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In modern industrial production, high-temperature environments are commonplace, posing 

significant challenges to equipment stability, safety, and production efficiency. Machine 

vision, as an effective automated inspection technology, has attracted extensive attention 

in high-temperature settings. However, the unique conditions of high temperatures, such 

as significant thermal noise and optical interference, demand enhanced performance from 

machine vision systems. The second law of thermodynamics provides a theoretical 

foundation for understanding these challenges, emphasizing the increase of entropy in 

energy transformation and transfer processes, and guides the design and optimization of 

machine vision systems in high-temperature environments. This paper aims to 

comprehensively explore the application of machine vision based on the second law of 

thermodynamics in high-temperature industrial inspection, focusing on two core issues: 

the impact of thermodynamic parameters on the performance of machine vision systems 

and the technology for analyzing high-temperature industrial infrared images using multi-

scale entropy. By thoroughly analyzing how thermodynamic parameters influence the 

design and implementation of machine vision systems, and by developing infrared image 

processing algorithms adapted to high temperatures, this study seeks to enhance the 

efficiency and accuracy of machine vision technology in high-temperature industrial 

applications, providing theoretical support and technical guidance for the advancement of 

intelligent manufacturing. 
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1. INTRODUCTION

In modern industrial production processes, high-

temperature environments are prevalent, and they impose high 

demands on the stability, safety, and production efficiency of 

equipment and materials [1, 2]. Machine vision, as an efficient 

automated inspection technology, is increasingly being 

emphasized in high-temperature industrial inspections [3-5]. 

However, the uniqueness of high-temperature environments, 

such as significant thermal noise and optical interference, 

poses challenges to the design and implementation of machine 

vision systems [6]. The second law of thermodynamics, which 

describes the increase in entropy during energy transformation 

and transfer, provides a theoretical foundation for 

understanding and addressing these issues. 

The significance of studying machine vision in high-

temperature industrial inspections lies not only in improving 

production efficiency and ensuring equipment safety but also 

in driving the transformation from traditional industries to 

intelligent manufacturing [7, 8]. By thoroughly researching the 

impact of thermodynamic parameters on the performance of 

machine vision systems, and by developing image processing 

algorithms adapted to high temperatures, machine vision 

technology can significantly improve its application 

effectiveness in high-temperature environments, thus playing 

an important role in enhancing product quality, reducing 

energy consumption, and lowering labor costs [9-11]. 

Although machine vision technology has been widely 

applied in many fields, research on its application in high-

temperature environments is relatively scarce, and existing 

studies mostly focus on specific application scenarios or single 

technological improvements [12-15]. These studies often 

neglect the comprehensive impact of high-temperature 

environments on the overall performance of machine vision 

systems, particularly in terms of systematic research on 

thermodynamic parameters [16-19]. Furthermore, image 

processing algorithms for high temperatures, especially those 

for thermal image analysis, still face issues of low accuracy 

and poor robustness. 

This paper aims to comprehensively analyze and research 

the application of machine vision based on the second law of 

thermodynamics in high-temperature industrial inspections. 

The main research content includes two parts: the first part is 

the thermodynamic parameters affecting the application of 

machine vision in high-temperature industrial inspections, 

aiming to reveal how these parameters affect the performance 

of machine vision systems, providing theoretical guidance and 

technical support for system design; the second part of this 
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research is a high-temperature industrial infrared image 

analysis based on multi-scale entropy, by studying the 

principles and implementation processes of multi-scale 

entropy algorithms aimed at high-temperature industrial 

infrared image analysis, and by analyzing core parameters, this 

paper aims to improve the accuracy and robustness of infrared 

image processing. The value of this research lies in not only 

expanding the application domain of machine vision in high-

temperature industrial inspections but also providing new 

theories and methods for image processing technology in high-

temperature environments, with the potential to significantly 

enhance the safety and efficiency of industrial production. 

 

 

2. THERMODYNAMIC PARAMETERS AFFECTING 

MACHINE VISION IN HIGH-TEMPERATURE 

INDUSTRIAL INSPECTION 

 

In exploring the current application of machine vision in 

high-temperature industrial inspection and the challenges it 

faces, the impact of thermodynamic parameters is particularly 

important. These parameters not only determine the design and 

operating efficiency of the machine vision system but also 

directly relate to the system's stability, reliability, and the 

accuracy of its final output. Below is a detailed analysis of how 

these parameters specifically affect the application of machine 

vision in high-temperature industrial inspection: 

(1) An increase in temperature directly raises the noise level 

of imaging sensors, leading to reduced image quality. This is 

because sensors operating at high temperatures experience 

increased internal noise, especially thermal noise, which is a 

serious issue for industrial applications requiring high-

precision detection. Additionally, high temperatures may 

exacerbate the increase in system entropy, further affecting the 

efficiency of data transmission and processing, and thus 

decreasing the accuracy of image analysis. 

(2) Thermal radiation in high-temperature environments can 

cause imaging sensors to capture overexposed or distorted 

images. This occurs because materials or objects at high 

temperatures emit radiation, and if the machine vision system 

is not properly designed to resist this radiation, these 

additional light sources can interfere with image acquisition, 

leading to misjudgments or detection failures. 

(3) Thermal conductivity is crucial for the heat dissipation 

design of machine vision systems. High-temperature 

environments require systems to have efficient thermal 

management capabilities to ensure that electronic components 

do not degrade in performance or get damaged due to 

overheating. Materials with high thermal conductivity can 

transfer heat away more quickly, helping to maintain the 

system's operating temperature within a safe range. 

(4) Specific heat capacity affects the system's response to 

temperature changes. Materials and components with high 

specific heat capacities can absorb more heat without 

significantly increasing in temperature, which is beneficial for 

maintaining system stability in long-duration high-

temperature working environments. 

(5) The coefficient of thermal expansion is an important 

factor in high-temperature environments. Material expansion 

may cause mechanical structures to deform, such as affecting 

the alignment between the lens and the sensor, thereby 

reducing image quality. This requires consideration of the 

material's expansion coefficient in design, ensuring that the 

machine vision system remains highly precise even with 

temperature changes. 

(6) Environmental entropy change reflects the disorder in 

the energy transformation and transfer processes when the 

system operates in high-temperature environments. High 

environmental entropy change means that the system needs to 

consume more energy to maintain operational stability and 

efficiency, which may lead to lower energy utilization and 

increased operating costs. 

Each of these parameters affects the change in system 

entropy in different ways, thereby impacting the performance 

and efficiency of the machine vision system. Firstly, an 

increase in temperature directly increases the internal disorder, 

or entropy, which not only affects the performance of imaging 

sensors and electronic components, causing a decrease in data 

processing and transmission efficiency, but may also 

exacerbate image noise and quality degradation. Secondly, 

thermal radiation increases the entropy in the environment, 

interfering with the image acquisition process, leading to 

overexposed or distorted images. Thermal conductivity and 

specific heat capacity concern how the system manages and 

disperses the heat it absorbs, affecting the system’s 

temperature stability and entropy change, and thereby 

impacting the long-term operational stability and reliability of 

the machine vision system. The coefficient of thermal 

expansion affects the physical stability of materials, indirectly 

affecting the increase in system entropy, as minor structural 

changes may lead to significant drops in system efficiency. 

Lastly, environmental entropy change directly reflects the 

disorder in the energy exchange between the system and its 

environment; a high environmental entropy change requires 

the system to consume more energy to maintain efficiency and 

stability. In summary, these thermodynamic parameters, by 

influencing the entropy change in the system and environment, 

collectively determine the effectiveness and efficiency of 

machine vision systems in high-temperature industrial 

inspections, emphasizing the need to comprehensively 

consider the impact of these parameters on entropy change in 

the design and optimization of machine vision systems to 

achieve efficient, stable system performance. 

 

 

3. MULTI-SCALE ENTROPY ANALYSIS OF HIGH-

TEMPERATURE INDUSTRIAL INFRARED IMAGES 

 

3.1 Implementation process of multi-scale entropy method 

 

In high-temperature environments, traditional machine 

vision systems face challenges such as increased thermal noise 

and reduced image quality, issues fundamentally related to an 

increase in system entropy. This paper focuses on the current 

state of machine vision in high-temperature industrial 

inspection and delves into entropy-related studies on high-

temperature industrial infrared image analysis, particularly 

those based on the second law of thermodynamics. Using 

thermodynamic entropy analysis methods, especially in 

infrared image processing, this research can not only more 

accurately identify and analyze image data under high-

temperature conditions but also optimize the design and 

operation of machine vision systems to adapt to extreme 

temperature conditions. 

In the context of high-temperature industrial inspection, 

infrared image data generated by environmental factors (such 

as thermal radiation, temperature fluctuations) and changes in 

the state of target objects are not only complex and variable 
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but also contain rich information. Because infrared image data 

in high-temperature industrial environments are highly 

complex and variable, traditional entropy methods at a single 

scale are inadequate for accurate capture and analysis. 

Therefore, this paper adopts a multi-scale entropy approach for 

analyzing high-temperature industrial infrared images rather 

than traditional entropy or information entropy. The multi-

scale entropy algorithm, based on its unique theoretical 

foundation, can analyze data complexity over different time 

scales, providing a more in-depth and comprehensive 

analytical means. This method can effectively identify and 

analyze the subtle differences between periodic and random 

signals, more accurately reflecting the regularity and 

complexity of infrared images at different scales. 

The multi-scale entropy algorithm for high-temperature 

industrial infrared image analysis inherits the traditional multi-

scale entropy framework used to quantify the complexity of 

time series but requires adaptive adjustments for the special 

needs of infrared images in high-temperature environments. In 

the context of high-temperature industrial inspection, infrared 

images reflect not only the thermal radiation characteristics of 

the target objects but are also influenced by temperature 

fluctuations, thermal interference, and other factors, making 

the image data highly complex and variable. To effectively 

quantify this complexity, the multi-scale entropy algorithm for 

high-temperature industrial infrared image analysis 

particularly emphasizes the adjustment and optimization of 

three key parameters: the embedding dimension, which 

defines the length of the infrared image data window 

considered in the analysis to capture local patterns of 

temperature changes; the scale factor, adjusted to match the 

multi-time scale characteristics of temperature distribution in 

infrared images, effectively reflecting thermal state changes 

from micro to macro levels; and the similarity coefficient, 

finely tuned to adapt to the special noise and interference in 

infrared images under high-temperature conditions, ensuring 

the algorithm can accurately identify changes in complexity in 

the images. Through specific adjustments of these parameters, 

the multi-scale entropy algorithm not only quantifies the 

irregularity of high-temperature industrial infrared images but 

also meets the special requirements for infrared image analysis 

in high-temperature industrial environments. Figure 1 

provides a flowchart of the multi-scale entropy algorithm for 

high-temperature industrial infrared image analysis.  

In high-temperature industrial applications, the image 

sequences captured by infrared cameras contain not only the 

thermal radiation information of the target objects but also the 

dynamic characteristics of the object surface temperatures 

over time. By converting these infrared images into a 

temperature time series a(1), a(2)..., a(M), where M is the total 

length of the series, we simplify complex image information 

into a numerical representation of temperature changes. This 

quantification of thermal information from infrared images 

allows the analysis originally intended for images to be 

transformed into an analysis for time series, thus applying 

various methods of time series analysis to explore the 

regularities and complexities of temperature changes. The new 

series obtained after the coarse-graining transformation of a(1), 

a(2)..., a(M) is given by: 

 

( ) ( )
( )1 1

1 k

k

u k

b a u




 = − +

=   (1) 

 

The coarse-graining process, or coarse-graining 

transformation, involves resampling the original temperature 

time series using a scale factor π, creating a new time series. 

Figure 2 provides a schematic of the coarse-graining process. 

Specifically, this process involves sampling every π points in 

the original series to construct a new series. The core purpose 

of this step is to observe the dynamic changes of the series at 

different time scales, thereby the new series length V is 

expressed as V=M/π. This process is crucial for revealing the 

behavioral patterns of temperature time series at different 

observation scales, especially in high-temperature industrial 

monitoring, as it helps us identify the characteristics of 

temperature changes at different time scales, providing an 

effective means to capture and understand complex 

temperature dynamics. The new series processed by coarse-

graining is then used to form l-dimensional vectors from 

consecutive l values of the series. The formation of an l-

dimensional vector is given by:  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 , , 1 , 1~ 1B u b u B u B u l u V l
    = + + − = − +

 
 (2) 

 

 
 

Figure 1. Multi-scale entropy algorithm flowchart for high-

temperature industrial infrared image analysis 
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Then, by calculating the difference between any two l-

dimensional vectors in the series, i.e., calculating the 

maximum absolute value of their differences, we can quantify 

the complexity of the series at a specific scale. This step is the 

core of the multi-scale entropy calculation process as it 

involves quantifying the internal structure of the series. In 

high-temperature industrial infrared image analysis, this 

method helps us understand the differences between 

temperature change patterns, thereby revealing the 

heterogeneity in thermal behavior of different components or 

areas. The definition of the maximum absolute value is given 

by:  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

0 ~ 1, , 1~ 1,

f B u B k MAX y u j y u j

j l u k V l u k

     = + − −
 

= − = − + 

 
(3) 

 

By setting an effective similarity coefficient e, we define a 

standard for the similarity between vectors, and for each u<V-

l+1, we count the number of vector pairs that meet the 

similarity condition, i.e., those pairs whose maximum absolute 

value of vector difference is less than e. Next, we calculate the 

proportion of vector pairs that meet the similarity condition 

among all pairs, obtaining the average similarity of the series 

at the given scale and embedding dimension. This step, based 

on the setting of the similarity coefficient e, allows us to 

quantify the regularity and randomness of the temperature 

time series at a specific scale. This method is particularly 

useful in analyzing infrared images in high-temperature 

environments, as it can reveal the intrinsic regularities of 

temperature changes, providing a reliable analytical tool for 

subsequent fault diagnosis and process control. The ratio of the 

maximum absolute value of vector differences to the total 

number of distances can be calculated through the following 

formula: 

 

( ) ( ) ( ) ( ) ( ) ,  
1

,

, 1 ~

 

1,

l

uZ

k

The enum

l

ber oe f B u B k
V l

u k

f

V u

    = 
  −

= − + 

 
(4) 

 

After calculating the similarity, the next step is to use the 

data obtained to calculate the average autocorrelation of the 

series at a specific scale. This calculation reflects the degree of 

similarity between the time series and its time-delayed replicas 

at a given scale. For high-temperature industrial infrared 

image analysis, this means quantifying the regularity of 

temperature changes at specific time scales, allowing for a 

deeper understanding of the system's thermal stability and 

potential anomalous thermal behaviors. The formula for 

calculating the average autocorrelation of vectors at scale π is 

given by:  

 

( ) ( ) ( )
1

1, ,

1

1
V l

l l

u u

u

Z e V l Z e 
− +

−

=

= − +   
(5) 

 

Further, the embedding dimension l is increased to l+1, and 

the previous calculation process is repeated. In the analysis of 

high-temperature industrial infrared images, repeating the 

calculation by increasing the dimension reveals the complex 

dynamic behaviors of temperature changes at higher 

dimensions. This step allows analysts to understand the 

complexity of temperature sequences from a higher dimension, 

providing a more refined analytical tool for identifying and 

predicting abnormal states in high-temperature environments. 

The sample entropy expression for a time series at scale π is 

given by:  

 

( ) ( ) ( ), 1 ,

0
, l l

V
SARv l e LIM LN Z u Z u +

→
 = −    (6) 

 

In practical applications, since the length of the series is 

finite, an estimate of the sample entropy for a series of length 

V can be obtained under a given scale factor. This estimate 

provides a quantifiable measure to assess the complexity of the 

series at a given time scale. For high-temperature industrial 

infrared image analysis, the estimated value of sample entropy 

can reflect the unpredictability and randomness of temperature 

changes, providing an effective quantitative means to evaluate 

thermal phenomena in infrared images. The expression for the 

estimated value of sample entropy is given by:  

 

( ) ( ) ( ), 1 ,, , l lSARv l e LN Z r Z e  + = −    (7) 

 

Through the detailed steps above, we ultimately complete 

the calculation process of the multi-scale entropy algorithm, 

specifically computed as follows:  

 

( )  ( ) ( ), 1 ,, , l lMSE SARv l e LN Z e Z e   + = = −  
 (8) 

 

This process, by repeatedly calculating sample entropy at 

different scales and dimensions, provides a powerful tool for a 

deep understanding of the complexity of high-temperature 

industrial infrared image time series. The advantage of this 

method is that it not only quantifies the complexity of 

temperature time series at a single scale but also reveals 

changes in complexity at different time scales, providing a 

new perspective for infrared image analysis in high-

temperature environments. 

 

 
 

Figure 2. Schematic of the coarse-graining process 
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Figure 3. Schematic of the high-temperature industrial infrared image detection system 

 

Figure 3 provides a schematic of the high-temperature 

industrial infrared image detection system used in this paper. 

In further analyzing infrared images in high-temperature 

industrial environments, it is first necessary to eliminate 

images with unreasonable features caused by external factors, 

such as overexposure or obvious noise interference, to reduce 

interference with subsequent analyses. For the selected 

reasonable images, the median filter algorithm is applied to 

reduce image noise, further enhancing image quality. 

Subsequently, the image's grayscale histogram is extracted and 

enhanced through a weighted histogram algorithm to obtain 

richer pixel information, enabling more accurate image 

content analysis. Finally, the multi-scale entropy algorithm is 

used to perform entropy curve analysis on the image pixel 

series, observing changes in the entropy curve to assess the 

status of industrial equipment or identify specific phenomena 

in high-temperature environments. Unlike other scenarios of 

infrared image analysis, high-temperature industrial infrared 

image analysis places greater emphasis on the temperature 

distribution and temperature change characteristics within the 

image, thus adjustments specific to image preprocessing, 

enhancement, and entropy analysis methods are also required. 

For example, when classifying samples between normal and 

abnormal operating states in high-temperature industrial 

applications, it may be necessary to set different entropy 

baselines and deviation thresholds based on equipment 

characteristics and operating environments to ensure the 

accuracy and practicality of the analysis results. 

 

3.2 Analysis of parameter selection for multi-scale entropy 

method 

 

(1) Selection of the Embedding Dimension l 

The embedding dimension l essentially represents the 

window length of the time series considered during analysis, 

directly affecting the precision and quality of temperature 

information extracted from infrared images. In high-

temperature industrial inspection applications, selecting an 

appropriate l value can more effectively capture the thermal 

distribution on the surface of the equipment and the 

temperature changes over time, aiding in a deeper 

understanding of the equipment's operational conditions. 

In high-temperature industrial environments, the 

temperature distribution on the surface of equipment is usually 

very complex, potentially containing thermal patterns from 

different heat sources. Moreover, images in high-temperature 

environments are often subject to interference from various 

environmental and equipment-related factors, which may 

produce misleading effects in higher-dimensional data 

analysis. Therefore, to capture more joint probability 

information, making the analysis of time series more 

comprehensive and in-depth, while reducing the impact of 

these potential interfering factors when maintaining analysis 

depth, this paper chooses to set m to 2. Considering the 

handling of large volumes of industrial infrared image data, an 

excessively high embedding dimension would lead to a 

significant increase in computational load, which is 

impractical for real-time or near-real-time industrial 

monitoring systems. Hence, from a practicality and 

computational efficiency standpoint, m=2 is a reasonable and 

effective choice. 

(2) Selection of the Similarity Coefficient e 

The similarity coefficient e directly impacts whether the 

multi-scale entropy algorithm can accurately reflect the 

complexity of temperature distribution in infrared images 

under high-temperature industrial environments. It defines the 

standard of similarity between two vectors in the time series, 

with the magnitude of its value determining the sensitivity of 

recognizing similar patterns during the analysis process, 

thereby affecting the final entropy calculation and 

interpretation. 

Infrared images in high-temperature industrial 

environments usually contain temperature variations caused 

by material properties, heating methods, and environmental 

factors. These variations appear as different grayscale values 

in the images, representing different temperature areas. 

Selecting an appropriate r value can effectively distinguish 

these temperature variations, thus accurately reflecting the 

complexity of the temperature distribution. Moreover, in 

practical applications, monitoring systems need to be able to 

promptly and accurately identify changes in equipment status 

or potential faults, requiring the multi-scale entropy algorithm 

to not only accurately reflect the complexity of the temperature 

distribution but also possess good robustness and adaptability. 

However, too large or too small an e value could adversely 

affect the analysis results. If e is set too high, different 
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temperature distribution patterns may be incorrectly identified 

as similar, artificially reducing the entropy value and thus 

masking potential complexity in temperature distribution; 

conversely, if e is set too low, even very similar temperature 

patterns may be viewed as different, resulting in an 

excessively high entropy value that reflects an overstated 

complexity, which may not correspond with the actual 

situation. Therefore, this paper chooses r between 0.1 and 0.25 

SD, where the multi-scale entropy algorithm achieves a good 

balance between sensitivity and distinction in temperature 

changes in infrared images. 

(3) Selection of the Scale Factor π 

The scale factor π defines the interval for data resampling 

in time series analysis, directly relating to the ability of the 

multi-scale entropy algorithm to capture features of 

temperature changes at different time scales. For high-

temperature industrial applications, setting π not only ensures 

useful temperature information is extracted from infrared 

images but also reflects the thermal dynamics in equipment 

status and industrial processes. 

In practice, too fine a time scale may lead to an excessive 

amount of data, increasing computational complexity and 

hindering quick diagnostics and response; whereas too coarse 

a time scale might overlook important temperature change 

information, reducing the sensitivity and accuracy of the 

analysis. In high-temperature environments, the thermal 

behavior of equipment and materials has certain 

spatiotemporal characteristics, which are manifested in 

infrared images in various forms of temperature distribution. 

To effectively convert this spatiotemporal characteristic into 

analyzable time series data, capturing the essential features of 

temperature changes at an appropriate time scale, this paper 

selects τ=8 as the scale factor. Choosing τ=8 balances the detail 

and efficiency of the analysis, suitable for fast-paced, high-

load high-temperature industrial environments. This selection 

also considers the characteristics of multi-scale entropy 

analysis, which reveals the multi-layered features of system 

dynamics complexity by analyzing entropy values at different 

scales. At τ=8, the entropy curve tends to stabilize, indicating 

that key temperature change information has been captured at 

this scale, and further increasing the scale would not 

significantly enhance information retrieval. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Table 1 shows the comparison of average entropy values for 

normal and abnormal samples when analyzing high-

temperature industrial products using infrared images at 

different scales. From the data, it can be observed that as the 

scale increases, the average entropy values for normal samples 

gradually increase from Scale 1 to Scale 3 and then gradually 

decrease, indicating that the entropy value for normal samples 

peaks at a medium scale. This reflects a higher complexity in 

the temperature distribution of normal samples within this 

scale range, possibly due to significant thermal dynamic 

changes under normal operating conditions. Conversely, for 

abnormal samples, the average entropy values at all scales are 

generally lower than those of normal samples and show a 

downward trend as the scale increases. Notably, at Scale 8, the 

average entropy value for abnormal sample three shows an 

anomalous fluctuation (0.075), which could be due to a data 

entry error or a unique temperature distribution pattern of 

abnormal sample three at this scale. Moreover, the entropy 

values for abnormal samples one and two follow a trend 

similar to that of normal samples at different scales, but the 

overall entropy values are lower, indicating that even under 

abnormal conditions, the equipment's temperature distribution 

maintains a certain level of complexity, but it is significantly 

lower than under normal conditions. 

 

 
 

Figure 4. Standard entropy curve and summary curve for 

abnormal samples of industrial product images 

 

Figure 4 displays the standard entropy curve values for 

industrial product images and the entropy curve values for 

three abnormal samples at different scales. As seen from the 

data in the table, with the increase in scale value, the standard 

entropy curve, i.e., the entropy values of industrial product 

images under normal conditions, shows a trend of increasing 

first and decreasing later, reflecting higher complexity in the 

temperature distribution at medium scales, particularly at 

Scale 3 and Scale 4. This may be related to the thermodynamic 

characteristics of industrial equipment under normal operating 

conditions. In contrast, the entropy curves for the three 

abnormal samples are consistently lower than the standard 

curve at all scales, and their entropy values continue to decline 

with increasing scale, especially for abnormal sample three 

where the decrease is most significant. This suggests that the 

complexity of temperature distribution for industrial products 

under abnormal conditions is significantly lower than under 

normal conditions, likely due to uneven thermal distribution or 

anomalies in heat sources caused by faults or abnormal 

operating conditions. 

Table 2 details a comparison of results in industrial product 

anomaly detection using traditional morphological methods 

versus the algorithm proposed in this paper, including 

maximum horizontal length, maximum vertical length, defect 

area, and their error ratios relative to actual size, as well as 

pose error rates. The data from the table shows that compared 

to traditional morphological methods, the proposed algorithm 

demonstrates significantly better accuracy across various 

product series. Particularly in key metrics such as area size 

error and pose error rates, the errors of the proposed algorithm 

are significantly lower than those of traditional methods. For 

instance, in product series 2, the area size error of the 

traditional morphological method reaches as high as 689.2%, 

while the proposed algorithm maintains it at just 3.2%; in 

terms of pose error rates, the traditional method records 

336.8%, whereas the proposed algorithm controls it at 11.24%. 
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This indicates that the proposed algorithm possesses higher 

accuracy and robustness in precisely identifying and 

measuring anomalies in industrial products. The comparative 

analysis demonstrates that the multi-scale entropy-based high-

temperature industrial infrared image analysis algorithm 

significantly enhances the accuracy of anomaly detection, 

effectively reducing error rates, thereby proving its 

effectiveness and practical value in high-temperature 

industrial inspection applications. The improvement in 

accuracy not only stems from the algorithm's deep utilization 

of the characteristics of infrared images under high-

temperature industrial environments but also reflects the 

important role of the second law of thermodynamics in guiding 

the design and optimization of machine vision systems. 

 

Table 1. Average entropy values of normal and abnormal samples of industrial product images at different scales 

 

Sample 

Upper Limit of 

Average Entropy 

for Normal 

Samples 

Lower Limit of 

Average Entropy 

for Normal 

Samples 

Average Entropy 

of Abnormal 

Sample One 

Average Entropy 

of Abnormal 

Sample Two 

Average Entropy 

of Abnormal 

Sample Three 

Scale 1 0.0184 0.0125 0.0123 0.0124 0.0114 

Scale 2 0.0447 0.0315 0.0317 0.0245 0.0189 

Scale 3 0.0625 0.0458 0.0278 0.0214 0.0187 

Scale 4 0.0587 0.0421 0.0256 0.0218 0.0156 

Scale 5 0.0528 0.0412 0.0235 0.0189 0.0116 

Scale 6 0.0512 0.0378 0.0226 0.0158 0.0115 

Scale 7 0.0478 0.0356 0.0226 0.0145 0.0082 

Scale 8 0.0476 0.0345 0.0224 0.0124 0.075 

 

Table 2. Comparison of anomaly detection results for industrial products 

 

Detection Object 

Maximum 

Horizontal Length 

/mm 

Maximum Vertical 

Length /mm 
Defect Area /mm2 

Area Size 

Error 

Pose Error 

Rate 

Product Series 1 

Actual Size 15.2 14 232.2 / / 

Traditional 

Morphology 
22.36 17.58 268.54 18.9% 31.5% 

The Proposed 

Algorithm 
16.58 15.23 223.47 2.2% 4.5% 

Product Series 2 

Actual Size 21.58 22.5 172.2 / / 

Traditional 

Morphology 
36.98 55.69 1325.36 689.2% 336.8% 

The Proposed 

Algorithm 
22.31 22.54 165.85 3.2% 11.24% 

Product Series 3 

Actual Size 6.4 6 38 / / 

Traditional 

Morphology 
11.2 12.23 53.14 323.2% 342.1% 

The Proposed 

Algorithm 
6.78 6.58 37.89 1.8% 7.7% 

Product Series 4 

Actual Size 18 3 52 / / 

Traditional 

Morphology 
23.56 12.25 223.56 335.2% 278.5% 

The Proposed 

Algorithm 
13.25 6.78 65.98 31.2% 27.8% 

 

Figure 5 displays the grayscale changes of industrial 

products in the X direction subjected to different impact 

energies (10J, 15J, 20J, 25J) after thermal reconstruction 

treatment. From the data, it can be observed that as the impact 

energy increases, the range of grayscale distribution in the 

images gradually expands, and the peak grayscale values also 

progressively increase. For example, at 10J impact energy, the 

higher grayscale areas are concentrated within a smaller range, 

and the maximum grayscale value is relatively low; at 25J, not 

only do the high grayscale areas expand to a wider range in the 

X direction, but the maximum grayscale value also 

significantly increases, indicating that the increase in impact 

energy leads to more pronounced differences in temperature 

distribution and higher concentration of heat. 

Figure 6 records the grayscale distribution of industrial 

product images in the Y direction after multi-scale thermal 

reconstruction treatment under different impact energies (10J, 

15J, 20J, 25J). From the table data, it is evident that with the 

increase in impact energy, the changes in grayscale 

distribution in the Y direction exhibit broader and more intense 

characteristics. At lower impact energies (such as 10J), high 

grayscale areas are more concentrated and the intensity is 

relatively lower; at higher impact energies (such as 25J), not 

only do the high grayscale areas in the Y direction expand 

more broadly, but the intensity of the grayscale values also 

significantly increases. This trend indicates that as the impact 

energy increases, the temperature distribution of the 

industrially heated products becomes more complex and 

uneven, which is manifested on the grayscale images as wider 

high-value areas and higher peak grayscale values. 

This phenomenon reflects the effectiveness of the multi-

scale entropy-based high-temperature industrial infrared 

image analysis method in revealing the thermal response 

characteristics of industrial products under different impact 

energies. As the impact energy increases, the thermal 

distribution on the product surface becomes more complex and 
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uneven, and this change is accurately quantified and 

characterized through multi-scale entropy analysis. This not 

only demonstrates the efficiency of the multi-scale entropy 

algorithm in capturing and analyzing the thermal 

characteristics of industrial products under high temperatures 

but also showcases the algorithm's important role in enhancing 

the precision and robustness of infrared image processing 

within machine vision systems based on the second law of 

thermodynamics. 

 

 
 

Figure 5. Grayscale variation of industrial product images in 

the X direction after thermal reconstruction based on multiple 

scales 

 

 
 

Figure 6. Grayscale variation of industrial product images in 

the y direction after thermal reconstruction based on multiple 

scales 

 

Comparing Figure 7's display of grayscale distribution in 

the X and Y directions for Standard 1 and Standard 2 industrial 

product specimens, we can clearly see significant differences 

in the damage detection results under the same impact energy. 

In the X direction, the Standard 2 specimen shows higher peak 

values and a broader distribution range, especially in the 

central area where the grayscale value reaches the maximum 

of 255, indicating more severe damage. Similarly, in the Y 

direction, the Standard 2 specimen also displays more 

significant grayscale value distribution, particularly from the 

center to the positive 20 interval, where the grayscale value 

consistently remains at the high value of 255, reflecting a 

greater range and depth of damage. In contrast, although the 

Standard 1 specimen also shows damage characteristics, both 

the range of grayscale distribution and the peak values are 

lower than those of the Standard 2 specimen, indicating less 

severe damage. 

 

 
(1) X direction 

 
(2) Y direction 

 

Figure 7. Comparison of damage detection for standard 1 

and standard 2 industrial product specimens under impact 

energy 

 

Through an in-depth analysis of these differences, this paper 

demonstrated the efficiency and accuracy of the multi-scale 

entropy-based high-temperature industrial infrared image 

analysis method in damage detection. This method can 

accurately differentiate degrees of damage and detail the scope 

and extent of damage through differences in grayscale 

distribution. This not only confirmed the applicability of the 

multi-scale entropy algorithm in high-temperature industrial 

environments but also illustrates the powerful capability of 

thermodynamics-based machine vision technology in complex 

damage detection scenarios. 
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5. CONCLUSION 

 

This paper provides important theoretical guidance and 

technical support for the design and application of machine 

vision systems in high-temperature environments by 

comprehensively analyzing the application of 

thermodynamics-based machine vision in high-temperature 

industrial inspection. The research is divided into two main 

parts: one focuses on the thermodynamic parameters affecting 

the performance of machine vision systems, revealing the 

specific impacts of these parameters; the other focuses on a 

multi-scale entropy-based high-temperature industrial infrared 

image analysis method, aiming to enhance the accuracy and 

robustness of infrared image processing through the selection 

and analysis of core parameters. 

Experimental results validated the effectiveness and 

reliability of the research method from multiple perspectives. 

By analyzing the average entropy values of normal and 

abnormal samples at different scales, the study successfully 

revealed the relationship between temperature distribution 

complexity and the state of industrial products. Furthermore, 

the analysis of standard entropy curves and abnormal sample 

summary curves for industrial product images emphasized the 

applicability of the multi-scale entropy analysis method in 

identifying and assessing abnormal states of industrial 

products. Additionally, a comparative analysis of the 

performance differences between traditional methods and the 

algorithm proposed in this paper demonstrated the precision 

and robustness advantages of this algorithm. The analysis of 

grayscale changes in the X and Y directions of industrial 

product images after multi-scale thermal reconstruction, along 

with the damage detection analysis of different standard 

specimens under impact energy, further verified the 

practicality and effectiveness of the method in real 

applications. 

Overall, this paper not only confirmed the application value 

of thermodynamics-based machine vision technology in high-

temperature industrial detection but also showcased the 

important role of the multi-scale entropy algorithm in 

enhancing the accuracy and robustness of infrared image 

analysis. However, this research has its limitations, such as the 

effectiveness of the algorithm in extreme high-temperature 

environments and its universality in different industrial 

settings, which require further exploration. Future research 

directions could include further optimization of the multi-scale 

entropy algorithm to enhance its applicability and accuracy in 

a broader range of industrial applications; exploring the 

potential integration with other machine learning technologies 

to further improve the accuracy of damage detection and 

prediction; and expanding to more thermodynamics-based 

machine vision applications, exploring new applications and 

challenges in high-temperature environments. Through these 

ongoing research efforts, the future of machine vision 

technology in high-temperature industrial detection is 

promising, expected to play a greater role in ensuring 

industrial production safety and improving production 

efficiency. 
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