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The segmentation of liver images from computed tomography (CT) scans is a pivotal 

technique that supports various medical applications, including computer-aided diagnostics, 

disease identification, and the evaluation of hepatic function. In this study, an advanced 

segmentation method for CT liver images is introduced, leveraging the synergy between 

Rényi entropy and fuzzy c-partition methodologies. The proposed approach commences 

with the enhancement of input CT images employing an adaptive histogram equalization 

technique, thereby improving the contrast of hepatic tissues. Subsequently, these images are 

transformed into the fuzzy domain, wherein the entropies of the hepatic object and the 

surrounding tissue are meticulously defined. The optimization of the Rényi entropy measure 

is adeptly carried out using the Differential Evolution (DE) algorithm, which establishes 

precise CT image thresholds for segmentation. The efficacy of the proposed framework is 

substantiated through extensive experiments, which reveal its superior performance in 

segmenting liver CT images against complex backgrounds. The results affirm the 

framework's proficiency, particularly in medical imaging contexts with intricate backdrops, 

thereby underscoring its potential for enhanced diagnosis and therapeutic planning. 
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1. INTRODUCTION

Analyzing medical images is a meticulous and time-

intensive process that requires the utmost care and 

professionalism from specialists, as well as a significant time 

investment. In many instances, a prompt and accurate 

diagnosis can substantially facilitate and accelerate a patient's 

recovery. The analysis of medical images is the primary 

method for diagnosing liver cancer. At the current stage in 

oncology, specialists rely on the results of various radiological 

studies to establish an objective response of the tumor to a 

given treatment. The most common radiological method for 

assessing liver treatment outcomes, such as metastases, is X-

ray CT. Image segmentation is a critical stage in the image 

processing workflow that addresses diagnostic challenges. 

Several methods are employed to segment liver images; these 

can be categorized into three main groups: classical computer 

vision methods, machine learning methods, and neural 

networks [1]. 

Image segmentation is the process of dividing a digital 

image into multiple sections or groups of pixels that share 

common features, such as texture, intensity, or color. This 

division is typically based on the type of tissue and anatomical 

structure present. Segmentation results in a collection of areas 

that, together, encompass the entire image, as well as a series 

of contours derived from these areas. Due to the lack of a 

specific and universally accepted definition of the 

segmentation problem, it is widely regarded as an open 

challenge [2]. Numerous approaches to medical image 

segmentation have been proposed in the literature, each with 

its own strengths and limitations. We review various 

techniques and approaches for image segmentation, including 

classical computer vision methods, machine learning methods, 

neural networks, and techniques based on active contours and 

level set functions. 

In the literature, segmentation approaches and active 

contour models have been introduced for the automatic 

extraction of tumors from MRI scans [3, 4]. A segmentation 

method based on quantum entanglement has been proposed for 

imaging brain tumors [5]. The quantum-inspired computing 

approach was introduced to segment cell colonies, alongside a 

secure quantum model, which uses a two-qubit system for the 

classification and segmentation of brain tumors [6, 7]. 

Furthermore, an enhanced region-growing algorithm has been 

proposed, which automatically initializes the seed point and 

employs a thresholding technique to separate the skull from 

each input brain scan [8]. The features of the training set 

significantly influence the results of machine learning-based 
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segmentation methods [9, 10]. Methods relying on a priori 

models [11] and probabilistic atlases [12] encounter several 

issues, as they require labor-intensive early stages of model 

development, including sample collection, classification, and 

manual segmentation. Although these techniques are typically 

effective and straightforward, they often perform poorly when 

processing non-standard images or incur large computational 

costs. Active contour and level set function-based techniques 

offer more flexibility and are not as constrained by these issues. 

It has been demonstrated that level set function-based 

segmentation techniques can reduce the complexity of the 

segmentation [13, 14]. The primary challenge in their 

development is formulating an appropriate velocity function 

and its parameters. The adoption of the level set function for 

the numerical modeling of patient organ image segmentation, 

based on tomographic examination results, has been 

considered [15]. Factors such as the curvature of the 

segmented sections, the intensity distribution, or the image 

structure greatly influence segmentation. Level set function-

based approaches are notable for their adaptability to the 

original image's parameters, which simplifies the management 

of the segmentation process for medical scans. 

The objective of this study is to create an algorithm that can 

accurately segment human liver images obtained from CT 

scans, utilizing fuzzy-Rényi entropy enhancement through 

multi-level optimization boosted by DE [16]. The results 

presented demonstrate the potential for segmenting liver 

neoplasms comparably to other existing methods. This paper 

illustrates the applicability of our approach to the problem of 

neoplasm segmentation. We analyze the quality of our 

approach and perform optimization to improve the execution 

speed. The proposed post-processing algorithm enables a 

sixfold increase in segmentation speed with only a minimal 

reduction in quality. Additionally, by implementing an extra 

class division, we are able to significantly enhance the quality, 

achieving accuracy on par with that reported in similar studies. 

 

 

2. PROPOSED METHODOLOGY 

 

In recent years, image processing literature has given a lot 

of attention to threshold approaches based on entropy. 

Moreover, they have been found to be one of the most effective 

methods for image segmentation. Entropy Thresholding 

methods exploit the information content of an image to 

determine an optimal threshold. The entropy of an image is 

calculated by measuring the distribution of pixel intensities. A 

higher entropy value indicates greater uncertainty or 

complexity in the image. By considering the entropy of an 

image, thresholding algorithms can adaptively determine an 

optimal threshold value that effectively separates objects from 

the background. This approach is particularly valuable in 

scenarios where the image contains varying levels of noise, 

illumination, or complex foreground and background 

structures. Entropy-based thresholding methods have been 

widely applied in various image processing tasks. They offer 

a robust and automated approach for threshold selection, 

eliminating the need for manual tuning and improving the 

accuracy and efficiency of image analysis. In summary, 

entropy-based thresholding methods leverage the concept of 

entropy to determine an optimal threshold value for image 

segmentation. By considering the information content of an 

image, these methods provide a reliable and adaptive approach 

for object separation and analysis in diverse image processing 

applications. Previous study utilized entropies based on 

approaches got a good result in medical images analysis and 

based on the performance of Rényi entropy with other entropy 

measures, we utilized in the proposed framework for image 

segmentation task [17-19]. 

In literature of Gray [20] Shannon entropy is defined as: 

 

S(p) = −∑ pi ln pi
k
i=1   (1) 

 

Shannon entropy has the extensive property (additively) 

S(A + B) = S(A) + S(B)  this formalization has been 

demonstrated to be limited to the Boltzmann-Gibbs-Shannon 

(BGS) statistics. Rényi entropy successfully expanded 

Shannon entropy into a continuous set of entropy measures 

[21]. The Rényi entropy measure, characterized by order α, is 

applied to evaluate the entropy of an image. 

Rényi entropy is defined as: 

 

Hα(P)  =
1

1−α
(ln∑  pi

α)k
i=1   (2) 

 

The definition of Rényi entropy of order α is applied to each 

distribution as follows: 

 

Hα
X(t) =

1

1−α
(ln∑ (

pi

PX
)α)t

i=1 ,  

Hα
Y(t) =

1

1−α
(ln∑ (

pi

PY
)αk

i=t+1 )  
(3) 

 

The value of Hα(t)  in relation to the threshold t for the 

foreground and background is dependent on parameters. The 

optimal threshold value, which maximizes Hα(t) corresponds 

to the brightness level t that achieves this maximum. 

 

t∗(α) = Argmax  [Hα
X(t) + Hα

Y(t) )]. (4) 

 

The mathematical expressions in Eqs. (1)-(4) is to select 

threshold based on Rényi entropy. 

The combination of Rényi entropy and fuzzy c-partition can 

be defined as following: 

Classical set A can be described as follows in the fuzzy 

domain: 

 

𝐴 = {(𝑥, 𝜇𝐴(𝑥)|𝑥 ∈ 𝑋)} (5) 

 

where, 0 ≤ 𝜇𝐴(𝑥) ≤ 1 and 𝜇𝐴(𝑥)  is called the membership 

function. 

In order to simplicity, this study estimates the membership 

of 𝑛 divided regions using a trapezoidal membership function, 

𝜇1, 𝜇2, … , 𝜇𝑛 by using 2 × (𝑛 − 1) unknown fuzzy parameters, 

namely 𝑎1, 𝑐1, … 𝑎𝑛−1, 𝑐𝑛−1  where 0 ≤ 𝑎1 ≤ 𝑐1 ≤ ⋯ ≤
𝑎𝑛−1 ≤ 𝑐𝑛−1 ≤ 𝐿 − 1.  

The following membership function can therefore be 

derived for the 𝑛 level threshold. 

 

𝜇1(𝑘) =

{
 
 

 
 1       𝑘 ≤ 𝑎1
𝑘−𝑐1

𝑎1−𝑐1
      𝑎1 ≤ 𝑘 ≤ 𝑐1

0       𝑘 > 𝑐1
  ⋮

  (6) 
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𝜇𝑛−1(𝑘) =

{
  
 

  
 

0  𝑘 ≤ 𝑎𝑛−2
𝑘−𝑎𝑛−2

𝑐𝑛−2−𝑎𝑛−2
    𝑎𝑛−2 ≤ 𝑘 ≤ 𝑐𝑛−2

 1  𝑐𝑛−2 ≤ 𝑘 ≤ 𝑎𝑛−2
𝑘−𝑐𝑛−1

𝑎𝑛−1−𝑐𝑛−1
 𝑎𝑛−1 ≤ 𝑘 ≤ 𝑐𝑛−1

0  𝑘 > 𝑐𝑛−1

(7) 

𝜇𝑛(𝑘) =

{
 
 

 
 1      𝑘 ≤ 𝑎𝑛−1
𝑘−𝑎𝑛

𝑐𝑛−𝑎𝑛
 𝑎𝑛−1 ≤ 𝑘 ≤ 𝑐𝑛−1

1  𝑘 > 𝑐𝑛−1

(8) 

For each segment of the n-level segments, the maximum 

fuzzy Rényi entropy can be defined as: 

H1
α(p) =

1

1−α
(ln∑ (

𝑝𝑖

𝑃1
)α)

t1
i=0 (9) 

H2
α(p) =

1

1−α
(ln∑ (

𝑝𝑖

𝑃𝑛
)
α

tn
i=t1+1 ) (10) 

Hn
α(p) =

1

1−α
(ln∑ (

𝑝𝑖

𝑃𝑛
)
α

L−1
i=tn−1+1

) (11) 

where, α ≠ 1, 𝑃1 = ∑ 𝑝𝑖 ∗ 𝜇1(𝑖)
t1
𝑖=0 , 𝑃2 = ∑ 𝑝𝑖 ∗

t2
𝑖=0

𝜇2(𝑖) ,⋯ , 𝑃𝑛 = ∑ 𝑝𝑖 ∗ 𝜇𝑛(𝑖)
𝐿−1
𝑖=0 . 

The optimal values of the parameters can be obtained by 

maximizing the overall entropy. 

𝜑(𝑎1, 𝑐1, … 𝑎𝑛−1, 𝑐𝑛−1)
= 𝐴𝑟𝑔 𝑀𝑎𝑥([𝐻1(𝑡) + 𝐻2(𝑡) + ⋯+ 𝐻𝑛(𝑡)])

(12) 

The following is how the (n-1) threshold values can be 

obtained using fuzzy parameters: 

𝑡1 =
(𝑎1+𝑐1)

2
, 𝑡2 =

(𝑎2+𝑐2)

2
, … , 𝑡𝑛−1 =

(𝑎𝑛−1+𝑐𝑛−1)

2
(13) 

3. EXPERIMENTAL RESULTS

The experiments performed using MATLAB R2018a. 

Various CT liver images are examined. In our experiment, to 

accentuate the features of the liver using an algorithm, we are 

using enhancement phase to increase the contrast of the liver 

CT presented in the research paper [22]. 

The size of the search space for an n-level segmentation 

problem is D=2*(n-1) because there are 2 unknown fuzzy 

parameters. The flowchart of the proposed method is shown in 

Figure 1. Figure 2 shows the corresponding histograms for 

three separate Liver CT scan images that form the dataset. The 

corresponding enhanced images are shown in Figure 3. 

Figures 4-6 show level 3 to level 5 of segmented liver CT scan 

images where Figures 7-9 show level 3 to level 5 of enhanced 

segmented liver CT scan images. 

Figure 1. The flowchart of proposed segmentation framework 
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             (a) Liver CT scan 1                   (a’) Histogram for Liver CT scan 1 

 
           (b) Liver CT scan 2                       (b’) Histogram for Liver CT scan 2 

  
               (c) Liver CT scan 3                     (c’) Histogram for Liver CT scan 3 

 

Figure 2. Liver CT scan images and corresponding histograms 

 

 
           (a) Liver CT scan 1                 (a’) Histogram for Liver CT scan 1 
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(b) Liver CT scan 2  (b’) Histogram for Liver CT scan 2 

(c) Liver CT scan 3    (c’) Histogram for Liver CT scan 3 

Figure 3. Enhanced liver CT scan images and corresponding histograms 

(a) Liver CT scan 1 (b) Liver CT scan 2 (c) Liver CT scan 3

Figure 4. Proposed approach level 3 segmented liver CT 

scan images 

(a) Liver CT scan 1 (b) Liver CT scan 2 (c) Liver CT scan 3

Figure 5. Proposed approach level 4 segmented liver CT 

scan images 

(a) Liver CT scan 1(b) Liver CT scan 2 (c) Liver CT scan 3

Figure 6. Proposed approach level 5 segmented liver CT 

scan images 

(a) Liver CT scan 1 (b) Liver CT scan 2 (c) Liver CT scan 3

Figure 7. Proposed approach level 3 segmented of enhanced 

segmented liver CT scan images 
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(a) Liver CT scan 1 (b) Liver CT scan 2 (c) Liver CT scan 3 

 

Figure 8. Proposed approach level 4 segmented of enhanced 

segmented liver CT scan images 

 

 
(a) Liver CT scan 1 (b) Liver CT scan 2 (c) Liver CT scan 3 

 

Figure 9. Proposed approach level 5 segmented of enhanced 

segmented liver CT scan images 

 

Table 1. Parameter values obtained by DE for 3–5 level 

thresholds without enhancement process 

 
Image L Parameter Values 

Liver 

CT 

scan 1 

3 25  32  161  208  231  233 

4 23  68  72  109  133  149  195  210 

5 22  42  51  53  64 172  202  216  230  238 

Liver 

CT 

scan 2 

3 66  107  222  224  228  242 

4 11  34  40  59  155  165  206  234 

5 51  115  128  159  162  186  206  220  221  253 

Liver 

CT 

scan 3 

3 17  50  75  95  189  194 

4 60  65  94  199  208  212  216  234 

5 23  39  78  94  94  149  176  185  224  236 
*L is the level of threshold. 

 

Table 2. Parameter values obtained by DE for 3–5 level 

thresholds with enhancement process 

 
Image L* Parameter Values 

Enhanced 

Liver CT 

scan 1 

3 31  92  109  119  136  147 

4 0  30  33  54  147  152  178  227 

5 85  88  121  121  148  152  193  215  242  244 

Enhanced 

Liver CT 

scan 2 

3 16  51  52  82  86  189 

4 18  30  52  57  69  94  176  239 

5 7  22  107  162  173  186  212  225  228  241 

Enhanced 

Liver CT 

scan 2 

3 45  140  141  179  206  234 

4 36  51  91  136  186  200  211  217 

5 5  28  44  51  74  89  122  176  231  253 
*L is the level of threshold. 

 

From experimental results, it can essay observer the impact 

of the choice of parameters, such as the number of thresholds 

and the value of the α parameter, on the segmentation results 

as we can get various view of segmentation results of CT scan 

of the livers that have potential applications in clinical settings. 

The segmentation results of the suggested approach with 

level 3 threshold are shown in Figure 3, level 4 thresholds are 

shown in Figure 4, and level 5 threshold is shown in Figure 5. 

The corresponding enhanced CT liver segmentation results 

with level 3-5 threshold are shown in Figures 6-8. Table 1 and 

Table 2 show the value of the parameters determined by DE 

Considering 3-5 level thresholds for input CT liver images 

before and after applying enhancement algorithm. The 

determination of parameter values for the 3-5 level thresholds 

in DE relies on evaluating the visual clarity of segmented 

images obtained using different threshold values, such as Th = 

3, Th = 4, and Th = 5. It was found that the segmented image 

visual quality is better with integrated enhancement algorithm 

for the input images, and the higher level of threshold (Th = 5) 

produces better results than the level of with Th = 4 and Th = 

3. Furthermore, Various CT liver pictures can be used to show 

the effect of multilevel threshold. From Figure 4, it is clear that 

level 3 of threshold has little effect on the details in the CT 

liver picture. However, when the number of thresholds is 

increased to 5 (i.e., Figure 6), the specifics are easier to 

identify. Similar mixing-up occurs in Figure 7's CT liver 

image with the objects in the background. 

 

 

4. CONCLUSION 

 

Segmentation of liver images obtained from CT scans is a 

critical technique that supports various medical applications, 

including computer-aided diagnostics, disease identification, 

and hepatic function evaluation. It can be challenging to 

appropriately segment liver when CT imaging is used because 

of issues with low contrast and erratic grey-scale intensities. 

In this work, we introduced an efficient framework for 

enhanced segmentation of liver CT images using differential 

evolution optimization and fuzzy Rényi entropy. From the 

experimental results, we can conclude that the multi-level liver 

segmentation using the fuzzy Rényi entropy-based threshold 

technique significantly improves segmentation performance. 

Additionally, it might perform better when used with CT 

medical images with complex backdrops. The results confirm 

the proficiency of the framework, particularly in medical 

imaging scenarios with intricate backdrops, highlighting its 

potential for enhanced diagnosis and therapeutic planning. In 

the future, other medical scans performance indicators might 

be employed to verify the segmentation algorithm's 

proficiency as well as adding the service-continuity to the 

proposed approach to adapt with the dynamic systems. 
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