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A significant challenge for Photovoltaic (PV) power systems is the accumulation of dust on 

solar panels, particularly prevalent in desert areas. Dust accumulation on solar panels cause 

a high degradation in the output power and thus, solar panels should be monitored and 

cleaned continuously to keep their efficiency high. Automating the inspection of solar 

panels can serve as a viable alternative of human inspection due to the impact of labor 

expenses and human difficulties on decision-making on such an environment. In this work, 

we are proposing a computer vision approach that is capable of inspecting solar panels and 

determines its condition in terms of dust accumulation. The proposed approach aims to 

prove the capability of dust detection on distinct panels by means of visible light imaging 

and computer vision techniques. It deploys both gray level co-occurrence matrix (GLCM) 

textural features and local binary patterns (LBP) of solar panels’ images in addition to 

support vector machine (SVM) to build a classification model for this purpose. The 

proposed approach has been tested on images of solar panels that suffer from moderate and 

heavy accumulation of desert sands and dusts. The experimental findings successfully 

illustrated the effectiveness of the proposed feature description and the overall dust 

detection approach of solar panels with an accuracy of 94.3%. 
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1. INTRODUCTION

Automated inspection techniques have been widely adopted 

in the industry sector in the last two decades to detect defect 

regions on solar panels or to identify the defect type and its 

existence on these panels. These defects are formulated, from 

the perspective of image processing, as local textural features 

[1]. Automated inspection of solar panels is an alternate of 

human visual inspection, where real-time feedback is required 

when a certain defect occurs because of labor costs and human 

distraction that affect the decision [2]. Solar panels are devices 

engineered to transform sunlight into electricity, capturing 

solar energy and converting it into usable electrical power.  

In Middle East countries, although solar radiation intensity 

is very high, desert sands and dust accumulation represent a 

natural barrier that can significantly impair their capacity to 

generate energy [3]. Over time, dust, grime, and various 

particles settle on the panel surfaces, forming a fine layer that 

hampers sunlight from reaching the photovoltaic cells. This 

layer diminishes the panels' efficiency in absorbing and 

transforming solar energy into electricity. Consequently, the 

Photovoltaic (PV) system's energy output declines, resulting 

in a substantial reduction in energy production [4, 5]. 

Consistent monitoring and cleaning are imperative to mitigate 

the detrimental impacts of dust accumulation, ensuring that 

solar panels sustain their optimal functionality, thereby 

maximizing their contribution to clean and sustainable energy 

generation. 

Existing technologies for dust detection range from manual 

inspection to automated systems utilizing drones, robots, or 

sensors. Manual inspections are cost-effective but time-

consuming and often impractical for large-scale installations. 

Automated methods relying on vision technology offer 

advantages such as increased efficiency, accuracy, early 

detection of defects, and reduced labor costs [6]. However, 

they may come with disadvantages including initial 

investment costs, maintenance requirements, and potential 

limitations due to lighting conditions and variations in surface 

texture detecting certain types of contaminants or in 

challenging environmental conditions [7]. In addition, current 

proposed dust detection techniques have many shortcomings 

including short-range acquisition and considering moderate 

and heavy dust densities on solar panels in desert areas. 

Nevertheless, despite these limitations, solar panel inspections 

remain indispensable for detecting dust accumulation, 

optimizing performance, initiating cleaning actions, and 

ensuring the secure and efficient operation of PV systems. 

Striking a balance between effectiveness, cost, and practicality 

is essential in implementing a reliable dust detection strategy 

for PV panels. 

This paper proposes a computer vision approach to inspect 

the solar panel condition in terms of dust accumulation. The 

proposed approach has the ability to classify automatically 

solar panels to clean and dust-accumulated regardless of 

lighting conditions and texture variations. The proposed 

approach introduces a feature description by the fusion of both 
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gray level co-occurrence matrix (GLCM) textural features and 

uniform local binary patterns (LBP). This approach can be 

integrated with automated monitoring and cleaning systems of 

solar panels that combine technologies such as an unmanned 

aerial vehicle (UAV) and digital imaging. This work has the 

following contributions: 

·Constructing a visible light image dataset of solar panels 

with moderate and heavy dust accumulation. These images 

were acquired vertically on the solar panel with an acquisition 

range between 1.5-4 m. 

·Implementing a dust detection model that has the ability 

to classify solar panels to either clean or dust-accumulated 

from visible light images. 

·Proposing an optimized descriptor of solar panels by 

fusing the local features of LBP with the global features of 

GLCM. 

·Validating the efficiency of feature descriptor in the 

domain of dust detection under different lighting conditions. 

Furthermore, the paper is structured as follows: Section 2 

demonstrates a review of prior research. Section 3 presents a 

mathematical background of the computer vision and artificial 

intelligence techniques used in this work. The proposed dust 

detection approach is presented in Section 4 while the 

experimental findings along with performance measures are 

demonstrated in Section 5. Finally, Section 6 provides the 

conclusions. 

 

 

2. RELATED WORK 

 

Various methodologies outlined in the literature have been 

employed to analyze the influence of environmental factors on 

solar photovoltaic output, either through experimental studies 

or the creation of predictive models. Previous research has 

investigated the effects of dust on Photovoltaic (PV) power 

systems. The findings revealed a substantial decrease in solar 

panel efficiency when exposed to dust particles proportion to 

dust sample weight [8, 9]. Other works have showed 

experimentally the relationship between dust quantities and 

power degradation [10-12]. They revealed that moderate and 

heavy accumulation in desert areas has severe effect on power 

generation in comparison with light or typical accumulation. 

Automated dust detection techniques rely either on infrared 

imaging or visible light imaging [13]. In the study by 

Phoolwani et al. [14, 15], dust accumulation has been 

estimated based on infrared imaging in which heat 

concentration on solar panels can be identified. 

Visible light imaging was recently suggested by several 

researchers to mimic the behavior of human in identifying dust 

accumulation on solar panels. In the study by Abuqaaud and 

Ferrah [16], a computer vision technique for identifying soil 

and dust on PV surfaces has been proposed. The technique 

relies on extracting features using the GLCM and 

accomplishing classification through a linear classifier. The 

proposed technique was applied on images of PV panels fixed 

on a stand and achieved 82 % recognition rate. 

In the study by Tribak and Zaz [17], the researchers 

introduced an image processing-centered system designed to 

gauge the quantity of dust collected on the surface of solar 

panels. They utilized small, plasticized paper as an indicator 

for image processing.  

Unluturk et al. [18] used artificial light source to estimate 

three different levels of dust accumulation on the PV surface. 

Features were obtained based on GLCM and classification was 

achieved using Artificial Neural Networks (ANN) to 

determine dust level. The proposed system has achieved 

96.86 % accuracy. 

In the study by Onim et al. [19], a convolutional neural 

network model named “SolNet” was developed that has the 

ability to detect the dust accumulation on solar panels. The 

proposed model has been trained and tested on a dataset of 

2231 images. These images have been acquired from short 

range and the have light and typical dust accumulation. The 

proposed model has been proved with and accuracy of 98.2 %. 

In conclusion, the literature demonstrates several attempts 

to implement automated vision-based dust detection 

methodologies from infrared cameras. Dust detection from 

images acquired under visible light is an ongoing domain that 

has to address several shortcomings such as: 1) the acquisition 

methodology which is currently achieved in most cases in 

parallel to solar panels, from short range, or under artificial 

light; 2) current datasets of digital images have small portion 

of dust accumulation as opposed to real situations in desert 

areas in which moderate and heavy accumulation occurs; 3) 

current detection techniques do not deploy textural features on 

solar panel images which is expected to perform efficiently. 

These shortcomings have inspired this work which aims to 

implement and prove a computer vision approach for dust 

accumulation. 

 

 

3. MATHEMATICAL BACKGROUND 

 

3.1 Gray level co-occurrence matrix 

 

The gray level co-occurrence matrix (GLCM) is typically 

deployed to extract global textural features of an image. It is 

defined as the distribution of co-occurring gray levels at a 

given offset: direction (θ) and distance (d). The relative 

frequencies of two neighboring pixels, one with gray level i 

and the other with gray level j, are calculated from the 

quantized image to construct the co-occurrence matrix Pij. This 

co-occurrence matrix (Pij) can be calculated with different 

values of d such as: 1, 2, and 3 and different values of θ such 

as: 0, 45, 90, and 135 as shown in Figure 1. 

 

= 0

= 45= 90= 135

d = 1
d = 2

d = 3

θ

θθθ

 
 

Figure 1. GLCM with different offsets 

 

Several textural features can be derived from the co-

occurrence matrix Pij, including Energy, Contrast, Correlation, 

Homogeneity, Entropy, Autocorrelation, Dissimilarity, and 

Cluster Shade [20]. The following equations define some of 

these features where p(i, j) is the (i, j)th cell in the co-

occurrence matrix, µx and µy are the mean values for rows and 

columns of the matrix, σx and σy are the standard deviation 

values for rows and columns of the matrix, Ng is the number 

of gray levels in the quantized image [20-22]: 
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The textural features are defined as follows [20-22]: 

·Energy 

 

f1 =∑∑p(i, j)2

ji

  (5) 

 

·Contrast 

 

f2 = ∑ n2

{
 
 

 
 

∑ ∑ p(i, j)
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Ng
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 Ng−1
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·Correlation 

 

f3 =
∑ ∑ (ij)p(i, j) − μxμyji

σxσy
 (7) 

 

·Homogeneity 

 

f4 =∑∑
1

1 + (i − j)2
ji

  p(i, j)  (8) 

 

·Entropy 

 

f5 = −∑∑p(i, j) log(p(i, j))

ji

 (9) 

 

·Autocorrelation 

 

f6 =∑∑(ij). p(i, j)

ji

 (10) 

 

·Dissimilarity 

 

f7 =∑∑|i − j|. p(i, j) 

ji

 (11) 

 

·Cluster Shade 

 

f8 =∑∑(i + j − μ
x
− μ

y
)
3

. p(i, j)

ji

 (12) 

 

3.2 Local binary pattern 

 

Local Binary Pattern (LBP) is a feature extraction operator 

designed for grayscale images that is invariant to both rotation 

and scale [23, 24]. It aims to capture local texture 

characteristics within an image. To compute the LBP value for 

a specific pixel location (Xc, Yc), a comparison is made 

between a pixel value and its neighbors. If the neighbor pixel 

value surpasses the target pixel value, it is labeled as 1; 

otherwise, it is labeled as 0. The number of neighboring pixels 

considered in this comparison can range from 4, 8, 12, 16, to 

24. When comparing with the eight immediate neighboring 

pixels, this process yields an 8-bit binary code. This binary 

code can then be converted into a decimal value, which is 

subsequently assigned as the new pixel value for the central 

pixel, as shown in Figure 2. 
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Figure 2. Schematic of LBP with eight pixel surroundings 

 

LBP can be computed according to Eq. (13) as: 

 

LBPP(Xc, Yc) = ∑S(gp − gc)

P−1

p=0

2p (13) 

 

where, ɡc is the gray level of the centered pixel, ɡp is the gray 

value of neighboring pixels, P is the number of surrounding 

pixels, and S is a function defined as: 

 

S(x) = {
0, x < 0
1, x ≥ 0

 (14) 

 

The LBPp operator produces 2P different local binary 

patterns. Rotation-invariant LBP can be computed according 

to Eq. (15) as: 

 

LBPP
ri = min{ROR(LBPp, i)  | i = 0, 1, … . . , P − 1} (15) 

 

where, ROR(x,i) function applies a circular right shift on the 

P-bit number I times and thus; achieving 36 unique rotation 

invariant local binary patterns in case of LBPP. These 

Rotation-invariant LBP describe bright spots, dark spots, and 

edges [25]. 

In the study by Ojala et al. [23], an enhanced version of the 

Local Binary Pattern (LBP) is introduced, which incorporates 

a uniformity measure denoted as “U.” This measure is defined 

as the count of spatial transitions, representing bitwise changes 

from 0 to 1 or vice versa, within the local binary pattern. For 

instance, a pattern like “111111112” is assigned a U value of 

0, while a pattern like “000011112” is given a U value of 2. 

This uniformity measure serves to categorize local binary 

patterns into two distinct groups: “uniform” patterns, which 

are intrinsic properties of texture and exhibit a U value of no 

more than 2, and “nonuniform” patterns. The formula for the 

modified LBP is then expressed as follows: 

 

LBPP
riu2 = {

∑S(gp − gc)         if U(LBPP) ≤ 2

P−1

p=0

P + 1                                  otherwise

 (16) 
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This definition results in the creation of P+1 uniform 

patterns and 1 nonuniform pattern. The nonuniform pattern 

encompasses all patterns with a U value greater than 2. As a 

result, the total number of LBP patterns is reduced to P+2 

patterns. In case of P=8, nine uniform patterns and one Non-

uniform pattern, as shown in Figure 3, would be produced. 

 

(a)

U0 U1 U2 U3 U4

U5 U6 U7 U8

N

U
NU NU NU NU

(b)  
 

Figure 3. Examples of LBP8 patterns: (a) The nine Uniform 

patterns and (b) Non-uniform patterns 

 

The histogram of LBP patterns, collected across a surface 

image, serves as the feature descriptor for characterizing 

surface texture. In the study by Ojala et al. [23], the researchers 

came to the conclusion that the histogram of uniform patterns 

outperforms histograms based on other LBP pattern types in 

terms of discrimination capabilities. 

 

3.3 Support vector machine 

 

The Support Vector Machine (SVM) is essentially a 

statistical binary classifier that employs kernel functions. 

When employing a sigmoid kernel function, an SVM shows 

similarities to the response of a two-layer feedforward neural 

network. However, SVM demonstrates greater efficiency than 

neural networks when dealing with intricate problems 

involving extensive datasets and high dimensionality, and it is 

adept at mitigating overfitting concerns [26-28]. 

The core concept of SVM is to identify the optimal 

hyperplane that maximizes the margin between the hyperplane 

and the closest data points from both classes. SVM can be 

formulated as follows: 

If input space is: {x1, x2, x3, …, xn} 

and output space is: y ∈ {−1,1} 
The hyperplane that separates the two classes is expressed 

as [28-30]: 

 

w.⃗⃗⃗⃗ x⃗ + b = 0 (17) 

 

here, w (weight) denotes the orthogonal vector defining the 

orientation of the hyperplane, while b (bias) represents the 

distance from the origin to the hyperplane. 

Training instances must satisfy: 

 

w⃗⃗⃗ . x⃗ + b ≥ 1 for y = +1 (18) 

 

w⃗⃗⃗ . x⃗ + b ≤ −1 for y = −1 (19) 

 

The previous inequalities are merged to obtain: 

 

y(w⃗⃗⃗ . x⃗ + b) − 1 ≥ 0 (20) 

 

This can be formulated as: 

 

maximize 
2

‖w‖
 or minimize 

1

2
‖w‖2 (21) 

 

Such that: y(w⃗⃗⃗ . x⃗ + b) − 1 ≥ 0 

For solving Eq. (21), a Lagrange multiplier is deployed and 

it yields: 

 

min Lp ≡
1

2
‖w⃗⃗⃗ ‖2 −∑αiyi

l

i=1

(w⃗⃗⃗  . xi⃗⃗⃗  + b) +∑αi

l

i=1

  (22) 

 

Such that αi ≥ 0 where α is the Lagrange multiplier. 

The result is a decision function of Lagrange multipliers α 

and bias (b) for test instance xt: 

 

yt =∑(αiyi < xi⃗⃗⃗  . xt⃗⃗  ⃗ > +b)

l

i=1

 (23) 

 

 

4. DUST DETECTION APPROACH  

 

The dust detection approach, as shown in Figure 4, consists 

of three stages:  

·Image acquisition and preparation: in which clean and 

dust-accumulated solar panel images were collected. 

·Feature description: in which a feature descriptor for each 

distinct solar panel image is constructed by the fusion of both 

the histogram of LBP uniform patterns and GLCM textural 

features. 

· Classification model construction: in which linear 

support vector machine classifier is trained on the feature 

descriptors of solar panels’ images with clean and dust-

accumulated conditions. 

 

Classification Model 

Construction

SVM 

Training 

Stored 

Model

Solar Panels’ 

Images

LBP 

Histogram

GLCM 

Features

 
 

Figure 4. Diagram of the dust detection approach 

 

4.1 Data acquisition 

 

In this stage, solar panel images were acquired under visible 

light from 10:00 am to 4:00 pm using RGB camera with a 20 

MP resolution. These images simulate the real environmental 

conditions of automated dust detection systems as they were 

captured under both low and high lighting conditions in sunny 
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and cloudy days. The image acquisition was performed 

manually using digital cameras mounted on Selfie stick with a 

height range between 1.5-4 m which could be the real height 

of robotic arm in such systems. Dust-accumulated images 

were increased by applying sand and dust accumulation 

artificially. Different levels of dust accumulation were 

considered ranging from moderate to severe. Finally, all 

images were resized to a resolution of 650×875 pixels and 

cropped manually to achieve distinct image for each solar 

panel. Figure 5 shows sample images of clean and dust-

accumulated solar panels. 

 

(a)

(b)  
 

Figure 5. Sample images of solar panels with: (a) 

Accumulated dust and (b) Clean condition 

 
4.2 Feature description 

 

In this stage, feature descriptors of solar panel images are 

extracted for both clean and dust-accumulated panels. The 

inputs to this stage are single solar panel images which were 

obtained after manual preprocessing and cropping.  

This stage comprises two modules depicted in Figure 6: the 

Local Binary Pattern (LBP) module and the Gray-level Co-

occurrence Matrix (GLCM) module. Each module takes a gray 

scale image as input and generates a distinct feature descriptor 

for the image as output. The culmination of both feature 

descriptors extracted from these modules involves fusing and 

concatenating them to form a unified feature descriptor. This 

singular descriptor encapsulates the intricate shape and pattern 

attributes of the solar panel image. The fusion process merges 

the local features of LBP with the global features of GLCM, 

culminating in an optimized descriptor that encapsulates the 

essence of the solar panel image. 

 
4.2.1 LBP feature description module 

This module generates a feature vector (FV) by applying the 

LBP operator on the solar panel image. A rotation-invariant 

LBP with eight pixel surroundings has been deployed on each 

surface image (as demonstrated on sub-section 3.2) to generate 

a LBP image which describes bright spots, dark spots, and 

edges. Applying the uniformity measure (U), LBP patterns 

would be categorized to ‘Uniform’ patterns and ‘Non-uniform’ 

ones. This would produce nine uniform patterns and one Non-

uniform pattern. The final step in this stage is to compute the 

histogram of LBP uniform patterns. This histogram would 

have ten bins including the nine uniform patterns and one pin 

for all other Non-uniform patterns such as: 

 

FV of LBP= [U0, U1, U2, U3, U4, U5, U6, U7, U8, NU] (24) 

 

4.2.2 GLCM feature description module 

This module generates a feature vector (FV) by computing 

the GLCM for the solar panel image. The image is initially 

scaled to eight gray levels and then; the co-occurrence matrix 

Pij is computed with direction (θ=0o) and distance (d=1). Eight 

textural features are extracted (as demonstrated on sub-section 

3.1) from the GLCM matrix denoted as Pij. 

These features are: Energy (f1), Contrast (f2), Correlation 

(f3), Homogeneity (f4), Entropy (f5), Autocorrelation (f6), 

Dissimilarity (f7), and Cluster Shade (f8). Finally, a feature 

vector of GLCM is constructed from these features such as: 

 

FV of GLCM = [f1, f2, f3, f4, f5, f6, f7, f8] (25) 

 

Finally, in this stage, a feature descriptor of length 18 is 

constructed by combining the ten histogram pins of LBPs 

(nine uniform LBPs and one non-uniform LBP) and the eight 

textural features of GLCM. The format of the feature vector 

would be: 

 

FV= [U0, U1, U2, U3, U4, U5, U6, U7, U8, NU, f1, f2, 

f3, f4, f5, f6, f7, f8] 
(26) 

 

4.3 Inspection model construction 

 

This module constructs a classification model for each solar 

panel image based on the feature vector produced in the 

previous stage. Linear SVM is trained on clean and dust-

accumulated solar panel images. The SVM classifier is used in 

its original binary architecture since we have a classification 

problem of two classes. Tens of images were deployed for 

training and validating the model. These images were labeled 

previously by a human expert. 

The training data are labeled as: {𝑥
→

𝑖 , 𝑦𝑖}   𝑤ℎ𝑒𝑟𝑒  𝑖 =

1 , . . . . . . ,   𝑛  ;  𝑦𝑖 ∈ {1, −1}  ;  𝑥
→

𝑖 ∈ {ℜ
𝑑}, 𝑥

→

𝑖  is the feature 

vector, yi is the class which represents the status of solar panel 

in terms of dust accumulation and could be 1 (if clean) or -1 

(if dust-accumulated), i is the total number of training 

instances, and d is the length of the feature vector. 

The hyperplane that separates the two classes is expressed 

as: 

 

0. =+
→→

bxw  
(27) 

 

where, w (weight) denotes the orthogonal vector defining the 

orientation of the hyperplane, while b (bias) represents the 

distance from the origin to the hyperplane. 
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Figure 6. Feature description modules 

 

Several performance metrics were adopted to measure the 

classification performance. These metrics are Precision (P), 

Recall (R), Accuracy, and F1 Score which formulated 

mathematically as: 

 

𝑃 =
𝑇𝑝

𝑇𝑃 + 𝐹𝑃
 (28) 

 

𝑅 =
𝑇𝑝

𝑇𝑃 + 𝐹𝑛
 (29) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑛 + 𝐹𝑛
 (30) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 (31) 

 

where, Tp is the number of correctly predicted dust-

accumulated solar panels, Tn is the number of correctly 

predicted clean solar panels, Fp is the number of incorrectly 

predicted dust-accumulated solar panels, and Fn is the number 

of incorrectly predicted clean solar panels. 

 

 

5. EXPERIMENTAL RESULTS 

 

The proposed approach for inspecting solar panels’ 

conditions in terms of dust accumulation has undergone 

validation using images of both clean and dust-accumulated 

solar panels. These images were captured using a camera and 

adjusted to a 650 × 870 pixel scale through numerical 

fractioning to counteract object distortion. Implemented 

within MATLAB software running on a 2.4-GHz i3 CPU, this 

inspection approach utilized a dataset comprising 213 solar 

panel images for both training and testing phases. We have 

allocated 75% of the images for the training set and 25% for 

the testing set. Table 1 shows the exact division of dataset 

images among the classification phases and the solar panels’ 

conditions.  

Table 1. Solar panel images dataset division 

 

 

Clean 

Solar 

Panel 

Dust-

Accumulated 

Solar Panel 

Total 

Number of 

Images 

Number of 

Training 

Images 

80 80 160 

Number of 

Testing 

Images 

30 23 53 

Total 

Number of 

Images 

110 103 213 

 

Each solar panel image in the dataset has had its feature 

descriptor extracted, becoming its representative signature. 

This descriptor is a combination of the histogram of uniform 

LBP patterns and eight textural features computed from the 

GLCM.  

In Figure 7, examples of clean and dust-accumulated solar 

panel images are displayed alongside the features extracted 

from both the LBP Uniforms histogram and GLCM textural 

analysis. It is apparent that both LBP and GLCM feature 

descriptors are different for clean and dust-accumulated solar 

panels. 

The extracted features were fed to implement a binary 

classification model using linear support vector machine. This 

model aims to classify solar panels either to clean or dust-

accumulated condition. Four experiments were implemented 

in the classification stage. The first experiment was 

implemented based on all Uniform and Non-uniform patterns 

of LBP. The second experiment was implemented by 

concatenating the ten LBP patterns and the eight GLCM 

textural features. The third and fourth experiments were 

implemented by adopting Recursive Feature Elimination (RFE) 

with number of features equals 15 and 12, respectively [31]. 

RFE selects features by recursively evaluating progressively 

smaller sets of features. The least significant features are 

eliminated from the current set. 
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Figure 7. Examples of feature description results of solar panel images for both dust-accumulated and clean surfaces 

 

 
 

Figure 8. Confusion matrices of the four solar panel inspection experiments with: (a) All LBP features; (b) All LBP and GLCM 

features; (c) 15 RFE features; (d) 12 RFE features 

 

Table 2. Performane metrics of the dust detection approach cross the four experiments 

 
 Precision Recall  Accuracy F1 Score 

Experiment 1 78.6 % 95.7 % 86.8 % 0.86 

Experiment 2 88.0 % 95.7 % 92.5 % 0.92 

Experiment 3 91.7 % 95.7 % 94.3 % 0.94 

Experiment 4 80.8 % 91.3 % 86.8 % 0.86 
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Figure 8 shows the confusion matrices of the classification 

results on the 53 test images over the four experiments. Table 

2 shows Precision, Recall, accuracy and F1 score for each 

experiment. It is clear that experiment 3 has scored the highest 

precision and accuracy with 91.7 % and 94.3 %, respectively. 

Experiment 2 shows better precision, accuracy and F1 score 

over experiment 1. This improvement demonstrates the 

positive effect of GLCM features. In experiment 3, RFE has 

removed f2, f6 and f7 features and the model outperformed all 

other models with F1 score equals 0.94. This implies that these 

features have no effect in discrimination between clean and 

dust-accumulated solar panels. Additionally, RFE has been 

deployed to remove the six least effect features which were f2, 

f5, f6, f7, U2, and U6. It is apparent that f5, U2 and U6 features 

have a good influence on the classification since precision, 

recall, accuracy and F1 score values have declined in 

comparison with their values in experiment 3.  

The proposed approach has the ability in detecting dust-

accumulated solar panels accurately cross the four 

experiments. The number of Fn (the number of incorrectly 

predicted clean solar panels) was one in the first three 

experiments and two in the last experiment. The number of Fp 

(the number of incorrectly predicted dust-accumulated solar 

panels) was acceptable in both experiments 2 and 3. This 

means that the proposed approach is more accurate in 

detecting duct-accumulated panels than clean panels.  

 

 

6. CONCLUSIONS 

 

This paper has proposed a computer vision approach for 

inspecting solar panels’ conditions in terms of clean and dust 

accumulation surfaces. Single solar panel images with only 

moderate and heavy dust accumulation have been used. All 

images were acuired manually using digital camera with a 

height range between 1.5 - 4 m which could be the real height 

of robotic arm in inspection systems. Linear support vector 

machine has been deployed in the inspection stage to classify 

each solar panel to clean and dust-accumulated condition from 

visible light images. Four experiments were implemented 

based on different feature descriptors by considering local 

binary pattern (LBP) features and gray level co-occurrence 

matrix (GLCM) textural features. Experimental results 

successfully showed the efficiency of both feature descriptors 

and the overall dust detection approach of solar panels with an 

accuracy of 86.8%, 92.5%, 94.3% and 86.8% for the four 

models, respectively. The performance metrics have proven 

the validity of the proposed feature descriptors and feature 

selection algorithms. Overall, computer vision can play cruical 

role in dust detection of solar panels as an alternate to human-

based inspection which has many limitations especially in 

large-scale installations.  

This approach can be integrated with monitoring and 

cleaning system of solar panels with appropriate image 

acquisition from a robotic arm or UAV. In future, this 

approach could be expanded to include the detection of each 

single solar panel. It can be also enhanced by including solar 

panels with light dust accumulation as the current approach has 

been tested on a dataset of moderate and heavy dust 

accumulation solar panel images. The propsed computer 

vision approach can be validated on expanded dataset of solar 

panel images to include a wider range of dust types and 

densities and different environmental conditions. Deep 

learning approach can also be adopted to enhance the 

performance metrics of such inspection approach. 
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