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With the acceleration of urbanization, urban parks and green spaces, as crucial components 

of urban ecosystems, play an indispensable role in enhancing the quality of life for residents 

and maintaining ecological balance. Traditional methods for assessing green cover are often 

inefficient and lack accuracy. Advances in high-resolution satellite imagery processing 

technologies offer new solutions. This study addresses the limitations of existing methods 

by proposing an integrated assessment approach that combines image processing and pattern 

recognition techniques. Image quality is enhanced through histogram equalization, effective 

image segmentation is achieved using the maximum interclass variance method, and the 

accuracy and reliability of green space measurement are improved with an enhanced 

monocular vision ranging algorithm. The proposed method significantly enhances the 

accuracy of urban park green cover assessments, providing practical value for urban 

planning and ecological monitoring. 
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1. INTRODUCTION

In the context of rapid urbanization today, urban parks, as 

an essential part of urban ecosystems, play a significant role in 

improving the quality of life of urban residents, maintaining 

ecological balance, and mitigating urban heat island effects [1-

4]. However, as urban expansion accelerates, the effective 

management and monitoring of park green spaces become 

particularly important [5, 6]. Traditional methods of assessing 

green cover often rely on ground surveys, which are time-

consuming, labor-intensive, and inefficient [7-9]. With the 

development of remote sensing technology, high-resolution 

satellite images provide a new perspective and technical 

means for assessing urban green cover, offering advantages of 

broad coverage and fast updating, thus becoming an important 

tool for studying urban ecological environments. 

The accurate assessment of the green cover rate of urban 

parks is of great significance for urban planning, ecological 

protection, and sustainable development. Park green spaces 

are not only about the recreational life of urban residents but 

are also crucial for urban ecological safety [10, 11]. By 

accurately assessing the green cover of parks, scientific bases 

can be provided for urban greening management, data support 

for policymakers to formulate environmental protection 

policies, and it also helps the public understand the status of 

urban greening, raising public awareness of environmental 

protection [12-14]. 

Current research methods in the assessment of park green 

cover rates have some defects and shortcomings. For example, 

traditional image processing techniques are often limited by 

image quality and resolution, making it difficult to accurately 

distinguish between green spaces and non-green areas [15, 16]; 

and some automated image segmentation algorithms can 

easily produce misjudgments in complex urban environments 

[17-21]. Moreover, existing methods often cannot meet the 

needs of high-precision assessment, making it difficult to 

accurately quantify the area of urban park green spaces. 

This paper aims to propose a new method for assessing the 

green cover rate of urban parks, to overcome the limitations of 

existing technologies. First, the study developed an urban park 

satellite image enhancement algorithm based on histogram 

equalization, effectively improving the image contrast, laying 

the foundation for subsequent processing; second, the 

enhanced satellite images are processed using the maximum 

interclass variance method for segmentation, to more 

accurately distinguish park green spaces from other features; 

finally, the area of green spaces is measured using an improved 

algorithm based on the principle of monocular vision ranging, 

improving the accuracy of area measurement. Overall, the 

method of this study enhances the accuracy and efficiency of 

assessing the green cover rate of urban parks, having high 

theoretical and practical value for urban green space 

management and planning. 

2. ENHANCEMENT OF URBAN PARK SATELLITE

IMAGES

In the study of urban park green cover rate assessment, the 

use of high-resolution satellite images is a key technical means. 
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However, due to natural lighting, atmospheric scattering, and 

limitations inherent to satellite imaging itself, these images 

often lack in contrast and clarity, resulting in unclear 

boundaries between green and non-green areas, making it 

difficult to perform precise area calculations and feature 

analysis. To address this issue, this paper introduces histogram 

equalization and normalization processing techniques into the 

image enhancement process. Through this mathematical 

transformation, it is possible to adjust and expand the 

grayscale distribution of the image, dispersing pixel values 

that were overly concentrated in certain grayscale intervals to 

a wider range, thus increasing the global contrast of the image. 

For urban park satellite images, this means that the grayscale 

contrast between the green vegetation of green areas and the 

surrounding non-vegetative areas like buildings and roads will 

be enhanced, making the green areas more prominent and the 

detail features clearer. 

The difference between enhancing urban park satellite 

images and general image enhancement lies in the need to 

meticulously process the green channel to highlight vegetation 

areas, while preserving information in other channels to 

maintain the overall authenticity of the scene, ensuring that the 

natural characteristics of the greenery are not distorted during 

the enhancement process. For high-resolution RGB color 

urban park satellite images, the basic principle of histogram 

equalization used to enhance image contrast involves applying 

histogram equalization separately to each color channel: red 

(R), green (G), and blue (B). Since color images contain rich 

color information, applying the gray image equalization 

method directly to the entire color image would disrupt the 

original color balance, thus it is necessary to equalize each 

color channel separately. This allows for independent 

adjustment of the brightness distribution of each channel, 

thereby increasing the local contrast of the image, optimizing 

the color saturation and brightness of the green areas, while 

maintaining the overall color tone natural and harmonious. 

Specifically, the histogram of the satellite image d(a,b) 

replaces its grayscale distribution density function os(d), and 

the following formula provides the expression for the 

histogram-equalized image h:  
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The above formula undergoes a discrete approximation 

transformation. If d(a,b) has a pixel point (a,b) with grayscale 

ej, the following formula provides the expression for the result 

of histogram equalization h(a,b) as the grayscale tj at point 

(a,b): 
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3. SEGMENTATION OF URBAN PARK SATELLITE 

IMAGES  

 

In the application scenario of assessing urban park green 

cover rates, when using high-resolution satellite images for 

segmentation, the Otsu maximum class variance method is an 

effective adaptive threshold determination technique, 

implemented through the following six steps. 

First step: Calculate the normalized histogram of the 

grayscale image. The enhanced urban park satellite image is 

converted to grayscale to reduce computational load and to 

focus on brightness rather than color information. Assuming 

the total number of grayscale levels is M, and the number of 

pixels at grayscale level u is vu, with the total number of pixels 

being V, then the probability of occurrence for each grayscale 

level is ou = vu/V, satisfying ∑M=mu=0ou=1, ou>0. In urban 

park satellite images, this probability distribution reflects the 

brightness distribution of green spaces and other features. 

Second step: Calculate the overall grayscale mean ω. This 

overall mean is the weighted result of all pixel grayscale 

values and their probabilities, and it will serve as a reference 

value for subsequent inter-class variance calculations. In urban 

park images, this mean is influenced by the brightness 

distributions of both green areas and non-green areas.  
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Third step: Divide the image grayscale levels into two parts, 

foreground Z0 (green space) and background Z1 (non-green 

space), using threshold s. The initial choice of threshold s is 

arbitrary and will be optimized in subsequent steps. The 

probabilities O0 and O1 of these two categories are the ratios 

of their respective pixel counts to the total pixel count, i.e., the 

cumulative sums of the normalized histograms of pixels in O0 

and O1, and O0 and O1 can be obtained by the following 

formula:  
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Fourth step: Calculate the means ω0(s) and ω1(s) and 

variances δ2
0(s) and δ2

1(s) of Z0 and Z1, respectively. These 

statistical parameters provide the basis for calculating inter-

class variance. In the segmentation of urban park satellite 

images, the brightness difference between green spaces and 

other features is usually significant, which should be reflected 

in the means and variances of the two categories. The 

calculation formulas are:  
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Fifth step: Calculate the inter-class variance δ2
Y(s), an 

important indicator of segmentation quality, based on the 

means and probabilities of Z0 and Z1. In urban park images, a 

good threshold should maximize the brightness difference 

between green spaces and non-green spaces, thus maximizing 

δ2
Y(s). 

Sixth step: Iterate over all possible s values (from 0 to M-1) 

to select the s value that maximizes the inter-class variance 

δ2
Y(s) as the final threshold S. In the assessment of urban park 
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green cover rates, this threshold can optimally distinguish 

between green areas and non-green areas, providing a basis for 

accurate calculation and assessment of green space. The 

expression for S is:  
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In the color characteristics analysis of urban park satellite 

images, what we usually observe are clearly visible green 

cover areas, not images obscured by heavy smoke and low 

visibility. In urban park images, green areas, due to the 

reflective properties of vegetation, typically appear in varying 

intensities of green, forming a stark contrast with the 

surrounding artificial ground, water bodies, or bare soil. These 

green areas are usually continuous on satellite images and have 

high color saturation, while the boundaries of urban parks are 

clearer, facilitating the use of image processing technology to 

assess their green cover rate. Therefore, the goal of urban park 

green space analysis is to identify these green areas quickly 

and accurately through high-resolution satellite images and 

calculate their area ratio, to assess the ecological health and 

green space service functions of parks. This requires not only 

identifying green vegetation areas but also distinguishing 

shadows, buildings, roads, and other non-green elements to 

ensure accurate statistics of green space areas. 

Specifically, under natural light conditions, healthy 

vegetation in the RGB color model typically exhibits high 

green (G) component values and low red (R) and blue (B) 

component values. This color characteristic can be used to 

distinguish vegetation from roads, buildings, or bare soil and 

other non-green elements. Therefore, the research content and 

objectives proposed in this paper are to develop an image 

segmentation method based on RGB color components and 

their statistical differences in characteristics, aimed at 

improving the accuracy of identifying urban park green areas. 

Assuming the values on the three-color components of a pixel 

are represented by R, G, B, and the variance of the three-color 

component values is represented by δ2, then the calculation 

formula is: 
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Based on the color characteristics of urban park satellite 

images, the algorithm steps proposed in this paper are as 

follows: 

Step 1: First, the acquired high-resolution satellite images 

are resized to improve processing efficiency and reduce 

computational costs. Urban park images contain more detailed 

man-made structures and natural landscape details, so it is 

crucial to ensure that important spatial information is 

preserved during the compression process, while avoiding the 

loss of key green space features due to excessive compression. 

In this paper, the image size is reduced to a moderate 

resolution of 600×400 to maintain detail recognition in the 

images. 

Step 2: The resized images are then enhanced to improve 

image quality and highlight the contrast between green and 

non-green areas. The enhancement of urban park images aims 

to increase the saturation and contrast of the vegetation and 

improve visibility in shadowed areas. This step employs 

histogram equalization techniques, resulting in an enhanced 

image X0 that better represents the distribution of green spaces 

in urban parks. 

Step 3: The enhanced image X0 is converted to a grayscale 

image, and techniques like the Otsu maximum class variance 

method are used to determine an adaptive threshold S. This 

threshold is crucial for effectively segmenting green spaces 

from the surrounding environment. In urban park images, the 

grayscale differences between vegetation and other elements 

such as soil, water bodies, and sidewalks are key features. 

Careful adjustment of the threshold is necessary in this step to 

ensure accurate segmentation of green spaces. 

Step 4: Continue processing the enhanced color image X0, 

scanning each pixel row by row, detecting the similarity δ2 

between RGB components of the pixel, and calculating its 

grayscale value s. If s exceeds the threshold S determined in 

step 3, and the similarity between the RGB components meets 

preset conditions, this may indicate that the pixel belongs to a 

non-vegetative area. The goal here is to exclude non-green 

pixels based on similarity. Green space pixels are then set to 1, 

and non-green space pixels are set to 0, resulting in a binarized 

image Xu that highlights the green areas of urban parks. 

Step 5: The binarized image Xu undergoes morphological 

processing to optimize the representation of green spaces. Due 

to potential errors caused by building shadows or small non-

green areas in urban environments, morphological opening 

operations are used to smooth the boundaries of green areas, 

and closing operations are used to fill small holes within the 

green spaces. This further refines the morphological 

characteristics of green spaces and removes small non-green 

objects, resulting in a more accurate and clearer binary image 

of urban park green spaces, providing high-quality input data 

for the final assessment of green cover rates. 

In the segmentation algorithm process of urban park 

satellite images, the conversion of 24-bit true color images to 

grayscale images is a critical step. The greyscale conversion 

of urban park images needs to consider the performance of 

green space features in the RGB color channels. When 

implementing greyscale conversion, it is not a simple average 

of the R, G, and B channel values, but rather, given the higher 

reflectance of green vegetation in the green channel, a higher 

weight is assigned to the G component. The conversion often 

uses a weighted average method to better highlight green areas 

and reduce interference from non-green elements like urban 

buildings. Assuming the grayscale value at point (u, k) of the 

converted grayscale image is represented by GR(u,k), the 

specific calculation formula is: 
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Then, the maximum inter-class variance method is used to 

determine the threshold for binarizing the image. Urban park 

satellite images feature more complex color and texture 

characteristics. In practice, the selection of the threshold must 

consider not only the grayscale differences between green and 

non-green areas but also various interference factors in the 

urban environment, such as shadows, bodies of water, and 
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artificial surfaces. An adaptive threshold S=110 is 

automatically calculated by the algorithm, based on the 

statistical characteristics of the current image data, and this 

value effectively distinguishes green areas from other features. 

Based on this, by examining the variance of the R, G, and B 

components of each pixel, it helps identify green vegetation, 

as vegetation typically shows lower variance across the RGB 

channels. Then, based on the variance threshold, a binarization 

operation is performed on each pixel. Assuming the grayscale 

values of the image before and after processing at (u,k) are 

represented by d(u,k) and h(u,k), respectively, the binarized 

image can be calculated using the following formula:  
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4. IMPROVEMENT ALGORITHM FOR MEASURING 

URBAN PARK GREEN SPACE AREA BASED ON 

MONOCULAR VISION RANGING PRINCIPLE 

 

This paper is based on the monocular vision ranging 

principle for measuring green space area in urban park satellite 

images. This method needs to adapt to the characteristics of 

high-resolution satellite images, which typically have a wider 

field of view and a more stable imaging platform compared to 

aerial images, but may be affected by changes in satellite orbit 

and attitude. In this context, traditional corresponding point 

calibration methods might also face challenges in terms of 

accuracy and practicality in obtaining depth information from 

satellite images. Therefore, this paper proposes an improved 

algorithm that does not rely on traditional corresponding point 

calibration methods, but rather, by analyzing the imaging 

model and motion parameters of the satellite to establish a 

stable transformation relationship between the world 

coordinate system and the image coordinate system. This 

transformation relationship can adaptively calculate the 

geometric transformation of each image based on metadata 

such as satellite orbit data and imaging time, thus accurately 

estimating the area of green space. During this process, the 

algorithm automatically corrects for image distortions caused 

by satellite movement, ensuring that satellite images taken at 

different times and from different angles can be used for 

precise measurement of green space area, significantly 

enhancing the level of automation and flexibility of the 

measurement. The principle of monocular vision ranging is 

shown in Figure 1. Assuming the focal length is represented 

by d, the image distance by l, and the object distance by v, then 

the lens imaging model expression is:  

 

1 1 1

d l v
= +  (11) 

 

Compared to aerial images, satellite images are less affected 

by local weather conditions and the flight status of the aircraft, 

providing more consistent and standardized image data, which 

is crucial for extensive and multi-temporal measurements of 

urban park green space areas. However, the imaging 

conditions of satellite images, such as the satellite's orbital 

inclination and the sensor's pointing angle, can also affect the 

geometric representation of objects in the images, thus 

requiring an accurate geometric model to compensate for these 

changes and ensure measurement accuracy. To this end, this 

paper draws on the principles of optical imaging, combined 

with the characteristics of satellite imaging, to propose a 

monocular vision ranging method based on the optical 

imaging geometric model, adapted to the characteristics of 

high-resolution satellite images, and to improve the accuracy 

of measuring the area of urban park green spaces. 

 

 
 

Figure 1. Monocular vision ranging principle based on 

pinhole model 

 

The proposed method transforms pixel coordinates in 

satellite images into actual ground positions in the world 

coordinate system. This method assumes that the imaging 

model of the satellite camera approximates a pinhole model, 

capturing distant objects through an imaginary "pinhole," 

which simplifies the imaging process and eliminates the 

complexity of lens distortion. In this model, there is a specific 

geometric relationship between a point O(a,b) on the ground 

and its projection point o(ω,n) on the satellite image imaging 

plane. Using known satellite orbit parameters, camera 

positioning, and attitude data, a transformation relationship 

from image coordinates to ground world coordinates can be 

established, considering factors such as the satellite's shooting 

pitch angle, altitude, and viewing angle. Using this 

information, we can derive a mathematical model to map 

image coordinates back to ground coordinates, thus measuring 

the green space area of urban parks. This process considers 

various imaging condition changes to ensure that satellite 

images obtained at different times can be used for high-

precision area measurement. Specifically, assuming the urban 

park green space area is represented by O, and the 

corresponding point in the image plane by o, the vertical 

distance from the camera to the ground is represented by G, 

the nearest distance of the camera's vertical viewing angle 

projection on the ground is represented by b1, and the farthest 

distance by b1+b2, the horizontal distance of the camera's 

vertical viewing angle projection on the ground at its nearest 

point is represented by a1. The maximum and minimum 

angles between the camera's vertical viewing angle rays and 

the ground plane axis are represented by β and α, and the angle 

between the camera's horizontal viewing angle projection on 

the ground and the horizontal axis b is represented by ε. The 

calculation formulas are:  

 

( )arctan 1G b =  (12) 
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( )arctan 1 1a b =  (14) 

 

After deriving the angles β, α, and ε, assuming the width and 

height of O on the image plane are represented by ω, N, and 

the pixel width and pixel height in the A and B directions are 

represented by Ta and Tb. The vertical coordinate of point 

O(a,b) in the camera coordinate system apb, i.e., the distance 

between the target point and the camera in the vertical 

direction, is represented by b. The horizontal coordinate of 

point O(a,b) in the camera coordinate system apb, i.e., the 

distance between the target point and the camera in the 

horizontal direction, is represented by a, and the angle between 

point O and axis b is represented by ϕ, the distance between 

the target point and the camera is represented by M, the 

calculation formulas for a and b are as follows:  
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Figure 2. Improved principle for calculating urban park 

satellite image green space area 

 

Based on the aforementioned monocular ranging principle, 

this paper improves the algorithm for measuring green space 

area in urban park satellite images, with the calculation 

principle shown in Figure 2, and the improved algorithm 

process as follows. Based on the perspective geometric 

relationships, there are: 

 

tan tan
KG s

PK d
 = = =  (19) 

 
  = −  (20) 
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g
PY


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sinm PY =   (22) 

 

Assuming half the height of the negative is represented by 

s=KG, the focal length by d=PK, the height of the satellite 

camera from the ground by g=PL, and the shooting angle of 

the satellite camera by ψ, the half actual height of the plane by 

m=DY, and the actual height of the corresponding plane by XY, 

the above formulas can be linked as follows:  
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From the above formula, if s, d, g, and ψ are known, then 

the actual height of the plane corresponding to the image can 

be determined. Assuming the total number of pixels in the 

width and height resolution of the image is represented by Ta 

and Tb, the following formula provides the calculation formula 

for each pixel point pixel corresponding to the actual area:  

 
2
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Figure 3 shows the target map of the green space area in the 

urban park satellite image. Since the number of pixel points V 

in the green area of the urban park satellite image is known 

during the segmentation stage, the actual area corresponding 

to the extracted green space area Ts in the image can be 

calculated through the following formula: 
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Figure 3. Target map of green space area in urban park 

satellite image 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The experimental results in Figure 4 demonstrate that the 

urban park satellite image enhancement algorithm based on 

histogram equalization proposed in this paper successfully 

enhanced the image contrast, making the park green areas and 

the surrounding environment more distinctly separated. After 

processing the cloud images for feature extraction, a sample 

two-dimensional reflectance space projection was obtained, 

providing important data support for further analysis. 

The data presented in Figure 5 clearly indicate that after 

applying the histogram equalization-based image 
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enhancement algorithm, both the mean and standard deviation 

of the urban park satellite images have increased. Specifically, 

the increase in the image mean reflects an overall brightness 

enhancement, while the increase in standard deviation 

indicates that the distribution of pixel values has become more 

widespread, thereby increasing the contrast between pixels. 

This enhanced contrast makes the details within the image 

more apparent, particularly the boundaries between green and 

non-green areas, thus aiding in more precise image 

classification and feature extraction. From the analysis, the 

histogram equalization-based image enhancement method 

proposed in this paper effectively optimized the quality and 

information content of urban park satellite images. 

Analyzing the data from Table 1 and Table 2, it can be 

observed how pixels of different categories are allocated. For 

the categories "Urban Green Space 1" and "Urban Green 

Space 2," the classification effect is particularly notable, with 

nearly all pixels being correctly classified into their respective 

categories. For example, in the "Urban Green Space 2" 

category, 4256 pixels were correctly classified, accounting for 

100% of its total. This high degree of accuracy demonstrates 

the effectiveness of image enhancement and segmentation 

techniques in distinguishing between green and non-green 

areas. Additionally, the classification accuracy for agricultural 

land and unused land is also relatively high, with agricultural 

land achieving a classification accuracy of 92.36%. However, 

the classification of "High Mountain Shrubland" was 

relatively lower, possibly due to the similarity of its surface 

characteristics with other categories, making classification 

challenging. 

 

 
 

Figure 4. Two-dimensional reflectance space projection of 

an enhanced urban park satellite image sample 

 

   
 

Figure 5. Comparison of feature values before and after enhancement of urban park satellite images 

 
Table 1. True surface (pixels) in satellite images 

 

Class 
Urban Green 

Space 1 

Urban Green 

Space 2 
Pasture Farmland 

Mountain 

Shrubland 

Untilled 

Land 
Total 

Unclassified 202 0 1012 115 12 24 1365 

Urban Green Space 1 2345 0 0 0 124 0 2469 

Urban Green Space 2 1 4256 0 0 0 0 4257 

Pasture 0 0 1235 14 0 27 1276 

Farmland 0 0 42 2895 12 0 2949 

Mountain Shrubland 252 0 1 82 832 0 1167 

Untilled Land 0 0 52 2 8 2154 2216 

Total 2789 4256 3456 3124 1009 2236 16870 
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Table 2. True surface in satellite images (percentage) 

Class 
Urban Green 

Space 1 

Urban Green 

Space 2 
Pasture Farmland 

Mountain 

Shrubland 

Untilled 

Land 
Total 

Unclassified 6.89 0.00 28.98 3.68 1.08 1.08 8.02 

Urban Green Space 

1 
83.25 0.00 0.00 0.00 12.32 0.00 14.26 

Urban Green Space 

2 
0.03 100.00 0.00 0.00 0.00 0.00 25.36 

Pasture 0.00 0.00 66.32 0.48 0.00 1.21 12.34 

Farmland 0.00 0.00 1.21 92.36 1.23 0.00 18.62 

Mountain 

Shrubland 
8.87 0.00 0.03 2.68 82.31 0.00 6.69 

Untilled Land 0.00 0.00 1.53 0.00 0.78 97.25 12.35 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Table 3. Commission & omission error, producer & user accuracy 

Class 
Commission 

(Percent) 

Commission 

(Pixels) 

Omission 

(Percent) 

Omission 

(Pixels) 
Prod.Acc (Percent) 

User.Acc. 

(Pixels) 

Urban Green Space 1 5.23 123/2562 14.23 457/2689 83.25 93.26 

Urban Green Space 2 0.02 1/4235 0.00 0/4236 100.00 98.54 

Pasture 1.78 42/2356 32.25 1124/3456 66.32 97.26 

Farmland 1.82 53/2895 689 215/3016 92.35 97.65 

Mountain Shrubland  27.89 326/1245 15.26 168/1026 82.34 72.14 

Untilled Land  2.68 62/2356 2.23 52/2425 98.36 97.32 

Table 4. Urban park satellite image green space area detection results 

Image 

Number 

Focal 

Length (mm) 

Shooting 

Height (m) 

Shooting Pitch 

Angle (°) 

Measured 

Result (hm2) 

Traditional Method 

Result (hm2) 

Error 

(hm2) 

Relative 

Error (%) 

1 28 350 46 3.89 4.80 0.85 18.21 

2 23 300 23 5.32 4.80 0.46 9.78 

3 23 300 32 4.59 4.80 0.13 2.78 

4 23 300 28 4.65 4.80 0.19 3.56 

5 61 1110 42 16.32 16.20 1.65 10.23 

6 55 1030 47 19.85 16.20 3.21 18.96 

7 71 1190 45 14.23 16.20 2.34 12.65 

8 71 910 56 5.15 4.2 1.01 25.41 

9 71 1250 35 0.46 0.4 0.05 12.36 

10 71 420 38 1.12 1.1 0.12 10.26 

Table 3 provides further details on classification accuracy, 

where "Urban Green Space 1" and "Urban Green Space 2" 

exhibit extremely high producer's and user's accuracy, at 

83.25% and 93.26%, and 100% and 98.54%, respectively. 

This indicates that the classification method not only correctly 

categorizes most pixels belonging to these categories but also 

rarely misclassifies pixels from other categories into these 

categories. In contrast, the user's accuracy for "High Mountain 

Shrubland" is lower (72.14%), indicating that many pixels not 

belonging to this category were wrongly classified into it. This 

may be due to the complexity of the terrain features and 

similarity between classes. 

From the analysis above, it can be concluded that the urban 

park satellite image enhancement and segmentation methods 

proposed in this paper are generally effective in improving 

classification accuracy, particularly for the identification of 

urban green spaces. By enhancing image contrast and clarity 

through histogram equalization and achieving precise 

segmentation with the maximum inter-class variance method, 

the ability to distinguish park green spaces from other land 

features is significantly enhanced. Although the classification 

results for some categories with high similarity in surface 

features, such as "High Mountain Shrubland," still need 

improvement, overall, the method significantly enhances the 

accuracy and reliability of urban park green cover assessment, 

providing strong technical support for subsequent urban 

environmental management and planning. 

From Table 4, it is evident that the green space measurement 

algorithm based on the principle of monocular vision ranging 

proposed in this paper shows good performance in detecting 

green space areas in urban park satellite images. By comparing 

with traditional methods, it can be observed that the new 

algorithm results in smaller errors and relative errors. For 

example, in the case of image number 2, the relative error is 

only 9.78%, indicating that the new algorithm can achieve 

fairly accurate results in measuring green space areas. 

Although there are larger errors in some cases, such as image 

numbers 5, 6, and 7, where the relative errors are 10.23%, 

18.96%, and 12.65% respectively, overall the new algorithm 

has high measurement accuracy and lower error levels 

compared to traditional methods. From the analysis above, it 

can be concluded that the improved algorithm for measuring 

urban park green space area based on the principle of 

monocular vision ranging presented in this paper has certain 

effectiveness and feasibility in practical applications. Despite 

some errors in certain cases, the overall relative errors remain 

within a reasonable range, indicating that the new algorithm 

can more precisely measure the area of urban park green 

spaces, providing more reliable data support for the 

assessment of urban park green cover rates. 
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Table 5. Correlation analysis of urban park satellite image green space measurement data 

 
  Focal Length Shooting Height Shooting Pitch Angle Relative Error 

Focal 

Length 

Pearson correlation 

significance (two-sided) N 

1 

 

10 

807** 

005 

10 

823* 

048 

10 

514 

128 

10 

Shooting 

Height 

Pearson correlation 

significance (two-sided) N 

807** 

005 

10 

1 

 

10 

547 

097 

10 

458 

189 

10 

Shooting 

Pitch Angle 

Pearson correlation 

significance (two-sided) N 

823* 

048 

10 

545 

097 

10 

1 

 

10 

868** 

001 

10 

Relative 

Error 

Pearson correlation 

significance (two-sided) N 

514 

128 

10 

465 

189 

10 

859** 

001 

10 

1 

 

10 
**Significantly correlated at the 0.01 level (two-sided); *Significantly correlated at the 0.05 level (two-sided) 

 

Table 5 shows the results of the correlation analysis for the 

measurement data of green space areas in urban park satellite 

images. From the data, it is evident that there are certain 

correlations between focal length, shooting height, shooting 

pitch angle, and relative error. Specifically, focal length shows 

significant correlation with relative error, being highly 

significant at the 0.01 level; shooting height also shows 

significant correlation with relative error, significant at the 

0.05 level; the correlation between shooting pitch angle and 

relative error is the most significant, being highly significant 

at the 0.01 level. These correlation results indicate that factors 

affecting the accuracy of green space area measurements in 

urban park satellite images include not only the parameters of 

the image itself but also the shooting conditions and angles. 

The correlation analysis results suggest that there is a definite 

association between image parameters and shooting 

conditions with relative error, providing important references 

for further optimization and adjustment of the measurement 

algorithm. Thus, the method proposed in this article not only 

enhances the accuracy of green space area measurements but 

also allows for parameter adjustments based on different 

shooting situations, further improving the accuracy and 

reliability of the measurements. 

 

 

6. CONCLUSION 

 

This paper proposes a new method for assessing the green 

cover rate of urban parks, aimed at overcoming the limitations 

of existing technologies, and has validated the method's 

effectiveness through a series of original experiments. The 

study initially developed an urban park satellite image 

enhancement algorithm based on histogram equalization, 

which successfully increased the image contrast and enhanced 

image quality, facilitating subsequent image processing tasks. 

Following this, the enhanced images were precisely 

segmented using the maximum class variance method, 

effectively distinguishing park green spaces from other land 

features. Additionally, the study incorporated an improved 

algorithm based on the principle of monocular vision ranging 

to enhance the accuracy of green space area measurement. 

Experimental results support the effectiveness of the 

proposed method in multiple dimensions: the analysis of the 

two-dimensional reflectance space projection of samples 

demonstrated that the image enhancement algorithm could 

improve data usability; comparisons of feature values before 

and after enhancement showed significant improvements in 

image processing; analysis of true surface pixels in satellite 

images, along with Commission & Omission error, Producer 

& User Accuracy analyses, further verified the accuracy of the 

segmentation and classification methods; lastly, the results of 

urban park satellite image green space area detection and 

correlation analysis demonstrated the high reliability and 

precision of the measurement method. 

Despite the achievements of this research, there are still 

some limitations. For example, the classification accuracy for 

high mountain shrubland was lower, which might require 

further optimization of the image processing or classification 

algorithms to improve the recognition rate for this type of 

terrain. Future research could explore integrating more remote 

sensing data sources and advanced machine learning 

technologies to enhance the overall performance and 

applicability of the system, particularly in environments with 

complex terrain and diverse vegetation cover. Additionally, 

further studies should consider finer-grained green space 

classification and assessment to provide more specific and 

practical information for urban planning and environmental 

management. With continued technological innovation and 

methodological improvements, future efforts are expected to 

have a broader impact in the field of urban park and green 

space management. 

 

 

REFERENCES  

 

[1] Bai, X., Sadia, S. (2023). Park city leads the way of urban 

development and innovation in China. Journal of 

Environmental Engineering and Landscape Management, 

31(4): 240-247. 

https://doi.org/10.3846/jeelm.2023.20047 

[2] Lushpaeva, M.I., Balabanova, Y.P., Sayfutdinova, A.M., 

Gaiduk, A.R. (2022). The formation concept of the 

rehabilitation park territory in the city of Kazan. In 

International Scientific Conference Industrial and Civil 

Construction, pp. 376-383. https://doi.org/10.1007/978-

3-031-44432-6_45 

[3] Kushwaha, P., Mathur, A., Hussain, S., Chauhan, A.S. 

(2022). Design and enhancement of city park transport 

infrastructure facilities. Materials Today: Proceedings, 

62: 1475-1480. 

https://doi.org/10.1016/j.matpr.2022.02.026 

[4] Li, X., Shang, W.L., Liu, Q., Liu, X., Lyu, Z., Ochieng, 

W. (2024). Towards a sustainable city: Deciphering the 

determinants of restorative park and spatial patterns. 

Sustainable Cities and Society, 104: 105292. 

https://doi.org/10.1016/j.scs.2024.105292 

[5] Schrammeijer, E.A., van Zanten, B.T., Verburg, P.H. 

(2021). Whose park? Crowdsourcing citizen's urban 

1016



green space preferences to inform needs-based 

management decisions. Sustainable Cities and Society, 

74: 103249. https://doi.org/10.1016/j.scs.2021.103249 

[6] Wang, X., Meng, Q., Liu, X., Allam, M., Zhang, L., Hu,

X., Jancsó, T. (2022). Evaluation of fairness of urban

park green space based on an improved supply model of

green space: a case study of Beijing central city. Remote

Sensing, 15(1): 244. https://doi.org/10.3390/rs15010244

[7] Lee, H., Lim, H., Park, S. (2023). Quantitative

assessment of green coverage changes under the human-

biometeorological perspective: A simulation case study

in Jeju, Republic of Korea. Sustainable Cities and

Society, 97: 104734.

https://doi.org/10.1016/j.scs.2023.104734

[8] Han, M., Lin, H., Sun, D., Wang, J., Yuan, J. (2022). The

eco-friendly side of analyst coverage: the case of green

innovation. IEEE Transactions on Engineering

Management, 71: 1007-1022.

https://doi.org/10.1109/TEM.2022.3148136

[9] Roostaie, S., Kouhirostami, M., Sam, M., Kibert, C.J.

(2021). Resilience coverage of global sustainability

assessment frameworks: A systematic review. Journal of

Green Building, 16(2): 23-53.

https://doi.org/10.3992/jgb.16.2.23

[10] Al-Qawasmi, J. (2019). Examining indicators coverage

in a sample of sustainable building assessment systems.

Architectural Engineering and Design Management,

15(2): 101-120.

https://doi.org/10.1080/17452007.2018.1532873

[11] Yuan, C., Xiao, J., Zhang, X., Zhou, J., Wang, Z. (2022).

A new assessment of the algal biomass of green tide in

the Yellow Sea. Marine Pollution Bulletin, 174: 113253.

https://doi.org/10.1016/j.marpolbul.2021.113253

[12] Tam, V.W., Karimipour, H., Le, K.N., Wang, J. (2018).

Green neighbourhood: Review on the international

assessment systems. Renewable and Sustainable Energy

Reviews, 82: 689-699.

https://doi.org/10.1016/j.rser.2017.09.083

[13] Cui, Y., Guo, B., Li, W., Kong, X. (2023). Assessment

of urban blue-green space cooling effect linking

maximum and accumulative perspectives in the Yangtze

River Delta, China. Environmental Science and Pollution

Research, 30(58): 121834-121850.

https://doi.org/10.1007/s11356-023-30892-z

[14] Bai, G., Li, T., Xu, P. (2023). Can analyst coverage

enhance corporate innovation legitimacy?——

Heterogeneity analysis based on different situational

mechanisms. Journal of Cleaner Production, 405: 137048.

https://doi.org/10.1016/j.jclepro.2023.137048

[15] Wang, W., Wan, S., Xiao, P., Zhang, X. (2022). A novel

multi-training method for time-series urban green cover

recognition from multitemporal remote sensing images.

IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 15: 9531-9544.

https://doi.org/10.1109/JSTARS.2022.3218919

[16] Fan, D., Yu, S., Jin, F., Han, X., Zhang, G. (2023).

Remote sensing urban green space layout and site

selection based on lightweight expansion convolutional

method. IEEE Access, 11: 99889-99900.

https://doi.org/10.1109/ACCESS.2023.3314819

[17] Gui, B., Bhardwaj, A., Sam, L. (2024). Evaluating the

efficacy of segment anything model for delineating

agriculture and urban green spaces in multiresolution

aerial and spaceborne remote sensing images. Remote

Sensing, 16(2): 414. https://doi.org/10.3390/rs16020414

[18] Dong, C. (2022). Environment optimization design of

green building landscape space based on genetic

algorithm. In International Conference on Sustainable

Technology and Management (ICSTM 2022), 12299:

283-291. https://doi.org/10.1117/12.2646629

[19] Ghosh, P., Singh, K.K. (2022). Spatiotemporal dynamics

of urban green and blue spaces using geospatial

techniques in Chandannagar city, India. GeoJournal,

87(6): 4671-4688. https://doi.org/10.1007/s10708-021-

10524-0

[20] Zhao, H.H., Guan, H.Y. (2018). Multi-feature-marks

based information extraction of urban green space along

road. International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences-

ISPRS Archives, 42(3): 2353-2357.

https://doi.org/10.5194/isprs-archives-XLII-3-2353-

2018

[21] Masoudi, M., Tan, P.Y. (2019). Multi-year comparison

of the effects of spatial pattern of urban green spaces on

urban land surface temperature. Landscape and Urban

Planning, 184: 44-58.

https://doi.org/10.1016/j.landurbplan.2018.10.023

1017




