
Processing Biomedical Signals by Neural Networks Using Hardware-Constrained System 

Maytham N. Meqdad* , Reyam Thair Ahmed , Mustafa AL-Handhal

Intelligent Medical Systems Department, College of Sciences, Al-Mustaqbal University, Babylon 51001, Iraq 

Corresponding Author Email: maytham.meqdad@uomus.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380238 ABSTRACT 

Received: 29 January 2024 

Revised: 1 March 2024 

Accepted: 1 April 2024 

Available online: 24 April 2024 

On-line detection of arrhythmia in 12-lead electrocardiogram signals by deep learning 

models is essential for clinical care. If an 8-byte floating point data type is used to define 

each sample in a 12-lead ECG signal, the volume of a Rosent-18 class is 800.4 MB (100.06 

M * 8 B). This model is challenging to apply to devices with minimal hardware. 

Consequently, these models are inadequate for practical purposes, and their utilization is 

restricted when it comes to low-capacity devices within emerging fields like the Internet of 

Medical Things. This article introduces a technique that aims to categorize irregularities in 

12-lead electrocardiogram signals on edge devices. The method utilizes a lightweight

learning approach for the classification of arrhythmias. The evident originality of this work

is the use of different evaluations to deploy the suggested model on a device with hardware

limitations. After employing the Tensor Flow Lite platform, a compact model has been

derived from it. This model has been deployed on an Android device as an edge device,

carrying forward from the previous context. According to the assessment, the suggested

classification model, designed to categorize 11 different irregularities within the

electrocardiogram (ECG) dataset comprising 10,646 patients, achieves an accuracy level

comparable to 83.45%. Ultimately, the performed comparisons reveal that the proposed

model exhibits competitive performance when compared to alternative approaches that rely

on standard deep learning models.
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1. INTRODUCTION

An electrode is applied to the skin during an 

electrocardiogram (ECG) to assess the electrical activity 

produced by the heart over time. Each person's ECG signal is 

unique, hence there are various uses for this signal. Among 

these uses are barometer detection, arrhythmia detection 

systems, and monitoring an individual's vital signs. Deep 

learning has emerged as a top method for classifying 

irregularities in ECG signals in recent years [1, 2]. Deep 

learning techniques may automatically produce high-level 

features that are similar to human knowledge by adding 

additional data and layers. This eliminates the requirement for 

expert knowledge or manual feature engineering. The quantity 

and diversity of input leads directly affect the deep learning 

classifier's ability to identify abnormalities in the ECG data [3, 

4]. Reducing mortality and expanding treatment options are 

two benefits of quick and accurate identification of many kinds 

of illnesses. Deep learning classifiers have been used in an 

effort to develop practical solutions for the early identification 

of heart failure from the ECG signal since the advent of 

computer-aided diagnosis tools [5, 6]. The issue of manually 

extracting features has been resolved by deep learning 

classifiers, which carry out this task automatically in deep 

layers [7]. 

Deep learning classifiers, particularly Convolutional neural 

network (CNN), have demonstrated significant potential in the 

years to come in resolving computer vision issues [8-10]. By 

storing these features in the feature map, CNN's layered 

architecture enables the computer to recognize characteristics 

in the ECG signal, such as form, color, and arrhythmia [11]. 

The fully linked layer receives the features used to identify 

arrhythmia in the ECG signal and reports the type of potential 

arrhythmia [12]. 

Most deep learning models typically possess intricate 

structures and a substantial number of parameters, demanding 

substantial computational resources within the system [13, 14]. 

Nonetheless, due to the restricted resources available, edge 

devices are incapable of offering a platform to execute these 

models. The article introduces a technique called lightweight 

learning, suggesting a method capable of automatically 

categorizing 11 different types of irregular heart rhythms in 

electrocardiogram signals [15]. This classification is achieved 

by utilizing edge devices. The existence of this system results 

in faster detection and the ability to provide early alerts when 

an incident occurs. The suggested approach involves creating 

a model utilizing one-dimensional convolutional neural 

networks. Subsequently, through the utilization of the 

TensorFlow Lite framework, the model is converted into a 

more lightweight version suitable for running on a smartphone. 

The suggested approach involves creating a model utilizing 

one-dimensional convolutional neural networks. Subsequently, 

through the utilization of the TensorFlow Lite framework, the 

model is converted into a more lightweight version suitable for 

running on a smartphone. 
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The second section of this article will delve into an 

examination of the theories and historical context surrounding 

the previous research efforts related to the topic. The third 

section delves into the approach taken to carry out the task. 

Initially, there is an examination of the specifics regarding the 

dataset utilized and the essential preprocessing procedures. 

Subsequently, attention is directed towards the creative 

process of this system and its implementation on a mobile 

phone. The fourth section provides a detailed account of the 

outcomes and assessment of this work. Finally, the fifth 

section of this article evaluates the possibilities and potential 

applications that can be derived from it in future endeavours. 

 

 

2. RELATED WORK 

 

Every article that was reviewed was utilized in the CNC 

Challenge starting in 2021. With the Chapman ECG dataset, 

this has proven to be a true problem. All 10464 patients whose 

data was obtained for this dataset were actual. A model 

incorporating 31 one-dimensional convolutional layers has 

been introduced by Li et al [3], utilizing deep learning 

techniques and built upon the Residual Neural Network 

(ResNet) architecture. The foundation of this model relies on 

the Massachusetts Institute of Technology-Beth Israel (MIT-

BIH) dataset, comprising data from two leads of 

electrocardiogram signals. Its purpose is to identify and 

diagnose different forms of cardiac arrhythmias. According to 

the study [4], this suggested approach has achieved an average 

accuracy of 99.06% in a single lead and 99.38% in two leads. 

Presently, the field of automated detection of cardiac 

arrhythmias faces a challenge due to limited available samples 

for specific irregularities, creating a hurdle for the systems 

involved. Mehari and strodthoff [5] have enhanced the 

efficiency of the model by employing supervised learning in 

the same dataset size, as opposed to traditional learning 

methods. Using this technique, a model has been developed 

that relies on a 12-lead electrocardiogram signal obtained from 

the ChapmanECG, Ribeiro, and CinC2020 datasets. The 

model employs a self-encoding method with 8 convolutional 

layers and achieves an accuracy of 90%. 

One more challenge in diagnostic systems is how they will 

perform when faced with unseen data. In this context, Meqdad 

et al. [4] have carried out a study employing a structural 

algorithm that incorporates a combined loss function within 

convolutional neural networks. This capability allows models 

to work together and share their information when faced with 

limited data. The method of evolutionary algorithm 

programming is a complex technique that represents them as 

evolutionary trees of genetic programming algorithms, aiming 

to address this problem in an encoded manner. The 

ChapmanECG dataset was used to train this model, which can 

identify 7 different cardiac arrhythmias with a precision of 

98%. 

Due to the functional correlations among the 12-lead 

electrocardiogram signals, it is possible to combine the data to 

detect cardiac arrhythmias. Meqdad et al. [6] utilized the time-

frequency transformation method in a separate study to 

combine functional data obtained from electrodes and extract 

electrocardiogram frequency data in 12 leads. In the second 

phase, the process of genetic programming is utilized to 

encode deep learning. Eventually, these two stages are merged 

in order to enable the identification of abnormalities in the 

heart. The training of this model was conducted utilizing the 

ChapmanECG dataset, achieving an accuracy rate of 60/97%. 

 

 

3. MATERIALS AND METHODS 

 

This section will provide a detailed explanation of how the 

proposed system will be implemented. Figure 1 displays the 

stages that have been accomplished. Initially, we will delve 

into the dataset utilized and the necessary preprocessing 

procedures that need to be addressed. This passage examines 

the convolution model and its characteristics, followed by 

enhancing the trained model to a version that is lightweight 

and can be executed on edge devices. Ultimately, the 

implementation of the model on an Android smartphone will 

take place [16]. It should be mentioned that weights in the 

deployed model are taken from the primary ECG data in order 

to maintain security and privacy in the suggested method. As 

a result, actual evaluations do not employ the main data itself. 

Instead, weights from their extracted features will be used to 

determine the deployed model's weights. Thus, privacy and 

security are taken into consideration here. 

 

 
 

Figure 1. Flowchart of the proposed method 

 

3.1 Dataset 

 

The diagnostic model in this article has been trained using 

the ChapmanECG dataset. The dataset encompasses cardiac 

data obtained from patients at Shaoxing Hospital through the 

utilization of 12 leads in electrocardiography. Renowned 

experts have labeled all 11 heart rhythm types included in this 

dataset. This dataset contains data for a total of 10,646 

individuals, comprising 5,956 samples from males and 4,690 

samples from females. Out of the samples, 17% exhibit a 

regular sinus rhythm, while the remaining 83% have some 

form of cardiac irregularity. Patients within the age bracket 

range between 51 and 80 years old. The recording of 

electrocardiogram data has occurred at intervals of 10 seconds. 

The information is saved in CSV files, where there is a distinct 

identifier assigned to each patient, and the data is organized 

into 5000 rows and 12 columns [17]. 

 

3.2 Preprocessing 

 

In certain cases, within the dataset, specific sample labels 

do not contain any stored data and are regarded as empty. 

There are multiple approaches available for addressing this 

issue, which encompass filling the gaps with zeros, utilizing 
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the average of the remaining data within that particular 

segment, or completely eliminating that specific sample. 

Samples that have missing values for certain leads have been 

eliminated in this task [18-21]. Next, the data undergoes 

normalization using the Min-Max normalization technique. 

This approach involves standardizing the data to fit within the 

uniform range of [0, 1]. 

 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋 −  𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (1) 

 

3.3 Model training 

 

During this phase, we will train a convolutional model that 

is appropriate for the edge device with a reduced number of 

parameters when compared to alternative architectures. As 

mentioned earlier, convolutional models tend to have large 

sizes and complex structures, making them unsuitable for 

execution on processors of edge devices. Consequently, it 

becomes crucial to opt for a more compact, straightforward, 

and efficient architecture with fewer parameters. This 

architecture should still be able to deliver fast performance 

despite its simplicity. The method proposed in this article 

makes use of the MobileNet architecture, renowned as one of 

the most well-known and lightweight models designed for 

running on-edge devices [22-24]. Many studies have been 

conducted recently to produce lightweight deep learning 

classifiers, and methods like compressed convolution filters, 

low-rank decomposition, pruning and sharing of parameters, 

and classifier acceleration have all been proposed. In addition, 

other classifications like have also been applied. The 

aforementioned techniques are effective at reducing the size of 

the classification; nonetheless, their main goal is to optimize 

the internal parameters. However, the CNN model's structure 

and architecture have been modified in the MobileNet model 

to incorporate new filters, leading to the creation of a more 

ideal architecture. Mobile architecture relies on incorporating 

13 convolutional layers, specifically utilizing a separable 

depth-wise convolutional layer. This choice results in a 

decrease in parameter count and contributes to the lightweight 

nature of this architectural design.

 

 
 

Figure 2. A representation of the layer arrangement in the architecture used in the proposed method 

 

 
 

Figure 3. The pseudocode for transform the trained model into a compact and runnable model 

 

The purpose of incorporating the separable depth-wise 

convolution layer in convolutional models is to decrease the 

computational burden. This layer comprises two elements, 

namely depth-wise convolution and pointwise convolution, 

which serve as substitutes for conventional convolution. 

Depth-wise convolution performs a similar function to the 

filtering stage in standard convolution but with a distinction in 

that, this layer employs only a single m×m kernel, while 

741



 

standard convolution allows for the utilization of multiple 

kernels. Convolution involving a dot can be seen as analogous 

to the merging phase within regular convolution. During the 

integration phase of regular convolution, the layers are merged 

together. Conversely, in pointwise convolution, a 1×1 

convolution is employed on the depth-wise outputs of the 

convolution, leading to the merging process. This approach 

results in a notable reduction in computational workload when 

compared to the standard mode. Overall, the architecture 

consists of standard convolutions, which make up 61.74% of 

the parameters, while 6.1% are separable depth-wise 

convolutions, and the remaining 33.24% are comprised of 

fully connected layers. Figure 2 displays the depicted 

arrangement of layers within the MobileNet architecture. This 

approach employs mutual cross-validation in combination 

with k-fold. This approach aims to generate a model that is 

both appropriate and more effective. During the ongoing 

model training process, a combination of 16 categories and the 

Adam optimizer will be employed, utilizing a five-fold 

approach [25]. 

 
3.4 Model conversion 

 
Typically, running machine learning models necessitates 

substantial computational power and ample memory on the 

device. However, this specific demand presents difficulties 

when it comes to implementing these models on edge devices 

like mobile phones. To address this issue, TensorFlow has 

made available a tool known as TensorFlow Lite to its users. 

TensorFlow Lite enables the utilization of machine learning 

models on edge devices, such as smartphones. The primary 

objective of this tool is to perform model execution with 

minimal delay and an appropriate execution timeframe. 

TensorFlow Lite offers several characteristics, such as robust 

security, the ability to work offline, compact dimensions, 

adaptability, and energy efficiency. You can utilize this format 

in languages such as Java, Python, C++, C, and Swift [26]. To 

achieve this, the initial step involves providing the pre-trained 

model as input to the TensorFlow Lite converter. Subsequently, 

the model will undergo a conversion process resulting in the 

creation of a file with TensorFlow Lite extension. The code 

fragment that corresponds to Figure 3 can be seen. 

 

3.5 Executing the model on a mobile device 

 

The aim of this method is to implement an intelligent 

detection system on an Android smartphone. Android is 

widely recognized as a popular mobile operating system, 

boasting the largest user base among individuals. The 

objective of this article is to deploy the suggested system on 

Android smartphones as a device operating at the edge. The 

Android programming environment, known as Android Studio, 

has the ability to handle TensorFlow Lite files. Hence, it is 

essential to include the required dependencies in the Android 

project initially. Once the file is added to the project, executing 

the trained model becomes straightforward by utilizing the 

TensorFlow Lite interpreter in Android.  

The system has the ability to receive a CSV file containing 

electrocardiogram data from the user. Subsequently, the file 

will undergo conversion to a byte buffer format and then be 

used as input for the TensorFlow Lite interpreter. Once the 

model predicts the type of cardiac arrhythmia, the system 

presents the diagnostic results to the user. 
 

4. RESULTS AND DISCUSSION 
 

This section presents the findings of evaluating the 

proposed method through multiple experiments. The 

simulation was conducted using a system equipped with an 

11th Gen Intel Core i7 11800H processor, 32GB RAM, and 

NVIDIA GeForce RTX 3060 Laptop graphics processing unit 

(GPU). The article explores various architectures within 

convolutional neural networks, each with its unique features 

and efficiencies, to train the model. Table 1 displays the details 

of three trained models using the ChapmanECG dataset. The 

results obtained from these training sessions suggest that, for 

cardiac arrhythmia detection, the one-dimensional 

convolutional network outperforms the two-dimensional 

convolution approach. Table 2, which contrasts the number of 

parameters and computational complexity of the MobileNet 

model with other models. This table makes it evident that the 

use of MobileNet in this piece is justified by the model's low 

weight. 

 

Table 1. Evaluation results of deep learning models for 

classification of samples in the ChapmanECG dataset 

 
Model 

Name 
Results 

One-Dimensional 

Convolution 

Two-Dimensional 

Convolution 

Mobile 

Net 

Accuracy 82.21% 83.45% 

Loss function 

value 
324 51.22 

Time 93 min 14 min 

ResNet 

Accuracy 96.25% 92.25% 

Loss function 

value 
12.67 18.09 

Time 123 min 24 min 

LeNet 

Accuracy 95.94% 91.24% 

Loss function  

value 
12.98 14.57 

Time 3 min 4 min 

 

Table 2. Comparing the models in terms of size and 

computational complexity 

 

Models 
No. of 

Parameters 
Computation 

(GFLOPs) 
GPU 

Memory 
MobileNet ⁓64.12 M ⁓ 7.81 2.36 G 

ResNet ⁓192. 84 M ⁓ 55.92 30.61 G 
LeNet ⁓102. 84 M ⁓ 36.90 21.64 G 

 

As previously mentioned, the number of parameters and the 

complexity of a convolutional neural network architecture 

play a crucial role in its performance on edge devices. In this 

study, a convolutional neural network model was trained using 

the ChapmanECG dataset, which contains electrocardiogram 

data for 10,646 individuals. To tackle the challenge of running 

neural network models on edge devices, it is beneficial to 

utilize architectures with reduced complexity and a smaller 

number of parameters. The model has undergone training 

using the k-fold cross-validation technique, with a value of 5 

assigned to the parameter ‘k’. The loss function graph is 

depicted in Figure 4, illustrating the training and testing results 

of the first to fifth folds.  
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(a) initial fold 

 
(b) second fold 

 
(c) third fold 

 
(d) fourth fold 

 
(e) fifth fold 

 

Figure 4. The loss function’s values during both the training 

and testing phases in the different fold 

 

The analysis of the loss function charts during both the 

training and testing reveals that the imbalance in sample 

distribution across different classes within the dataset has led 

to a substantial increase in the loss value during evaluation. 

However, during the training phase in each of the five folds, 

the loss value gradually decreased at a moderate rate. 

Conversely, during testing, there has been a consistent upward 

trend in the loss value. Specifically, in the second fold, the loss 

function experienced a notable increase with a steep slope. 

This ascending pattern persisted until the fourth fold, but in the 

fifth fold, there was a considerable decrease in the loss value 

during both the training and evaluation stages. The model 

training utilized Keras, which is a library built on TensorFlow. 

When trained and tested using a GPU and the one-dimensional 

MobileNet architecture, it took approximately 90 minutes to 

complete the process. The model achieved an accuracy of 

83.45%, based on 10,646 samples and 11 labels. Figure 5 

provides a comprehensive overview of the suggested Android 

system. Figure 5 shows how to enter the ECG file and the 

result of detecting the type of arrhythmia. The MobileNet 

model in this article is assessed using the folding method, as 

the article's text states. As a result, the model's performance 

against the hidden data has not decreased. By doing this, the 

model's generalization will be preserved.  

 

 
(a) Enter ECG File             (b) Arrythmia Type 

 
 

AF 

 

Figure 5. An illustration of the stages of real-world 

evaluation of the proposed system on an Android smartphone 

 

 

5. CONCLUSIONS 

 

The proposed approach involved creating a system 

specifically designed to classify 11 different types of irregular 

heart rhythms using electrocardiogram (ECG) signals from the 

ChapmanECG dataset. This dataset contained a total of 10,646 

samples and was tailored for use on edge devices. The system 

utilized one-dimensional convolution and adopted the 

MobileNet architecture, which was trained and tested with an 

accuracy level of 83.45%. The findings clearly indicated that 

one-dimensional convolution outperforms two-dimensional 

convolution when it comes to analyzing electrocardiogram 
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signals. Following this, a lightweight model was derived using 

the TensorFlow Lite framework, and ultimately, the model 

was implemented on an Android device. This article 

demonstrated how, because of the way its internal filters are 

designed, the MobileNet model is used to analyze one-

dimensional data like ECG. Furthermore, compared to 

previous deep learning models, this one has been demonstrated 

to have fewer parameters and lower computing complexity. 

The topic of diversity was the one that this paper did not 

completely explore. Because deep or other models are 

probabilistic, variety is a critical concern. Different behaviors 

are displayed by the model due to diversity. Consequently, the 

writers intend to look into this matter in their upcoming work. 
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