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With the rapid development of sports technology, the demand for high-definition images in 

sports competition analysis has been increasing. Particularly in fast-paced sports such as 

basketball, traditional image capture technology often fails to provide sufficient detail 

resolution, limiting in-depth analysis of athletic techniques and tactical layouts. To address 

this, image super-resolution reconstruction technology has been extensively studied and 

applied to enhance image quality, thereby providing coaches and analysts with clearer visual 

materials. However, existing super-resolution methods mainly focus on static images and 

struggle to overcome the challenges of blurring and real-time processing demands in motion 

scenarios. This paper introduces a dynamic adaptive cascaded network-based method for 

super-resolution reconstruction of images in motion scenarios, combined with dynamic 3D 

motion scene imaging techniques, aimed at enhancing the accuracy and timeliness of motion 

analysis. Through these innovative methods, not only can image degradation caused by 

motion be effectively handled, but higher-dimensional data support can also be provided for 

motion analysis. 
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1. INTRODUCTION

In modern sports competitions and analysis, the demand for 

high-definition images is growing, especially in fast-paced and 

dynamic sports scenarios like basketball [1-3]. The rapid 

movements and complex scenes in basketball games pose high 

demands on image capture equipment, and conventional video 

capture technology often fails to provide sufficient resolution 

for detailed analysis of subtle motion skills and tactical layouts 

[4, 5]. Therefore, using image super-resolution reconstruction 

technology to process low-resolution images to restore high-

resolution details has become a key technique to improve the 

quality and efficiency of basketball game analysis [6-8].  

Image super-resolution reconstruction technology in motion 

scenarios not only can significantly enhance image quality, 

providing coaches and analysts with clearer visual materials, 

but also can assist in more precise analysis of athletic 

techniques and performance evaluation of players [9, 10]. 

Additionally, high-quality image reconstruction is of great 

value for various applications such as automatic video editing, 

athlete tracking, and replay of highlight moments in matches 

[11, 12]. The development and application of this technology 

contribute to the advancement of sports technology and 

promote innovation in sports training and competition 

strategies.  

However, existing image super-resolution reconstruction 

methods face many challenges in motion scenarios. These 

methods often rely on static image processing techniques and 

struggle to effectively handle image degradation issues caused 

by motion blur and camera shake [13-15]. Moreover, 

traditional algorithms usually have high computational 

demands and poor real-time performance when dealing with 

high-dynamic scenes, which are not suitable for sports event 

analysis that requires quick feedback [16-21]. Therefore, 

developing super-resolution techniques optimized for motion 

scenarios has become an important research direction in this 

field.  

The main research contents of this paper include two parts: 

firstly, the motion scenario image super-resolution 

reconstruction technology based on the dynamic adaptive 

cascaded network, and secondly, the dynamic 3D motion 

scene imaging technology aimed at motion analysis. Firstly, 

through the dynamic adaptive cascaded network, this study 

aims to solve the image blur problem caused by rapid 

movement in motion scenarios, improving the capability of 

image detail restoration. Secondly, by constructing dynamic 

3D motion scene images, this paper further enhances the 

dimensions and accuracy of motion analysis. These studies are 

expected not only to promote the application of super-

resolution technology in the field of sports but also to provide 

more precise and real-time data support for motion analysis, 

thus playing an important role in formulating sports training 

and competition strategies. 

2. IMAGE SUPER-RESOLUTION RECONSTRUCTION

IN MOTION SCENARIOS

To adapt to the image blur and motion changes common in 

high-speed motion scenarios such as basketball games, this 
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study proposes a lightweight dynamic adaptive cascaded 

network specifically designed for image super-resolution 

reconstruction needs in motion scenarios. This network 

utilizes a dual-path residual learning mechanism, with one 

path responsible for deeply extracting image texture details, 

and the other filtering out redundant information to enhance 

the information interaction between the two paths, thereby 

effectively improving the restoration accuracy of textures and 

edges. Additionally, the network shares some convolutional 

parameters in the dual-path residual blocks through vertical 

parallelism and introduces learnable parameters to 

dynamically adjust the weights of the shared convolutions. 

This not only reduces the model's parameter count but also 

enables the convolution to better adapt to the nonlinear 

mapping between original features and target features, 

enhancing the ability to capture texture details in complex 

motion scenarios. This design is particularly suited for dealing 

with image blur problems caused by rapid movement and, 

compared to traditional static image super-resolution 

reconstruction methods, can more effectively handle image 

degradation caused by motion, making it more feasible and 

effective in real-time sports event analysis and high-dynamic 

environments. 

 

2.1 Network structure  

 

The lightweight dynamic adaptive cascaded network 

proposed in this study is composed of V dynamic adaptive 

cascaded modules, which are connected in series through 

residual connections to enhance learning depth and maintain 

the stability of the information flow. The specific architecture 

is shown in Figure 1. Each cascaded module contains L dual-

path residual blocks and L-1 dynamic adaptive module layers, 

a structural design that makes the network more efficient and 

precise in extracting mid-to-high-frequency information in 

complex motion scenarios. The dual-path residual blocks 

specifically handle the texture and edge details of the image, 

while the dynamic adaptive module layers adjust and optimize 

the expression of these features to better adapt to the image 

changes caused by motion. Additionally, the network 

introduces original low-resolution image features through 

global skip connections, ensuring the integrity and coherence 

of information throughout the network structure from input to 

output. 

 

 
 

Figure 1. Dynamic adaptive cascaded network structure 

 

 

In this study, a lightweight dynamic adaptive cascaded 

network is proposed, specifically designed for image super-

resolution reconstruction in motion scenarios. The first step 

involves inputting a low-resolution image through a 3×3 

convolutional layer to extract shallow features. This step is 

basic but crucial as it sets the baseline for subsequent complex 

feature extraction. In motion scenarios, due to rapid movement 

and potential blur, shallow features include key initial visual 

information. Suppose the 3×3 convolution operation is 

represented by dt, the computation process for shallow features 

is given by the following equation:  

 

( )adD t=0  (1) 

 

The second step involves processing the extracted shallow 

features through N dynamic adaptive cascaded modules to 

obtain deep features. Each dynamic adaptive cascaded module 

includes multiple dual-path residual blocks and dynamic 

adaptive module layers, which are specifically designed to 

handle image changes and detail degradation caused by rapid 

movement. This structure allows the network to adapt to the 

constantly changing scene dynamics, optimizing the feature 

extraction process, thus enabling more accurate restoration of 

details in motion scenarios. Suppose the first dynamic adaptive 

cascaded module is represented by d1
f, the computation 

process for deep features is given by the following equation:  
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(2) 

 

The third step involves merging the deep features extracted 

from the dynamic adaptive cascaded modules with the original 

shallow features. Through this method, the model maintains 

the integrity of information during propagation, preventing the 

loss of important features. This step is particularly important 

as maintaining the coherence and integrity of images when 

processing high-speed motion is key to improving 

reconstruction outcomes. The merged features will then be 

further processed as input through V-1 1×1 convolution layers 

and more dynamic adaptive cascaded modules. Suppose the u-

th 1×1 convolution operation and dynamic adaptive cascaded 

module are represented by ds
s and ds

f, the output of the u-th 

layer can be calculated by the following equation:  
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The final step involves converting the merged features into 

the final super-resolution image through a 1×1 convolution 

layer. This step not only retains the rich information from input 

to output but also extracts more texture details through the 

network’s powerful nonlinear mapping capability, laying the 

groundwork for the final image reconstruction. This process is 

particularly suitable for motion scenarios as it emphasizes 

restoring details lost from rapid movement, making the 

reconstructed image better suited for motion technique 

analysis and event replay. Suppose the final 1×1 convolution 

operation is represented by dv
s, the expression for the extracted 

deep features is given by the following equation:  
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2.2 Dynamic adaptive cascaded modules  

 

In the lightweight dynamic adaptive cascaded network 

designed in this study, the dynamic adaptive cascaded module 

is a core component, optimized for image super-resolution 

reconstruction in motion scenarios. The specific architecture 

is shown in Figure 2. This module combines dual-path residual 

blocks and dynamic adaptive modules, using a stacked 

arrangement to enhance the nonlinear mapping capability and 

feature extraction efficiency when processing motion images. 

The dual-path residual blocks focus on precisely capturing the 

texture details and edge information in the image, while the 

dynamic adaptive modules adjust and optimize the expression 

of these features, especially adapting better to image blur and 

deformation caused by motion. Additionally, the module uses 

a 1×1 convolution as a transition layer after each feature 

enhancement, not only helping to reduce the number of 

parameters but also ensuring the effective transfer of important 

features, thus preventing a decrease in reconstruction quality 

due to feature loss in fast motion scenarios. 

 

 
 

Figure 2. Dynamic adaptive cascaded module structure 

 

The information flow transmission method of the dynamic 

adaptive cascaded module is specially designed to optimize 

the effect of image super-resolution reconstruction in motion 

scenarios. Information first passes through the initial 3×3 

convolutional layer for preliminary feature extraction, then 

enters multiple dynamic adaptive cascaded modules. Within 

each cascaded module, dual-path residual blocks are 

responsible for processing and refining features from two 

different perspectives; one path focuses on extracting texture 

and edge details, while the other filters and optimizes these 

features. The dynamic adaptive module adjusts the 

convolution parameters according to the specific features of 

the current image, making feature processing more precise. 

The information flow between cascaded modules is 

maintained through residual connections, ensuring that 

information is not lost from input to each layer's output, while 

also enhancing the network's nonlinear mapping capability of 

features. Let the input of the dynamic adaptive cascaded 

module be represented by Dv, the k-th 1×1 convolution 

operation by ds
z, the (k-1)-th dynamic adaptive module by dd-

1
e, and the k-th dual-path residual block by gk. The information 

flow transmission of the dynamic adaptive cascaded module is 

given by the following equations:  
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Finally, the results of the cascading are merged as the output 

of the dynamic adaptive cascaded module, represented by b.  

 

( )lDDDCONCATb ,,, 21 =
 

(7) 

 

 
 

Figure 3. Dual-path residual block structure 

 

In the lightweight dynamic adaptive cascaded network 

developed in this study, the dual-path residual block serves as 

a core module, effectively extracting and processing image 

features in motion scenarios through a carefully designed dual-

path parallel strategy to achieve super-resolution 

reconstruction. The specific architecture is shown in Figure 3. 

In the upper path of the dual-path residual block, depthwise 

separable convolution is used to extract low-frequency 

features. Depthwise separable convolution splits traditional 

convolution into two independent operations: depth 

convolution and pointwise convolution, which not only 

significantly reduces the model's parameter count but also 

lowers computational complexity. When processing images in 

motion scenarios, this type of convolution can more efficiently 

handle large uniform areas in the image, which is very useful 

for fast-moving object backgrounds, thus maintaining the 

integrity of the image structure and reducing motion-induced 

blur. Let the input to the dual-path residual block be 

represented by a, the ReLU activation function by ω, and the 

depthwise separable convolution by dfq. The information 

transmission of the upper path of the dual-path residual block 

is given by the following equation:  

 

( )adda fqfq

12

1 =
 

(8) 

 

In terms of feature weight adjustment, depthwise separable 

convolution is followed by a pixel attention mechanism. 

Through the calculated attention map, feature weights for each 

pixel are dynamically adjusted. This step is particularly 

important in motion scenarios, as it highlights details of 

moving objects while suppressing background noise, 

enhancing the quality and clarity of the reconstructed image. 

Let the Sigmoid activation function be represented by δ, then 

the computation is as follows:  

 

( )( )1111 adsb =
 

(9) 

 

The lower path of the dual-path residual block is equipped 

with two serial residual blocks, mainly used to capture high-
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frequency features and rich texture information. This pathway 

specifically processes details in the image, such as the 

movement of athletes' equipment and motion details, which 

are essential for subsequent motion analysis and technical 

assessment. Let the two residual blocks of the lower path be 

represented by de, then the computation is as follows:  

 

( )adb e=2  
(10) 

 

Ultimately, the features from the upper and lower paths are 

merged, effectively integrating low-frequency and high-

frequency features. The merged feature set not only contains 

basic structural information of the image but also includes 

detailed information about edges and textures, which is crucial 

for restoring image blur caused by motion. This merging 

mechanism ensures that whether in static or fast-moving 

scenes, images can be reconstructed with high quality, meeting 

the high demands of motion analysis in terms of accuracy and 

efficiency. Let the output of the dual-path residual block be 

represented by b, then the computation formula is as follows: 

 

( )21,bbCONCATb =
 

(11) 

 

This learning method allows the dual-path residual block to 

extract high-frequency features while preserving some 

necessary low-frequency information. 

In the network proposed in this paper, the dynamic adaptive 

module is designed to address key challenges in image super-

resolution reconstruction under motion scenarios. The specific 

architecture is shown in Figure 4. This module is based on the 

concept of dynamic convolution kernels, which can extract 

rich image features with a reduced number of network 

parameters. The dynamic adaptive module is particularly 

suitable for motion scenarios, as it uses an attention 

mechanism to dynamically adjust the weights of each 

convolution kernel, thereby accurately addressing image 

blurring and deformation caused by rapid movement. This 

attention mechanism is similar to traditional channel attention, 

but it differs in that it controls the weight distribution through 

the Softmax function, ensuring that the weights are between 0 

and 1 and that the sum of the weights is 1. This allows the 

module to adjust the focus of the convolution operations based 

on the dynamic changes of each specific scene, enhancing the 

network's ability to capture motion details. 

 

 
 

Figure 4. Dynamic adaptive module structure 

 

Specifically, the module enhances the representational 

capability of the convolution kernels through a nonlinear 

attention mechanism, dynamically adjusting the weights of 

each kernel. The module combines four existing convolution 

kernels from the lower path of the dual-path residual block and 

two newly added convolution kernels, which participate in the 

computation as sub-kernels. Each sub-kernel weights the 

features according to its weights, optimizing the feature 

extraction process. This design allows the kernels to learn 

"vertical" feature parameters on top of the existing horizontal 

feature extraction, greatly enhancing the utilization of the 

kernels and the overall efficiency of the model. In motion 

scenarios, this mechanism is particularly crucial as it can more 

accurately handle image changes caused by rapid movement, 

such as blurring and detail loss, ensuring the clarity and 

richness of detail in the reconstructed images.  

First, the dynamic adaptive module receives input features 

and compresses them through global average pooling to obtain 

the global features of each channel. This operation is designed 

to reduce the number of parameters and increase 

computational efficiency, while also capturing global 

information that is often lost in motion scenarios, as described 

below. The channel-level features extracted by global average 

pooling provide the basis for the next step of feature activation, 

ensuring that features are transmitted and optimized 

throughout the network without interference from rapid 

movements.  
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Next, the Excitation operation is performed, which is 

achieved through two fully connected layers that learn and 

adjust the global features. The first fully connected layer 

compresses and reduces the dimensionality of the global 

features to reduce computational complexity and prevent 

overfitting; the second fully connected layer restores the 

features to their original dimensions, allowing the model to 

learn and enhance the dependencies among the channels. 

Assuming the Softmax function is represented by δ, and the 

two fully connected layers by n1 and n2, the weights obtained 

after the Softmax are represented by q1,q2,...,q6:  

 

( )( )innqqq 12621 ReLU,,, =
 

(13) 

 

Finally, the convolution kernels shared in the lower path of 

the dual-path residual block and the two newly added kernels 

are used for the weighted multiplication operation. The 

combination and adjustment of these kernels allow the module 

to dynamically adjust its parameters in a nonlinear manner, 

optimizing for specific features in motion scenarios. This step 

is crucial for timely adjusting the convolution operations based 

on the dynamic changes in image content, effectively 

extracting texture and edge information of objects in motion, 

significantly enhancing the detail restoration and overall visual 

quality of the image. Assuming the u-th shared convolution 

kernel in the lower path of the dual-path residual block is 

represented by zu
f, and the u-th new convolution kernel by zu

v, 

then the computation formula is:  
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(14) 

 

2.3 Reconstruction module 

 

In the proposed network for image super-resolution 
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reconstruction in motion scenarios, the reconstruction module 

employs sub-pixel convolution technology, which is effective 

in handling image blur and information loss caused by rapid 

movement. Traditional upsampling methods like bilinear or 

bicubic interpolation often introduce irrelevant information, 

thus reducing the quality of the reconstructed image. 

Conversely, sub-pixel convolution achieves upsampling by 

rearranging the output feature maps of convolutions, 

effectively reducing the introduction of unnecessary 

information and increasing the precision of upsampling. 

Assuming deep features are represented by Dd, and the final 

reconstructed image by b, the reconstruction module 

encompassing sub-pixel convolution and 3×3 convolution 

operations is represented by ψ. The process involving the 

addition of Dd, to the shallow features D0, and processing 

through the reconstruction module is as follows:  

 

( )0DDb d +=
 

(15) 

 

2.4 Loss function  

 

In the context of image super-resolution reconstruction for 

motion scenarios, choosing the appropriate loss function is 

crucial for the effectiveness of model training. The network 

proposed in this article employs the L1 loss function because, 

compared to the L2 loss function, L1 loss typically converges 

faster in image reconstruction tasks and more effectively 

handles anomalous pixel values caused by motion, such as 

sharp edges in motion blur. The L1 loss function is less 

sensitive to outliers, which helps better preserve details and 

reduce blurring when reconstructing fast-moving objects. This 

choice is particularly suitable for motion scenarios, as these 

often contain rapidly changing image features, and L1 loss 

encourages the model to focus on accurately restoring these 

dynamic details. Assuming the total number of images in the 

training set is represented by V, the set of model parameters to 

be optimized by ϕ, the u-th low-resolution and high-resolution 

images by Uu
ME and Uu

GE respectively, and the network model 

proposed by G, the functional expression is as follows:  
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3. DYNAMIC 3D MOTION SCENE IMAGING FOR 

MOTION ANALYSIS  

 

In motion analysis, especially in dynamic 3D motion 

scenarios, traditional methods of 3D mapping such as SLAM 

face many challenges. These conventional approaches 

typically assume a static scene, thus struggling to 

accommodate moving objects, leading to significant 

inaccuracies in pose estimation and scene tracking. Moreover, 

when objects in the scene move in a specific direction or plane, 

traditional methods of dynamic feature extraction, like optical 

flow and depth uncertainty methods, often fail to effectively 

identify these dynamic objects. These issues not only limit the 

application of SLAM technology in dynamic environments 

but also significantly reduce the accuracy of constructions and 

the practicality of the system. Therefore, developing an 

algorithm that can accurately identify and handle dynamic 

objects has become key to enhancing the precision of 3D 

image construction in dynamic scenes. 

Addressing this issue, this study proposes a new algorithm 

for dynamic 3D motion scene imaging, which adds a semantic 

segmentation module and a dynamic extraction module to the 

foundation of 2D motion scene image super-resolution 

reconstruction. By incorporating semantic segmentation, the 

algorithm can identify specific objects in the image and 

dynamically extract moving objects in the scene using a newly 

designed geometric method, combining the position and depth 

information of the objects. This strategy not only improves the 

accuracy of scene recognition but also allows the remaining 

static feature points to be more reliably used for scene 

reconstruction. The system processes dynamic and static 

elements in this manner, significantly enhancing the accuracy 

and practicality of 3D motion scene imaging, especially in 

motion analysis and tracking, providing more stable and 

detailed scene information. 

 

3.1 System framework 

 

The system framework of the dynamic 3D motion scene 

imaging algorithm proposed in this paper is designed to 

enhance the precision and practicality of motion analysis by 

effectively addressing the problem of 3D scene reconstruction 

in dynamic environments. Compared to traditional methods of 

dynamic 3D map construction, this system specifically focuses 

on the identification and extraction of dynamic objects within 

motion scenes, thus providing more accurate static scene 

information for motion analysis. The implementation steps of 

this system framework are as follows: 

(1) Firstly, the collected RGB images of the motion scene 

are semantically segmented using the MulAttenNet network to 

identify various objects in the environment. This step utilizes 

prior knowledge to identify and extract objects with a high 

probability of movement, thereby reducing the occlusion and 

interference these dynamic objects may cause. 

(2) Then, ORB features are extracted from the RGB images 

and matched to roughly compute the camera's pose. ORB 

feature extraction and matching lay the foundation for 

subsequent dynamic feature point extraction and pose 

estimation. 

(3) Next, combining the calculated camera pose and depth 

information, a global window divides the window into 

different blocks for recombination to establish long-range 

dependencies that were not established in the shifted window, 

thereby enhancing the acquisition of global information. This 

also estimates the motion transformation and depth changes 

from the reference frame to the current frame. Using this 

information, the dynamic probability of each feature point can 

be calculated to determine whether these feature points are in 

motion and to extract those with high dynamic probabilities. 

Figure 5 shows examples of input images, shifted windows, 

and global windows. 

 

 
 

Figure 5. Input image, displacement window, and global 

window 
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(4) Additionally, the system calculates the proportion of 

dynamic feature points within the semantic segmentation area 

to determine whether an object area is dynamic. Based on this 

determination, further extraction of identified dynamic 

moving objects is performed to reduce their negative impact 

on the construction of the 3D map. 

(5) Finally, the system uses the remaining static feature 

points for pose estimation and based on these static feature 

points, builds a local map and performs pose optimization to 

achieve precise reconstruction of static object scenes. 

  

3.2 Dynamic extraction with semantic segmentation 

 

In the construction of dynamic 3D motion scene images for 

motion analysis, dynamic extraction is a crucial step, directly 

affecting the accuracy and reliability of the entire scene 

reconstruction. Existing dynamic SLAM algorithms attempt to 

extract dynamic feature points using optical flow and depth 

uncertainty methods, but these techniques have limitations in 

practical applications, especially in the complex environments 

of dynamic 3D motion scene image construction. Optical flow 

utilizes the two-dimensional plane movement of feature points 

between consecutive frames to identify dynamic feature points. 

This method judges whether feature points are dynamic by 

calculating the motion difference of feature points in 

consecutive images. If an object containing a 3D point is 

stationary, then the position calculated based on the camera 

pose should coincide with its actual position; otherwise, these 

feature points are considered dynamic. However, the 

effectiveness of optical flow depends on significant movement 

of the object in the two-dimensional plane, making it difficult 

to accurately identify objects that move only along the z-axis 

or move minimally. 

Depth uncertainty identifies dynamic points by projecting 

feature points from keyframes and calculating their depth 

changes in adjacent frames. This method requires accurate 

depth information and stable feature point matching but can be 

unreliable in dynamic scenes, especially when feature point 

depths are difficult to obtain or the depth difference between 

consecutive frames is minimal. This situation is common in 

motion scenarios, such as with fast-moving objects or scenes 

with subtle depth changes. 

Therefore, in the process of constructing dynamic 3D 

motion scene images for motion analysis, it is necessary to 

further optimize these dynamic extraction techniques to 

improve the recognition of various motion patterns and ensure 

accurate extraction of all dynamic elements from 3D scenes. 

This requires not only improving existing technologies but 

also possibly integrating data from multiple sensors or 

employing more advanced machine learning techniques for a 

more precise and robust dynamic extraction strategy. Such 

improvements will directly enhance the quality of 3D motion 

scene reconstruction, providing more reliable data support for 

motion analysis. 

To effectively address the impact of dynamic objects and 

optimize the dynamic extraction capabilities of semantic 

segmentation in the algorithm for constructing dynamic 3D 

motion scene images for motion analysis, this paper proposes 

an improved geometric extraction method to precisely identify 

and extract dynamic feature points in the scene. This method 

focuses on enhancing the accuracy of scene reconstruction in 

complex dynamic environments, a common challenge 

encountered by traditional dynamic SLAM methods such as 

ORB-SLAM2 when dealing with dynamic scenes. The core of 

this method lies in calculating the positional and depth 

differences of feature points between different frames. 

Specifically, feature points AGJ in the current keyframe are 

projected into the current frame based on previously calculated 

relative camera poses to obtain their anticipated positions (aTY, 

bTY,) and depth cTY in the current frame. By comparing these 

anticipated values with the actual positions (aSC, bSC,) and depth 

cSC measured using the current frame's RGB and depth maps, 

this method can effectively identify which feature points 

exhibit significant changes in position or depth due to object 

movement. Furthermore, by integrating semantic 

segmentation results, this algorithm can more precisely 

identify and extract those dynamic areas. Through semantic 

segmentation, the algorithm first determines the static or 

dynamic nature of various areas in the scene, then applies the 

aforementioned geometric extraction method to further 

confirm and extract dynamic feature points. Assuming the 

difference in projected position and actual measured position 

of feature points in the current frame from the keyframe is 

represented by Δf, and the depth difference by Δc, the 

computation formula is as follows: 
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(17) 

 

If Δf or Δc exceeds a threshold, the feature point is 

considered to be in motion between the two frames of the 

motion scene images and is identified as a dynamic feature 

point. If Δf or Δc is below the threshold, it is identified as a 

static feature point. Taking into account both the calculated 

results of whether the feature points are dynamic and the 

results of semantic segmentation, if 30% of the feature points 

in each segmented area are determined to be dynamic, the 

object is considered to be a moving object. In subsequent 

calculations, this dynamic area is extracted and used for 

motion analysis. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS  

 

In Table 1, the performance of various super-resolution 

reconstruction methods for sports scene images is assessed 

through several key metrics: PSNR-μ (Mean Peak Signal-to-

Noise Ratio), SSIM-μ (Mean Structural Similarity Index), 

PSNR-L (Peak Signal-to-Noise Ratio under Low Illumination), 

SSIM-L (Structural Similarity Index under Low Illumination), 

and HDR-VDP-2 (High Dynamic Range Visual Difference 

Predictor). Our model demonstrates superior performance, 

especially in the PSNR-μ and HDR-VDP-2 metrics. The 

proposed model reached 43.6985 dB in PSNR-μ, which is 

higher by 1.386 dB and 1.3829 dB compared to other methods 

like RCAN and RDN, showing better average signal-to-noise 

ratio. In HDR-VDP-2 scoring, our model leads with a score of 

65.1235, indicating significant advantages in handling high 

dynamic range content. These experimental results fully 

demonstrate that by dynamically adjusting and optimizing the 

network structure, our model not only enhances the detail 

recovery capability, particularly in fast-moving sports scenes, 

but also effectively improves the overall visual quality of 

images.
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Table 1. Evaluation metrics results for super-resolution 

reconstruction methods in various sports scene images 

 

Method 
PSNR-

μ / dB 

SSIM-

μ 

PSNR-

L/ dB 

SSIM-

L 

HDR -

VDP-2 

ESPCN 42.1325 0.9854 41.2314 0.9854 60.1241 

FSRCNN 12.3256 0.7854 12.3265 0.4562 51.2348 

SRCNN 12.4758 0.8412 9.6521 0.3321 53.1247 

VDSR 41.2368 0.9752 41.2147 0.9784 62.3562 

EDSR 41.2589 0.9762 40.2314 0.9625 63.5487 

RCAN 42.3125 0.9862 41.2589 0.9754 63.2145 

RDN 42.3156 0.9751 38.2631 0.9785 61.2358 

The 

Proposed 

Model 

43.6985 0.9862 41.2358 0.9856 65.1235 

 

Table 2. Ablation study results of different modules in our 

model 
 

Method 
PSNR-

μ / dB 

SSIM-

μ 

PSNR-

L/ dB 

SSIM-

L 

HDR -

VDP-2 

Baseline 

Model 
42.1256 0.9785 41.2145 0.9856 63.2145 

Our Model 

- Dual-

Path 

Residual 

Block 

42.1485 0.9854 40.1254 0.9854 63.2569 

Our Model 

- Dynamic 

Adaptive 

Module 

43.2658 0.9785 40.2356 0.9862 65.1245 

Our Model 43.2315 0.9921 41.2569 0.9874 65.5892 

 

Table 2 presents the ablation study results of different 

modules in our model, evaluating the contribution of each 

component to super-resolution performance. From the five key 

metrics of PSNR-μ, SSIM-μ, PSNR-L, SSIM-L, and HDR-

VDP-2, it is evident that each module impacts performance 

differently. Compared to the baseline model, the full version 

of our model shows significant performance improvements, 

especially in PSNR-μ and HDR-VDP-2 scores, reaching 

43.2315 dB and 65.5892 dB respectively, indicating overall 

improvements in image quality and visual perception. In 

ablation experiments, removing the dual-path residual block 

slightly decreases PSNR-L, highlighting its importance in 

processing low-light images. Removing the dynamic adaptive 

module, while slightly reducing PSNR-μ, has a larger impact 

on HDR-VDP-2, indicating the significant contribution of the 

dynamic adaptive module to high dynamic range vision. These 

results conclude that our dynamic adaptive cascaded network 

greatly enhances the super-resolution reconstruction effect in 

sports scene images. The dynamic adaptive module is crucial 

for handling high dynamic range content while maintaining 

detail and structure, as evidenced by its significant 

contribution to HDR-VDP-2. The design of the entire network 

allows the modules to work together, providing superior 

performance not only in solving the image blur caused by 

rapid movement but also in improving image detail recovery 

capability and visual quality. 

The data in Figure 6 shows that with an increasing number 

of dynamic adaptive cascaded modules, PSNR gradually 

improves, rising from 32.175 dB with two modules to 32.378 

dB with six modules. This incremental increase reflects the 

cascaded modules' effectiveness in enhancing image quality, 

especially in terms of detail recovery and noise reduction. 

Additionally, the parameter count and the number of floating-

point operations increase with the number of modules, from 

50,000 parameters and 2 billion operations with two modules 

to 150,000 parameters and 65 billion operations with six 

modules. This growth indicates that while adding more 

modules can yield better image reconstruction quality, it also 

requires more computational resources and storage space, 

which may impose higher demands on deployment in practical 

application environments. The experimental data 

demonstrates that the dynamic adaptive cascaded network 

excels in handling image super-resolution reconstruction in 

sports scenes, achieving progressively higher PSNR with the 

addition of modules, thus proving its effectiveness. However, 

the performance improvement also comes with increased 

computational complexity and parameter count, necessitating 

a trade-off in practical applications to balance reconstruction 

quality with resource consumption. 

This study compares the performance of various super-

resolution reconstruction methods in sports scene images, 

including ESPCN, FSRCNN, SRCNN, VDSR, EDSR, RCAN, 

RDN, and the dynamic adaptive cascaded network proposed 

in this paper. The data in Figure 7 shows that while high-

performance models like EDSR and RCAN provide higher 

PSNR values, these models typically involve a substantial 

amount of parameters and computational resource 

consumption. In contrast, the dynamic adaptive cascaded 

network proposed in this paper maintains lower amounts of 

parameters and computational load while still achieving 

competitive PSNR performance with high-end models. 

Compared to other models, our model reaches nearly top-tier 

model levels in PSNR with only a fraction of the parameter 

count, effectively demonstrating an optimized network 

architecture that achieves a good balance between resource 

efficiency and image quality. Moreover, our model's 

superiority is also evident in its ability to handle dynamic 

scenes, effectively reducing blur caused by fast motion and 

enhancing image detail and clarity without significantly 

increasing the computational burden. This is particularly 

important for sports image analysis, as it not only improves the 

visual quality of images but also enhances the accuracy and 

reliability of subsequent analyses. 

The data shown in Figure 8 reflects the PSNR and SSIM 

results of the dynamic 3D sports motion scene imaging 

methods tested across three sample sets with different numbers 

of iterations. From a PSNR perspective, all three sample sets 

show a gradual increase in PSNR values as the number of 

iterations increases, indicating that image quality 

proportionally improves with more iterations. Particularly, in 

the process from 5000 to 50000 iterations, Sample Set 1's 

PSNR increased from 30.85 to 31.6, while Sample Sets 2 and 

3 also showed steady growth from lower starting values to 31.4 

and 31.5, respectively. For SSIM, this metric also improved 

across all sample sets with increasing iterations, with Sample 

Set 1's SSIM rising from 0.885 to 0.894, showing a stable 

improvement in structural similarity. These results clearly 

demonstrate that the proposed method progressively optimizes 

image perceptual quality and structural details through 

iterations. 

From these test results, it can be concluded that the dynamic 

3D sports motion scene imaging technology proposed for 

sports motion analysis effectively enhances the quality of 

super-resolution image reconstruction. As the number of 

iterations increases, the model's ability to capture and 

reconstruct details significantly strengthens, as evidenced by 

the continuous improvement in the key performance metrics 
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of PSNR and SSIM. Overall, this research successfully 

demonstrates the effectiveness of dynamic 3D imaging 

technology in improving the quality and accuracy of sports 

image analysis, proving its substantial potential and value in 

applications. 

 

 
 

Figure 6. The impact of the number of dynamic adaptive cascaded modules on PSNR, parameter count, and computational load 

 

 
 

Figure 7. Relationship between parameter count, computational load, and PSNR in different networks 

 

 
 

Figure 8. Test results comparison of dynamic 3D motion scene imaging methods across three sample sets 

 

 

5. CONCLUSION 

 

This paper's research revolves around two core technologies: 

first, using a dynamic adaptive cascaded network for super-

resolution reconstruction of images in sports scenes, and 

second, constructing dynamic 3D images of sports scenes to 

enhance the dimensions and accuracy of sports analysis. 

Through a series of experiments, this study not only clearly 

demonstrates the effectiveness of the dynamic adaptive 

cascaded network in handling image blur caused by rapid 

motion but also proves its significant advantages in detail 

recovery. Additionally, for dynamic 3D image construction 

technology, this research validated its effectiveness in 

improving image quality (PSNR) and structural similarity 

(SSIM) across different sample sets. 

The comprehensive experimental results show that the 

model proposed in this paper exhibits outstanding 

performance in key evaluation metrics such as PSNR and 

SSIM, particularly excelling in the HDR-VDP-2 visual quality 

assessment. Through module ablation studies, the contribution 

of each module to overall performance was further validated, 

especially the critical role of the dynamic adaptive module in 

enhancing computational efficiency and image quality. 

Moreover, although an increase in the number of dynamic 

adaptive cascaded modules leads to a rise in parameter count 

and computational load, appropriate optimization has allowed 
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this model to successfully balance performance with 

computational resources. 

Despite the significant academic value and practical 

application potential of this research in the field of sports 

image processing, it still has certain limitations. For instance, 

as model complexity increases, so does the demand for 

computational resources, which may limit its application in 

resource-constrained environments. Future research could 

explore more model light-weighting techniques and 

optimization algorithms to reduce computational burden while 

maintaining image reconstruction quality. Further studies 

might also consider extending this technology to other types 

of dynamic scenes, such as natural environments or urban 

traffic scenarios, to verify its universality and adaptability. 
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