracy. Here the OCR outputs of

word images within a cluster are compared, and improvements

are achieved through methods such as Character Majority

Voting or Dynamic Time Warping Technique. This technique

fails to provide suggestions for unique words (words

appearing only once in a cluster).

The Weighted Syllable-based Spell Correction Approach

(WSSC) was applied to Hindi OCR-recognized text, resulting

in 88.22% word accuracy [7]. In this method, a syllable

confusion matrix was generated, taking into account the

frequency of each syllable substitution. Word was looked up

in the dictionary to check whether it is correct or incorrect. If

the word is incorrect, then based on the confusion matrix,

appropriate syllables are substituted for all syllables in the

words. Forming many words and assigning the weight to

words based on the frequency of syllables. Again, these words

were looked up in the dictionary for their correct combination,

suggesting the best word based on the weight assigned. It will

not suggest contextual suggestions. All these OCR post-

processors implement post-processing at the Unicode (or

character) level.

A graph-based, sub-character level language model was

applied to rectify OCR word errors in Malayalam [18]. In this

approach, edges represent the language information, and nodes

represent visual similarities. The optimal path from source to

destination provides suggested words. Through this approach

word accuracy of 95.0% is achieved [18]. This approach fails

to provide suggestions for rare words, proper nouns and

foreign words.

Statistical language models (SLM) and Dictionary-based

methods have been used in error correction for Indian

languages such as Hindi, Punjabi (Gurmukhi script), Telugu,

and Malayalam [9]. This approach reported Improvements in

errors in ranges between 38% to 66% for the above languages.

The limitation of this work is that a dictionary and character n-

gram alone cannot effectively suggest the correct word due to

the inflectional nature of Indian languages.

Sub-word embeddings have also been applied for OCR

error correction in Hindi, Sanskrit, Kannada, and Malayalam,

resulting in 90.42% word accuracy for Hindi [12]. Further

intersection of error rectification and cluster analysis was

observed in the clustering of similar words within documents

for error correction, particularly in Hindi and English [8]. This

approach lacks contextual suggestion.

Spelling correction in OCR-generated Hindi text, utilizing

methods like Word Embedding and Levenshtein Distance [11].

This uses the Continuous Bag-of-Words (CBOW) model. It

does not consider the order of words in a given context. Thus,

it will struggle to provide contextual suggestions for incorrect

words.

Recently, deep learning techniques were used for OCR error

detection and correction spanning four languages—Hindi,

Malayalam, Sanskrit, and Kannada—specifically an LSTM

approach, particularly relevant when languages are written in

distinct scripts [10]. It showed 92% of word accuracy for Hindi.

LSTMs can capture dependencies over longer sequences than

simple RNNs, but they still have a limited context window.

The above literature review indicates that post-processing

of OCR output for Indian languages is challenging due to

context-dependent errors and the inherent nature of highly

inflectional languages. The abundance of words due to the

inflectional nature of the Indian language also poses a

challenge in OCR error correction.

3. MOTIVATION

Literature reviews have shown that there is still scope for

improving the OCR output of Indian languages. The review of

the existing literature has indicated that post-processing in

OCR output is crucial in enhancing the performance of Hindi

OCR. However, the most commonly used approaches do not

address context-sensitive error correction, as indicated by the

three examples shown in Table 1. The red color indicates an

incorrect word. Example 1 where the incorrect word is क ां. Here,

the existing bigram model can show suggestions as क , के, की,

etc. Likewise, in example 2, रनप is an incorrect word. Existing

models can suggest a word like ब द, स थ, लिए etc. Similarly, in

example 3 the incorrect word is एफटीआहँआई, which is an English

foreign word. For such cases, we need an approach that can

suggest a word based on context.

This can be achieved using state-of-the-art techniques such

as Masked Language Model (MLM) with Bidirectional

Encoder Representations from Transformers (BERT), which

have not yet been explored for OCR error correction in Indian

languages. The MLM BERT model has been utilized for tasks

such as detection [19-21] and correction [22], demonstrating

its ability to simplify the model’s architecture and provide

contextual suggestions [23]. MLM BERT masks words

containing errors and offers suggestions for the masked word,

based on available contextual information. To build the MLM

BERT for Hindi, it is necessary to have a BERT tokenizer and

MLM BERT model for Hindi. In this paper, an OCR error

correction approach using an advanced MLM with BERT to

suggest contextually aware correction is discussed in section

4.

620

Table 1. Some examples of OCR recognized errors that

require contextual suggestion

Example 1

Actual text (Hindi) उत्प दों को पेश कर रहे हैं।

Transliteration (English) UTPADOM KO PESa CaRa RaHE

HAiM.

Translation (English) Presenting products.

OCR recognized text उत्प दों क ां पेश कर रहे हैं

Example 2

Actual text (Hindi) व यसर य के अांगरक्षक के रूप में गलित यह भ रतीय सेन क

सबसे पुर न रेजीमेंट है।

Transliteration (English) VAYaSaRAYa KE aMGaRaKSaKa KE

RuPa mEM GaThita YaHa BhARatIYa

SENA KA SaBaSE PuRANA REJImEMTa

HAi.

Translation (English) Formed as the bodyguard of the Viceroy,

it is the oldest regiment of the Indian

Army.

OCR recognized text व यसर य के अांगरक्षक के रनप में गलित यह भ रतीय सेन क

सबसे पुर न रेजीमेंट है।.

Example 3

Actual text (Hindi) एफटीआईआई की वततम न छ त्र

Transliteration (English) EFaTIAI KI VaRTaMANa ChATRA

Translation (English) Current student of FTII

OCR recognized text एफटीआहँआई की वततम न छ त्र

4. METHODOLOGY

This section discusses two main parts of the experimental

setup. The first part describes how the dataset was created for

testing the error correction model. The second part provides

details of the experimental setup.

4.1 Test dataset creation

The procedure to create datasets to evaluate the error

correction model is discussed here. Two sets of test data were

utilized to evaluate the performance of the proposed error

correction model. The first dataset is the Hindi OCR dataset

obtained from IIITH [5]. It comprises a total of 100 pages

presented in image format, along with their respective text

files. For the sake of convenience, we have named this dataset

as Hindi-IIITH-dataset. This dataset showed 91.6% word

accuracy on OCR for Indian languages [5] and 89.29% on

Tesseract Hindi OCR [7]. The second dataset is created from

a part of Hindi text within the same domain, which has been

utilized for training in this work. The total number of words

available in the Hindi-IIITH-dataset is 29884. The

characteristics of this dataset is presented in Table 2. It shows

the distribution of words based on the type of syllable present

in the word. The eight categories of words found in the dataset

are presented below -

Words without modifier: Words with Devanagari numerals

or vowels or consonants with no modifiers. e.g. मन (maNa),

हिचि (HaLaCaLa), 2023.

Words with Matra: Words with Matra (Matra is a

Dependent vowel sign. ◌े(े[e]), ◌े(ै[ai]), ◌ेो ([o]), and ◌े

([au]) in Devanagari [24]) e.g. वैर (VAiRa).

Words with Eekar: Words with modifier Eekar (Eekar is a

Dependent vowel sign. ले◌ ([i]) and ◌ेी ([e:]) in Devanagari

[24]) e.g. सीप (SIPa).

Words with Ookar: Words with modifier Ookar (Ookar is

a Dependent vowel sign. ◌े(ु[u]) and ◌े ([u:]) in Devanagari

[24]) e.g. अनभुव (aNuBhaVa).

Words with Conjunct consonant: words, which have

Conjunct consonant (Conjunct consonant have more than two

consonant letters [25]) e.g. पल्िव (PaLLaVa).

Words with Anusvara: Words having Anusvara

(Devanagari sign ◌ेां (Anusuvar. Bindi) [24]) e.g. पांप (PaMPa).

Words with Candra: Words with Candra (Devanagari sign

◌ेaँnd letter ”Candra A” [24].) e.g. च ँद (CaMDa).

Words with multiple modifiers: Words which have more

than one modifier Ookar or Anusvara or Eekar and does not

belong to any of the other categories e.g. मलिक (manIKA), लनत र

(NITARA).

Table 2. Characteristics of data used to create dataset to test

error correction model

Category/Dataset Hindi_test_dataset
Hindi-IIITH-

dataset [5]

Without modifiers 5274 9930
Matras 7140 7849
Eekar 4872 4723

Ookars 792 1340
Conjunct consonant 1869 1083

Anusvara 571 248
Candra 65 298

Words with multiple

modifiers
9301 5868

Total 29884 31339

The process that is used to create the Hindi test dataset

(Hin_test_dataset) to test proposed error correction model is

discussed below:

(1) The part of Hindi text sourced from [26] containing

29884 words is saved in the file named merged_text. The

merged_text document was divided into total N_text files,

where each file consists of 22 lines. This splitting was done to

ensure that the text could be accommodated on a standard A4-

sized sheet of paper.

(2) Additionally, the N_text files underwent a conversion

process to generate N_Img files in the ”.png” format. The

conversion involved utilizing the Nakula font style which is of

size 12pt and a resolution of 150 DPI ”X” and ”Y” dimensions

[27, 28].

(3) The data generated in steps 1 and 2 was named as

Hin_test_dataset having N_text and N_Img Hindi files.

(4) Next the N_Img files were given as input for Tesseract

OCR (Hindi). The output of the OCR process was a collection

of corresponding OCR-recognized text files, which is referred

to as N_OCR files. In order to assign a label (0 for correct, 1

for incorrect) to each OCR recognized word, the original

N_text and N_OCR files were aligned using Recursive Text

Alignment system (RETAS) [29]. It does alignment at both the

word and character levels. We utilized word-level alignment.

The aligned words, i.e., the ground truth word and OCRed

word, are checked. If these two words are equal, then OCRed

word is assigned label 0. Otherwise, the word gets labeled 1.

The Hin_test_dataset has been created for the purpose of

testing the proposed error correction approach on data within

the same domain on which it is trained. The proposed error

correction approach is discussed in section 4.2.

4.2 Experimental setup for error correction approach

BERT originally developed for two main tasks: next

sentence prediction and MLM to predict the masked word in

621

the sentence. The word to be predicted is masked with a token

[MASK] and the model generates contextual suggestions for

the masked word [30].

In this proposed error correction approach, we initially

mask the incorrect word, and further, the proposed error

correction approach suggests the contextually appropriate

word for the masked word. Figure 1 describes the proposed

system, which consists of three modules: I) Training BERT

tokenizer, II) Training MLM BERT model, and III) Error

Correction using MLM BERT.

A detailed explanation is provided for each phase involved

in the process:

Ⅰ. Training BERT tokenizer: The BERT model requires

the input data in a suitable format to obtain the corresponding

embedding of the sentence. The input to the BERT model is a

sentence of a fixed length. Each token was given a distinct ID

when the BERT model was trained. So, in order to employ a

pre-trained BERT model, each token in the input sentence

must first be converted into its corresponding unique ID.

Sentences are padded to achieve a fixed length for input. To

obtain a unique ID for a token, a BERT tokenizer is needed.

The BERT tokenizer will split the word into two subwords

(token). The first token is a frequently seen word (prefix) in a

corpus. Two hashes are prefixed to the second token to

indicate that it is a suffix following some other subwords.

Further, we can convert subwords to unique IDs using the

BERT tokenizer. The BERT tokenizer for Hindi has been

created using BertWordPeiceTokenizer and the respective data

which is shown in Table 3.

Figure 1. Proposed hindi error correction system

Table 3. Data used for Training Dev-Hindi tokenizer and

Hindi_Error_Correction_Model

Language Total Words Source of Data

Hindi 8215774 Hindi dataset [24]

Ⅱ. Training MLM BERT model: Here the

BertForMaskedLM architecture is employed specifically

utilizing the BERT Model known as ‘bert-base uncased’. Here

we have chosen ‘bert-base uncased’ as Devanagari is an

uncased script. This particular model consists of 12 layers, 768

hidden units, 12 attention heads, and a total of 110 million

parameters. It was trained on lowercase English text. Despite

utilizing this model, it was challenging to achieve satisfactory

accuracy in correcting OCR errors in Hindi text. To support

Hindi text, the BERT Dev-hindi tokenizer as created in Phase

I, is used and a corpus for additional training of the pre-trained

BERT model ”bert-base-uncased” is also employed, which is

the same as the one used during Phase I for constructing the

tokenizer. The training parameters were configured as follows:

Gaussian Error Linear Unit (GELU) as hidden activation

function, the maximum position embeddings were limited to

512, the attention dropout rate was set to 0.1, the number of

epochs was set to 3, the instantaneous batch size per device

was 8, the gradient accumulation steps were set to 1, the

number of sentences was 539134 and the total number of

optimization steps was 50500. The GELU was chosen as an

activation function as it is a high-performing neural network

activation function [31]. The choice of dropout rate and epoch

configuration was influenced by a study demonstrating good

performance results in the context of BERT [32]. After

training the training loss was 1.54.

Table 4. Example of Hindi_Error_Correction_Model output

Hindi language

Actual

Word

OCR

Recognized

Word as

Input

Top 6 Suggestion

by

Hindi_Error_Corr

ection_Model

Probability

Proposed

Model

Output *

नई लदल्िी र ई लदल्िी

नई 0.06

नई लदल्िी

आज 0.04

आईआईटी 0.02

नयी 0.014

र जध नी 0.012

पुर नी 0.008

* Hindi_Error_Correction_Model

Ⅲ. Error Correction using MLM BERT: In this module,

a lookup dictionary is utilized to identify incorrect words and

the correction model suggests the appropriate word for every

incorrect word. All the incorrect words were masked using

[MASK] token. The word correction was achieved by utilizing

the ”Dev-Hindi” model and its corresponding tokenizer

i.e. ”Dev-Hindi”. Initially, the input OCR text having masked

token is tokenized using the ”Dev-Hindi” tokenizer, resulting

in token IDs, and the”Dev-Hindi” model generates a set of

predictions for the word in the form of token IDs and their

associated probabilities. These token IDs are then converted

back to words using the ”Dev-Hindi” tokenizer. Employing

the Levenshtein distance for the top 6 candidate words, the

similarity between the original token and the predicted token

was assessed by selecting those having a similarity score of

more than 0.8. Ultimately, the word with the highest

probability among the suggested options is selected by the

system as the most suitable word. An example is shown in

Table 4. The word selected by the system can be either correct

or incorrect. In some cases, the system may not provide any

suggestions, and in those instances, the word remains

unchanged. Examples for each of these cases are discussed in

622

section 5. The correct words are indicated in green, the

incorrect words are underlined and marked in red and the

words for which no suggestions were provided are indicated

in blue.

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Performance of Hindi_Error_Correction_Model on

Hin_test_dataset and Hindi-IIITH-dataset

The proposed error correction approach has been evaluated

with Hin_test_dataset and Hindi-IIITH-dataset [5], the

characteristics of which are detailed in Table 2. The ISRI

analytic tool was used to calculate the word accuracy during

the evaluation process [33]. The following evaluation metrics

are used:

(i) Accuracy (word accuracy): Word accuracy is the

percentage of the words recognized correctly from the total

words in the ground truth dataset.

(ii) Word Error Rate (WER): WER is the percentage of

words incorrectly recognized from the total words in the

ground truth dataset. It is also equal to 100 minus word

accuracy.

Table 5. Performance of Hin_test_dataset and Hindi-IIITH-

dataset

Dataset

Word Accuracy

Tesseract OCR

(Hindi)

Hindi_Error_

Correction_Model

Hin_test_dataset 87.23% 89.65%

Hindi-IIITH-dataset [5] 89.29% 95.18%

Table 6. Category-wise word error rate (WER) on

Hin_test_dataset and Hindi-IIITH-dataset

 Hin_test_dataset Hindi-IIITH-dataset

[5]

 Tesseract

Hindi

OCR

Error %

Hindi_Erro

r_Correctio

n_Model

Error %

Tesseract

Hindi

OCR

Error %

Hindi_Error

_Correction

_Model

Error %

Without

modifiers

1.38 0.45 3.5 0.67

Matras 2.11 1.35 2.14 1.02

Eekar 0.96 0.82 0.92 0.75

Ookars 0.13 0.12 0.14 0.12

Conjunct

consonant

0.99 0.87 0.98 0.5

Anusvara 0.68 0.68 0.65 0.65

Candra 0.05 0.05 0.03 0.03

Words with

multiple

modifiers

6.47 6.01 2.35 1.08

Total WER 12.77 10.35 10.71 4.82

It was observed that Tesseract Hindi OCR word accuracy

on Hin_test_dataset and Hindi-IIITH-dataset were 87.23%

and 89.29%, respectively. On performing error correction

using Hindi_Error_Correction_Model on the dataset

Hin_test_dataset the word accuracy increased from 87.23% to

89.65%. Additionally, when conducting error correction on

the Hindi-IIITH-dataset, using the

Hindi_Error_Correction_Model, it was observed that word

accuracy increased from 89.29% and 95.18%. as shown in

Table 5. Therefore, it can be observed that there is an

improvement in word accuracy on both testing dataset

Hin_test_dataset and Hindi-IIITH-dataset. The difference in

word accuracy between the Tesseract OCR results obtained

from the Hin_test_dataset and the Hindi-IIITH-dataset [5] has

been noticed. It observed the increase in word accuracy from

91.60% to 95.18%, having an improvement of 3.58% over the

baseline Hindi OCR word accuracy [5].

Table 6 shows the category-wise WER for the output of the

Tesseract OCR and Hindi_Error_Correction_Model. It is

observed that Hindi-IIITH-dataset had more errors in words

without any modifiers. This is because of the existence of

punctuation mark “।“ in the Hindi-IIITH-dataset which is

constantly misclassified by Tesseract OCR output. Our

proposed error correction approach corrects it, indicating

proper punctuation marks for all the instances of the sentence.

Thus, the Hindi_Error_Correction_Model corrects most of the

words that have no modifiers.

Further, it is observed that there is a decrease in error for

words with Ekar, Ookar, Conjunct consonants, and words with

multiple modifiers. Words with anusvara error rate have

remained the same. However it is important to note that these

error words were masked and the

Hindi_Error_Correction_Model’s correction is based more on

contextual information.

5.2 Error analysis

The results of this research work indicate that the proposed

model delivers accurate recommendations, as demonstrated by

the data presented in Table 7. For example, the actual word को

(KO) is recognized as क ां (KAM) via tesseract OCR systems,

whereas the Hindi_Error_Correction_Model corrects it to को

(KO).

Table 7. Performance of Hin_test_dataset and Hindi-IIITH-

dataset

Actual

word

OCR

recognised

output

Hindi_Error_Correction_

Model output

को क ां को

और ओांर और

इन हन इन

कह केह कह

इजर यि इज़र यि इजर यि

बध ई व ई बध ई

द र दोस द र

स थस थ स थस्न थ स थस थ

इस हस इस

Let us consider another example to illustrate the

effectiveness of the Hindi_Error_Correction_Model: The

actual word बध ई (BaDhAI) is recognized by OCR as व ई (VAI),

while the correction provided by the suggested model is बध ई.

Additionally, the Hindi_Error_Correction_Model exhibits

contextual-based corrections, as evidenced by the information

provided in Table 8 and Table 9. For example, the actual text

6 हज र (6 HaJaRa) was incorrectly recognized as ह हज र (Ha

HaJARa), and the proposed model suggests 10 हज र (HaJARa).

However, the suggested word is incorrect. It is interesting to

note that the suggested word is number and not any other word

close to ह (Ha).

623

The Hindi_Error_Correction_Model also provides

incorrect suggestions including cases where incorrect

suggestions are given based on the context, as illustrated in

Table 10. However, the suggested word is very similar to the

correct word or contextually appropriate. Here is an example

of the observation, i.e., the actual word लवच रों (VICAROM) and

OCR recognized word as लवच रो (VICARO) and

Hindi_Error_Correction_Model suggestion is लवच रो (VICARO)

which is a quite similar suggestion to the actual word. Another

example of a similar suggestion is with actual word उद्घ टन

(UDGhATaNa), OCR-recognized word उद्ध टन (UDGhaTaNa)

and proposed model suggestion is उदघ टन (UDaGhATaNa).

Table 8. Output of Hindi_Error_Correction_Model

indicating suitable output as per context

Actual text (Hindi) उत्प दों को पेश कर रहे हैं।

Transliteration

(English)

UTPADOM KO PESa CaRa HAiM.

Translation (English) Presenting products.

OCR recognized text उत्प दों क ां पेश कर रहे हैं

Hindi_Error_Correctio

n_Model Output

उत्प दों को पेश कर रहे हैं।

Actual text (Hindi) व यसर य के अांगरक्षक के रूप में गलित यह भ रतीय सेन

क सबसे पुर न रेजीमेंट है।

Transliteration

(English)

VAYaSaRAYa KE aMGaRaKSaKa KE

RuPa mEM GaThita YaHa BhARatIYa

SENA KA SaBaSE PuRANA

REJImEMTa HAi.

Translation (English) Formed as the bodyguard of the

Viceroy, it is the oldest regiment of

the Indian Army.

OCR recognized text व यसर य के अांगरक्षक के रनप में गलित यह भ रतीय सेन

क सबसे पुर न रेजीमेंट है।.

Hindi_Error_

Correction_Model

Output

व यसर य के अांगरक्षक के रूप में गलित यह भ रतीय सेन

क सबसे पुर न रेजीमेंट है।

Actual text (Hindi) 6 हज र न कररयों क सजृन होग ।

Transliteration

(English)

6 HaJARa NAuCaRIYOM CA

SRUJaNa HOGA

Translation (English) 6 thousand jobs will be created.

OCR recognized text ह हज र न कररयों क सजृन होग |

Hindi_Error_Correctio

n_Model Output

10 हज र न कररय ां क सजृन होग ।

Table 9. Output of Hindi_Error_Correction_Model showing

correct suggestion

Actual text (Hindi) पोत पररवहन मांत्र िय

Transliteration (English) POTa PaRIVaHaNa maMTRALaYa

Translation (English) Ministry of Shipping

OCR recognized text गोि पररवहन मांत्र िय

Hindi_Error_Correction

_Model Output

पोत पररवहन मांत्र िय

Actual text (Hindi) एफटीआईआई की वततम न छ त्र

Transliteration (English) EFaTIAI KI VaRTaMANa ChATRA

Translation (English) Current student of FTII

OCR recognized text एफटीआहँआई की वततम न छ त्र

Hindi_Error_Correction

_Model Output

एफटीआईआई की वततम न छ त्र

Furthermore, an instance that demonstrates contextual-

based recommendations is when real words is इसे (ISE), OCR

recognised word is हरने (HaRaNE) and model suggested the

word as मह मलहम (maHAmaHIma), where the system suggested

word was suitable for the sentence as shown in Table 11.

Table 10. Output of Hindi_Error_Correction_Model having

quite similar suggestion to actual word or appropriate

based on context

Actual word OCR Recognised Output Model Correction
आयोजन प्र योजन पररयोजन

ग ांवों म ांओ ां भ रत

उद्घ टन उद्ध टन उदघ टन

लवच रों लवच रो लवच रो

करोड़ कसड करोड

Table 11. Output of Hindi_Error_Correction_Model

although incorrect suggestion

Actual text

(Hindi)

 27 जनवरी 1950 को इसे र ष्ट्रपलत क अांगरक्षक न म लदय गय ।

Transliteration

(English)

27 JaNaVaRI 1950 KO ISE RAsRaPaTI KA

aMGaRaKsaKa NAma DIYA GaYA

Translation

(English)

On 27 January 1950, it was named the

President's Bodyguard.

OCR recognized

text

 17 जनवरी 1950 को हरने र ष्ट्रपलत क अांगरक्षक न म लदय गय ।

Hindi_Error_C

orrection_Mode

l Output

 17 जनवरी 1950 को मह मलहम र ष्ट्रपलत क अांगरक्षक न म लदय

गय ।

And cases where suggestions were not offered for words are

depicted in Table 12 and Table 13. For example, having actual

word लहस्स (HISSA) and OCR recognized word लिरुस

(DVIRUSA), the proposed model did not provide any

suggestion for word लिरुस (DVIRUSA), result in retaining same

word. Thus, it is observed that

Hindi_Error_Correction_Model fails for numbers and mostly

words whose first character of word is incorrectly recognized.

Additionally, when the majority of neighboring words were

incorrect, the Hindi_Error_Correction_Model fails to provide

appropriate suggestions, as shown in Table 14.

Table 12. Output of Hindi_Error_Correction_Model

provided no suggestion

Actual text (Hindi) 2008 में

Transliteration (English) 2008 mEM

Translation (English) In 2008

OCR recognized text 1008 में

Hindi_Error_Correction_Model Output 1008 में

Table 13. Examples of Hindi_Error_Correction_Model

output providing no suggestion

Actual

Word

OCR Recognised

Output

Model Correction

लहस्स लिरुस लिरुस

रस्मी ररब्बेमी ररब्बेमी

स्व गत रत्र गत रत्र गत

प्रि िी प्य िी प्य िी

Table 14. Output of Hindi_Error_Correction_Model with

incorrect suggestion

Actual text (Hindi) गिम न्य व्यलि भी इस अवसर पर उपलस्थत थे।

Transliteration

(English)

GanamANYa VYaKTI BhI ISa

aVaSaRa PaRa UPaSThITa ThE.

Translation (English) Dignitaries were also present on the

occasion.

OCR recognized text गिम नय व्यलि भी हस अबर र पर उपलस्थत थे।

Hindi_Error_Correctio

n _Model Output

गिम नय व्यलि भी शरी अबर र पर उपलस्थत थे।

624

6. CONCLUSION AND FUTURE SCOPE

In this research paper, the problem of automatic error

correction of OCR output of highly inflectional Hindi

language is addressed. Error correction model utilizing state-

of-art Masked Language Modeling (MLM) with BERT is

proposed. The model selects the best word among the top 6

candidates based on assigned probabilities. The proposed

automatic error correction model improved word accuracy by

3.58% over Tesseract OCR. There is more improvement in

words without any modifiers. And negligible improvement for

the words consisting of Ekar, Ookar, Conjunct consonant and

words with multiple modifiers. Model outperforms its

counterparts by providing context-sensitive suggestions.

Nevertheless, the incorrect suggestions often align closely

with the actual word or most likely based on context. It was

also observed that in some cases, such as numbers, the MLM

BERT model fails to provide appropriate suggestions. The

model does not provide any suggestions especially when there

exist two or more incorrect consecutive words. Also if most of

the neighboring words are incorrect with very low edit

distance measure then the model is not able to provide proper

suggestions. Moving forward, future work will prioritize

improvements through ensemble approaches and exploring

better language models for Hindi OCR error correction. Also

MLM BERT with other similarity functions can be explored.

REFERENCES

[1] Sankaran, N., Jawahar, C.V. (2013). Error detection in

highly inflectional languages. In 2013 12th International

Conference on Document Analysis and Recognition,

Washington, DC, USA, pp. 1135-1139.

https://doi.org/10.1109/ICDAR.2013.230

[2] Smith, R. (2007). An overview of the Tesseract OCR

engine. In Ninth International Conference on Document

Analysis and Recognition (ICDAR 2007), Curitiba,

Brazil, pp. 629-633.

https://doi.org/10.1109/ICDAR.2007.4376991

[3] (2016). Oliver Hellwig. Indsenz OCR. ind.senz software,

http://www.indsenz.com/int/index.php, accessed on

August 14, 2023.

[4] (2023). WorldTDIL. eAksharaya. TDIL. https://tdil-

dc.in/eocr/index.html

[5] Mathew, M., Singh, A.K., Jawahar, C.V. (2016).

Multilingual OCR for Indic scripts. In 2016 12th IAPR

Workshop on Document Analysis Systems (DAS),

Santorini, Greece, pp. 186-191.

https://doi.org/10.1109/das.2016.68

[6] Kundaikar, T., Pawar, J.D. (2020). Multi-font devanagari

text recognition using LSTM neural networks. In:

Luhach, A., Kosa, J., Poonia, R., Gao, X.Z., Singh, D.

(eds) First International Conference on Sustainable

Technologies for Computational Intelligence. Advances

in Intelligent Systems and Computing, 1045.

https://doi.org/10.1007/978-981-15-0029-9_39

[7] Kundaikar, T., Pawar, J.D. (2019). Multi font error

correction for devanagari script. School of Sanskrit &

Indic Studies, Jawaharlal Nehru University.

[8] Vinitha, V.S., Mathew, M., Jawahar, C.V. (2017). An

empirical study of effectiveness of post-processing in

indic scripts. In 2017 14th IAPR International

Conference on Document Analysis and Recognition

(ICDAR), Kyoto, Japan, pp. 32-36.

https://doi.org/10.1109/ICDAR.2017.362

[9] Das, D., Philip, J., Mathew, M., Jawahar, C.V. (2019). A

cost efficient approach to correct OCR errors in large

document collections. In 2019 International Conference

on Document Analysis and Recognition (ICDAR),

Sydney, NSW, Australia, pp. 655-662.

https://doi.org/10.1109/ICDAR.2019.00110

[10] Saluja, R., Adiga, D., Chaudhuri, P., Ramakrishnan, G.,

Carman, M. (2017). Error detection and corrections in

Indic OCR using LSTMs. In 2017 14th IAPR

International Conference on Document Analysis and

Recognition (ICDAR), Kyoto, Japan, pp. 17-22.

https://doi.org/10.1109/ICDAR.2017.13

[11] Srigiri, S., Saha, S.K. (2020). Spelling correction of

OCR-generated hindi text using word embedding and

levenshtein distance. In: Nath, V., Mandal, J. (eds)

Nanoelectronics, Circuits and Communication Systems.

NCCS 2018. Lecture Notes in Electrical Engineering,

642. https://doi.org/10.1007/978-981-15-2854-5_36

[12] Saluja, R., Punjabi, M., Carman, M., Ramakrishnan, G.,

Chaudhuri, P. (2019). Sub-word embeddings for OCR

corrections in highly fusional indic languages. In 2019

International Conference on Document Analysis and

Recognition (ICDAR), Sydney, NSW, Australia, pp.

160-165. https://doi.org/10.1109/ICDAR.2019.00034

[13] Nguyen, T.T.H., Jatowt, A., Coustaty, M., Doucet, A.

(2021). Survey of post-OCR processing approaches.

ACM Computing Surveys (CSUR), 54(6): 1-37.

https://doi.org/10.1145/3453476

[14] Bansal, V., Sinha, M.K. (2001). A complete OCR for

printed Hindi text in Devanagari script. In Proceedings

of Sixth International Conference on Document Analysis

and Recognition, pp. 0800.

https://doi.org/10.1109/ICDAR.2001.953898

[15] Pal, U., Kundu, P.K., Chaudhuri, B.B. (2000). OCR error

correction of an inflectional Indian language using

morphological parsing. Journal of Information Science

and Engineering, 16(6): 903-922.

[16] Lehal, G.S., Singh, C., Lehal, R. (2001). A shape based

post processor for Gurmukhi OCR. In Proceedings of

Sixth International Conference on Document Analysis

and Recognition, Seattle, WA, USA, pp. 1105-1109.

https://doi.org/10.1109/ICDAR.2001.953957

[17] Rasagna, V., Kumar, A., Jawahar, C.V., Manmatha, R.

(2009). Robust recognition of documents by fusing

results of word clusters. In 2009 10th International

Conference on Document Analysis and Recognition,

Barcelona, Spain, pp. 566-570.

https://doi.org/10.1109/ICDAR.2009.135

[18] Mohan, K., Jawahar, C.V. (2010). A post-processing

scheme for malayalam using statistical sub-character

language models. In Proceedings of the 9th IAPR

International Workshop on Document Analysis Systems,

pp. 493-500. https://doi.org/10.1145/1815330.1815394

[19] Chen, S., Liao, H. (2022). Bert-log: Anomaly detection

for system logs based on pre-trained language model.

Applied Artificial Intelligence, 36(1): 2145642.

https://doi.org/10.1080/08839514.2022.2145642

[20] Saleh, H., Alhothali, A., Moria, K. (2023). Detection of

hate speech using bert and hate speech word embedding

with deep model. Applied Artificial Intelligence, 37(1):

2166719.

https://doi.org/10.1080/08839514.2023.2166719

625

http://www.indsenz.com/int/index.php
https://doi.org/10.1109/das.2016.68
https://doi.org/10.1109/ICDAR.2017.362
https://doi.org/10.1109/ICDAR.2019.00110
https://doi.org/10.1109/ICDAR.2017.13
https://doi.org/10.1109/ICDAR.2019.00034
https://doi.org/10.1145/3453476
https://doi.org/10.1109/ICDAR.2001.953898
https://doi.org/10.1109/ICDAR.2001.953957
https://doi.org/10.1109/ICDAR.2009.135
https://doi.org/10.1145/1815330.1815394
https://doi.org/10.1080/08839514.2022.2145642
https://doi.org/10.1080/08839514.2023.2166719

[21] Ni, P., Wang, Q. (2022). Internet and telecommunication

fraud prevention analysis based on deep learning.

Applied Artificial Intelligence, 36(1): 2137630.

https://doi.org/10.1080/08839514.2022.2137630

[22] Xie, G., Liu, N., Hu, X., Shen, Y. (2023). Toward

prompt-enhanced sentiment analysis with mutual

describable information between aspects. Applied

Artificial Intelligence, 37(1): 2186432.

https://doi.org/10.1080/08839514.2023.2186432

[23] Riyadh, M., Shafiq, M.O. (2022). GAN-BElectra:

Enhanced multi-class sentiment analysis with limited

labeled data. Applied Artificial Intelligence, 36(1):

2083794.

https://doi.org/10.1080/08839514.2022.2083794

[24] Shapiro, M.C. (1989). A primer of modern standard

Hindi. Motilal Banarsidass Publication.

[25] (1991). The Unicode Standard.

https://www.unicode.org/charts/PDF/U0900.pdf.

[26] (2022). Shivam. Hindi dataset.

https://huggingface.co/datasets/shivam/hindi_pib_proce

ssed.

[27] (2020). debiman. Img. Debiman.

https://manpages.debian.org/testing/poppler-

utils/pdftoppm.1.en.html.

[28] (2022). Dov Grobgeld. Unicode text to ps. Linux.

https://linux.die.net/man/1/paps.

[29] Yalniz, I.Z., Manmatha, R. (2011). A fast alignment

scheme for automatic OCR evaluation of books. In 2011

International Conference on Document Analysis and

Recognition, Beijing, China, pp. 754-758.

https://doi.org/10.1109/ICDAR.2011.157

[30] Devlin, J., Chang, M., Lee, K., Toutanova, K. (2019).

BERT: Pre-training of deep bidirectional transformers

for language understanding. Proceedings of the 2019

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, pp. 4171-4186.

https://doi.org/10.18653/v1/N19-1423

[31] Hendrycks, D., Gimpel, K. (2016). Gaussian error linear

units (gelus). arXiv preprint arXiv:1606.08415.

https://doi.org/10.48550/arXiv.1606.08415

[32] Sun, C., Qiu, X., Xu, Y., Huang, X. (2019). How to fine-

tune BERT for text classification? In: Sun, M., Huang,

X., Ji, H., Liu, Z., Liu, Y. (eds) Chinese Computational

Linguistics. CCL 2019. Lecture Notes in Computer

Science, 11856: 194-206. https://doi.org/10.1007/978-3-

030-32381-3_16

[33] Rice, S.V., Nartker, T.A. (1996). The ISRI analytic tools

for OCR evaluation. UNLV/Information Science

Research Institute, TR-96, 2.

https://github.com/eddieantonio/ocreval

626

https://doi.org/10.1080/08839514.2022.2137630

