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In this paper, we present a novel face recognition architecture based on the Inception-ResNet 

framework, called SNResNet. The Inception-ResNet architecture, is effective in computer 

vision applications but exhibits limitations such as computational complexity, high memory 

consumption, and data dependency. It uses the ReLU activation function and softmax loss 

function which are not best-suited for face recognition. The proposed SNResNet uses triplet 

loss as the loss function to be able to train the model on large datasets. The advantages of 

the triplet loss over the softmax are handling one-shot learning, robustness to class 

imbalance and fine-grained discrimination. The ReLU activation function rejects all 

negative values that in some applications reduce the accuracy of the model. To overcome 

this problem, we introduced a new activation function called Rish which has better 

performance. In addition, we optimized the Inception-ResNet-B block using the SqNxt 

block to control the model's computational costs. The CASIA-WebFace dataset is used to 

train the models. This dataset has some challenges; e.g., some photos have more than one 

face, and all faces have a background. Preprocessing conditions are defined to identify and 

align the correct face. SNResNet achieves 94.63% accuracy on CASIA-WebFace. 

Performance evaluation on the LFW benchmark database yields an impressive accuracy of 

99.68%, surpassing the standard model's accuracy of 98.85%. Further, we reduced the 

FLOPS of the Inception-ResNet model by 15.61% which indicates a lower computational 

cost and a faster model for face recognition. 
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1. INTRODUCTION

Face recognition is a biometric authentication method with 

many applications in the fields of public security, military, and 

attendance systems [1]. It can be implemented anywhere 

because it does not require complex hardware to capture data; 

we can install a camera and use facial recognition systems. 

However, other biometric authentication methods, such as iris 

and fingerprint detection, require special sensors that cannot 

be used everywhere. Face recognition holds a distinctive 

position among biometric authentication methods due to 

several key advantages. Unlike invasive methods such as iris 

or fingerprint recognition, face recognition is non-invasive and 

user-friendly. Its non-contact nature, which does not require 

physical interaction, contributes to user convenience and 

acceptance. This advantage aligns with human familiarity in 

recognizing faces, making it an intuitively accepted method. 

In addition, facial recognition is more affordable compared to 

other methods such as iris recognition that require special 

hardware. Its scalability allows for simultaneous recognition 

of multiple individuals, suited for crowd applications like 

surveillance. The versatility of integrating facial recognition 

into existing devices with cameras extends its usability. Face 

recognition stands out for its resistance to forgery, as 

deceiving robust face recognition systems is inherently 

challenging. This is especially true when advanced techniques 

take into account multiple facial features, ensuring higher 

security. Additionally, the adaptability of facial recognition to 

natural aging and appearance changes, such as hairstyles or 

facial hair, makes it a practical choice. 

Thus, the combination of accessibility, versatility, security 

and compatibility of facial recognition makes it a compelling 

option for biometric authentication in various applications. For 

this reason, the development of facial recognition systems has 

always been one of the areas of interest among researchers. 

Following the introduction of deep neural networks, large-

scale facial recognition systems have been developed. Face 

recognition on a large scale has several challenges, including 

image distortion, racial changes, facial poses, expression, 

gender, and age changes. To overcome these challenges, it was 

necessary to design models that could extract appropriate 

features from data sets with low intra-class and high inter-class 

correlation to increase the generalization power of the models. 

Fortunately, in recent years, with the introduction of various 

deep architectures, many problems of face recognition systems 

have been solved [2-4]. Tran et al. [2] proposed an attendance 

kit, which integrates real-time Ultra-High Frequency (UHF) 

RFID technology with face recognition within a suite of 
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mobile applications tailored for institutions, lecturers, parents, 

and students. This tool is powered by the FaceNet model [5], 

renowned for its innovations, including the introduction of the 

triplet loss function, utilization of the Siamese Network 

Architecture, and implementation of triplet Selection 

Strategies. FaceNet is designed to withstand various facial 

changes, such as alterations in pose, lighting conditions, and 

facial expressions. This robustness is achieved through a 

combination of data augmentation techniques employed 

during training and the application of the aforementioned 

innovations. 

In a survey paper, Wang and Deng [4] provide a 

comprehensive review of various approaches to large-scale 

face recognition. Domain adaptation methods play a crucial 

role in transferring knowledge from controlled environments 

to real-world settings. Transfer learning, on the other hand, 

harnesses pre-trained models to boost recognition 

performance. Ensemble learning combines predictions from 

multiple models, elevating accuracy and resilience. 

Techniques like GANs are employed for synthetic face 

generation, augmenting training data and fortifying resistance 

to age-related changes.  

Researchers usually propose methods to increase the depth 

and width of models in order to solve complex problems. 

Increasing the depth means increasing the number of network 

layers, and increasing the width means increasing the number 

of blocks and filters in each layer. In a deep learning model, 

the higher the number of layers, the more abstract features the 

model can extract. The reason is the use of a non-linear 

activation function in each layer. Suppose we remove the 

activation function from a deep architecture with any number 

of layers. In that case, we will finally have a linear classifier, 

so the essential element in a deep learning model is its 

activation function. The activation function plays a 

fundamental role in extracting features, and the convergence 

speed of the model is affected by it. 

In this paper, we optimize and use one of the favored 

architectures called Inception-ResNet for face recognition. 

The Inception-ResNet architecture stands out as a robust 

solution for face recognition tasks, offering several distinctive 

advantages over other deep learning architectures. It combines 

the strengths of Inception and ResNet, resulting in an efficient 

yet deep network that excels in capturing intricate facial 

features. This deep architecture addresses the vanishing 

gradient problem, enabling the learning of complex facial 

representations, particularly when dealing with extensive 

datasets. Inception-ResNet's hierarchical feature learning 

encompasses a wide range of facial characteristics, from low-

level textures to high-level facial features, enabling it to excel 

in capturing the subtleties of facial identity. Its parallel 

processing capabilities, facilitated by Inception modules, 

empower the model to simultaneously consider both fine-

grained and coarse facial details. Its ability to generalize well 

to diverse facial variations, such as pose, expression, and 

lighting, renders it suitable for real-world face recognition 

applications. According to the reasons that were raised, we 

chose the Inception-ResNet architecture as the basic 

architecture in our proposed model . 

The optimization of this architecture consists of two parts. 

First, we define a new activation function called Rish and then 

generalize it to obtain two models using the Rish activation 

function and its generalization to achieve higher accuracy. The 

second novelty is fusing the Inception-ResNet-B block of this 

architecture with the SqNxt block [6]; the idea is to reduce the 

computational cost of the model. We trained the proposed 

models with the CASIA-WebFace dataset, and evaluated their 

performance with the LFW benchmark [7, 8]. The results 

showed that the FLOPS (floating-point operations per second) 

of the proposed models are 2.4013B and 2.4042B, respectively, 

while the FLOPS of the Inception-ResNet architecture is 

2.8492B. Also, the proposed models achieved the accuracies 

of 99.41% and 99.68% on the LFW benchmark which are 0.36% 

and 0.63%, better compared to the initial model. In other 

words, we were able to increase the accuracy of the model 

using proposed activation functions and reduce the 

computational cost using the Inception-ResNet-B block along 

with SqNxt. The rest of the paper is organized as follows: In 

section 2, the activation functions of deep neural networks will 

be reviewed.  

section 3 presents the proposed activation functions. The 

CASIA-WebFace dataset, its challenges and proposed 

solutions are discussed in section 4. In section 5, we will 

briefly introduce the Inception-ResNet architecture and detail 

the modifications we have made to this architecture. The 

experimental results will be expressed in section 6. Sections 7 

and 8 are devoted to the discussion and conclusion, 

respectively. 

 

 

2. HISTORY OF ACTIVATION FUNCTIONS 

 

As mentioned in the previous section, the activation 

function is one of the essential elements in deep learning 

models. In this section, we will review different types of 

activation functions, and will state the advantages and 

disadvantages of them.  

 

·Sigmoid 

The sigmoid function has been the most widely used in 

neural networks. As seen in Figure 1, the output of this 

function is always in the range [0, 1]. For this reason, this 

function does not have a zero mean, which is one of the 

disadvantages of this activation function. Eq. (1) expresses the 

sigmoid function. 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (1) 

 

 
 

Figure 1. Sigmoid function 

 

Among other disadvantages of this function, we can 

mention saturated areas. As shown in Figure 1, the function's 

behavior is linear in areas close to zero. However, the 

function's gradient is shallow when we move away from zero, 

for example, for data greater than +4 or smaller than -4, which 

indicates that the gradient of this function tends to be zero in 

these areas. This problem causes the network weights not to 

be updated during the network training in the backpropagation 
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stage. In addition, there is an exponential function (ex) in the 

Sigmoid function, which increases the computational cost and 

reduces the model training speed. 

·Tanh 

The output of the Tanh activation function is in the interval 

[-1,1], which gives it a zero mean. This is an advantage of the 

tanh activation function over the sigmoid. As shown in Figure 

2, the tanh activation function has saturation areas like the 

sigmoid, and the same problem of zero gradients is also 

present in this function.  
 

tanh(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 (2) 

 

 
 

Figure 2. Tanh activation function 

 

·ReLU 

The ReLU activation function introduced in 2012 by 

Krizhevsky et al. [9] is a piecewise linear function. As seen in 

Figure 3, in this function, the output is zero for negative data, 

and equal to the input value for positive data. 

 

𝑅𝑒𝐿𝑢 = max(0, 𝑥) (3) 

 

 
 

Figure 3. ReLU activation function 

 

Compared to the previous functions, the advantages of 

ReLU activation function are as follows: 

·It does not saturate for positive data, and the gradient is 

always one in these areas.  

·It is very computationally efficient: Sigmoid and tanh 

functions require exponentiation (ex), which increases the 

computational cost, while the ReLU function does not. 

·Reports have indicated that using the ReLU activation 

function in a deep architecture makes the model converge up 

to 6 times faster than tanh and sigmoid. 

The above advantages have made the ReLU activation 

function one of the most popular activation functions 

introduced so far, and most deep learning models use this 

function by default. However, ReLU also has disadvantages, 

that include: 

·The function is not continuous or differentiable for data 

with zero value. This challenge is unimportant because we 

rarely have data whose value is zero. 

·ReLU does not have zero mean. 

·Dead ReLU: The function's gradient is zero for negative 

inputs, so the network is not trained in this region in the 

backpropagation stage. Also, due to the initial weighting, 

several filters may not extract any features at the beginning of 

the training and only impose an additional computational cost 

on the model. 

·Leaky ReLU 

As mentioned, one of the challenges that ReLU faces is the 

zero output for negative data. To solve this problem, Mass et 

al. introduced the Leaky ReLU activation function [10]. 

Which considered a small slope (for example, 0.01) for the 

negative area (Eq. 4) Figure 4 shows the plot of Leaky ReLU. 

 

𝑓(𝑥) = max(0.01𝑥, 𝑥) (4) 

 

 
 

Figure 4. Leaky ReLU activation function 

 

The problem of dead filters was solved using this method, 

and the average of this function was closer to zero. The 

gradient of this function for negative data is a small constant 

we have considered (for example, 0.01). The question arises 

what should be the constant coefficient considered for the 

negative area, and what is the best coefficient? The ideal 

coefficient will differ for different problems, so proposing a 

fixed number to solve all problems is impossible. Researchers 

introduced the PReLU activation function to solve this 

challenge. 

 

·Parametric ReLU (PReLU) 

He et al. [11] introduced the PReLU activation function in 

2015. The gradient control coefficient of the negative part is 

determined as a hyper-parameter, and the model should obtain 

the appropriate value through training in the backpropagation 

stage (Eq. (5) and Figure 5). 

 

𝑓(𝑥𝑖) = max(0, 𝑥𝑖) + 𝑎𝑖 min(0, 𝑥𝑖) (5) 

 

 
 

Figure 5. PReLU activation function 
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·ELU 

Clevert et al. [12] introduced another modification of ReLU 

using an exponential function for negative regions to make the 

function smoother (Figure 6) . This function called ELU [12] 

behaves more smoothly than PReLU, but due to the 

exponential term for negative area (Eq. (6)); It increases the 

computational cost of the model.  

 

{
𝑥                                    𝑥 > 0
𝛼(𝑒𝑥𝑝(𝑥) − 1)          𝑥 ≤ 0

        𝛼 > 0 (6) 

 

 
 

Figure 6. ELU activation function 

 

·Softplus 

Zheng et al. [13] used the Softplus function as an activation 

function for the first time. This function is known as the 

softened ReLU (Figure 7). The advantage of this function 

compared to the ReLU is its soft derivative, which is helpful 

in the backpropagation stage. This function has a higher 

computational cost than ReLU due to exponential and log 

terms (Eq. (7)). The classification accuracy of Softplus is 

5.81% lower than that of ReLU, and the average training time 

of the model that uses Softplus is 135 seconds more than the 

model that uses ReLU [14]. For this reason, using Softplus as 

an activation function in deep learning models is not 

recommended. 

 

𝑓(𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥) (7) 

 

 
 

Figure 7. Softplus activation function 

 

·Swish 

Google researchers introduced the Swish activation 

function in 2017 as an alternative to ReLU [15]. This function 

has a trainable hyperparameter called β (Eq. (8)). The behavior 

of this non-linear function varies smoothly from linear to 

ReLU-like based on the value of the hyperparameter β. Figure 

8 shows the graph of the Swish function for different values of 

β.  

 

𝑓(𝑥) = 𝑥. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥) (8) 

 

 
 

Figure 8. Swish activation function, the behavior of this 

function changes smoothly from a linear function to a non-

linear function for different values of β 

 

This function has almost zero mean for small values of β. 

Because the Swish activation function is continuous, its 

gradient can be calculated for any input value, and the gradient 

vanishing challenge does not exist for negative values. 

However, its computational cost is more than ReLU. 

 

 
 

Figure 9. Mish activation function 

 

·Mish 

Mish is One of the newest activation functions introduced 

in 2019 by Mish [16] (Figure 9). According to the mish 

equation (Eq. (9)), its computational cost is significantly 

higher than that of ReLU. For this reason, the run time of the 

models implemented with mish is higher than those 

implemented with ReLU. For example, the execution time in 

the forward stage for float16 data in the model implemented 

with ReLU is 223.7 microseconds. In contrast, if the same 
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model uses the mish activation function, the run time in the 

forward stage will be 658.8 microseconds [16]. However, the 

accuracy obtained in mish is higher than other activation 

functions introduced. Therefore, using this activation function 

is recommended where accuracy is important. 

 

{
𝑓(𝑥) = 𝑥. 𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)

𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥)
 (9) 

 

 

3. PROPOSED ACTIVATION FUNCTION - RISH 

 

As discussed earlier, the activation function is one of the 

essential elements in deep architecture. If the activation 

function is selected correctly, the accuracy and convergence 

speed of the model will increase. For this reason, one of our 

goals in this article is to design a new activation function. As 

stated, ReLU is one of the best functions ever introduced as an 

activation function. Although ReLU is not computationally 

complex, it performs well for positive data. Because the ReLU 

gradient for positive data is one, and in the backpropagation 

stage, the gradients obtained from the previous layer, 

transferred to the next layer without vanishing. However, it 

faces challenges for negative data; this has caused new 

activation functions to develop. The Mish activation function 

ranks among the most well-designed activation functions ever 

created. Mish addresses the " dead ReLU " problem, reducing 

inactive neurons during training, thus enhancing learning 

capacity. Unlike ReLU, which zeros negative values, Mish 

offers a smooth transition for both positive and negative inputs, 

preserving information from negative activations, and making 

it advantageous for data with negative values. Unfortunately, 

as stated in section 2, Mish involves a more complex 

mathematical formulation compared to the ReLU. This 

complexity increases computation time and resource 

requirements. 

As you can see in Figure 10, in the proposed activation 

function, the output is defined as ReLU, for positive data, and 

Mish for negative data. we are removing the computational 

complexity of the Mish activation function for positive data, 

thus reducing the computational cost of the model. On the 

other hand, negative data is treated like Mish, which has higher 

accuracy among other activation functions. We call our 

proposed activation function as Rish (ReLU + Mish), which is 

defined in Eq. (10): 

 

𝑓(𝑥) = {
𝑥                                         𝑥 ≥ 0
𝑥. tanh (𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥))  𝑥 < 0

 

Or: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) + 𝑚𝑖𝑛(0, 𝑥. 𝑡𝑎𝑛ℎ(1 + 𝑒𝑥) 

(10) 

 

 
 

Figure 10. Proposed activation function, called Rish 

The Rish activation function can also be generalized and 

had a trainable hyperparameter α as in Eq. (11): 

 

𝑓(𝑥) = {
𝑥                                         𝑥 ≥ 0

𝑥. 𝑡𝑎𝑛ℎ (𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝛼𝑥))  𝑥 < 0
 

Or: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) + 𝑚𝑖𝑛(0, 𝑥. 𝑡𝑎𝑛ℎ(1 + 𝑒𝛼𝑥) 

(11) 

 

The best choice of hyperparameter α for the proposed model 

was found to be 0.01. We employed the random search method 

to determine the optimal value of this hyperparameter, with the 

objective of mitigating the adverse impact of negative data 

during model training. To achieve this, we constrained the α 

value to be less than 0.5. Under this constraint, we defined a 

reasonable range for the hyperparameter α, encompassing 

values such as 0.001, 0.005, 0.01, 0.02, and so forth, up to 0.5. 

To assess the effectiveness of different α values, we conducted 

experiments on a subset of 100 classes from the CASIA-

WebFace training dataset. Each α value was evaluated by 

training our model over five iterations. We employed accuracy 

as the primary criterion for assessing the optimality of α. As a 

result of our evaluation process, we identified the optimal 

value for the hyperparameter α to be 0.01. Figure 11 shows the 

graph of Eq. (11) for α=0.01. 

 

 
 

Figure 11. Graph of the generalized Rish activation function, 

for α=0.01 

 

To validate our assertion that the utilization of the Rish 

activation function leads to a reduction in computational costs, 

we conducted an analysis of runtime performance during the 

forward pass. To facilitate this assessment, we constructed a 

simple model comprising two convolutional layers. In this 

model, we initially employed the Mish activation function and 

calculated the mean execution time over 100 iterations using 

float16 data. Subsequently, we substituted the activation 

function with Rish. Our observations revealed that the average 

execution times for the models were 0.126357 and 0.109018 

seconds, respectively. Notably, the model employing the Rish 

activation function exhibited a 14.73% improvement in 

average execution speed compared to the one utilizing the 

Mish activation function. 

 

 

4. CASIA-WEBFACE DATASET AND MTCNN FACE 

DETECTOR 

 

The training dataset used to train the face recognition 

models proposed in this article is CASIA-WebFace. This 

dataset contains 494,414 images in 10,575 classes. Figure 12 

displays some samples of this dataset. 
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Figure 12. Sample data from the CASIA-WebFace dataset 

 

Figure 12 shows that the CASIA-WebFace images are not 

focused on people's faces, and each image contains a part of 

the body and the background in addition to the person's face. 

As a result, the first stage of pre-processing is the extraction of 

people's faces from the images. For this purpose, we used the 

MTCNN face detector [17]. Another challenge is that there is 

more than one face in some images of the dataset (Figure 12). 

This challenge causes more than one face to be extracted for 

some images during the face detection by MTCNN. It will 

increase the label noise of the dataset. To solve this problem, 

we made two assumptions: 

(a) In every image with more than one face, we choose the 

face with a higher confidence as the main face. 

(b) If two faces have the same confidence, we assume that 

the image of the main face is always bigger than the image of 

the side face because the purpose of collecting this image was 

the first person. With this assumption, we extract the image of 

a person with larger dimensions as the target image. 

Figure 13 shows this challenge and how to solve it. 

 

 
 

Figure 13. Data preprocessing using an MTCNN face 

detector in order to extract the main face from each image 

 

In order to reduce the computational cost of the face 

recognition model, we considered the size of the input images 

to be 160×160 pixels. LFW benchmark is used to check the 

performance of the final model. 

 

 

5. PROPOSED FACE RECOGNITION MODEL 

 

As mentioned in section 4, we first extract the target face 

from the images in the CASIA-WebFace dataset. Now, 

convenient features for face recognition should be extracted 

using a deep neural network. For this purpose, we optimized 

the Inception-ResNet and used it to extract features. Figure 14 

displays the basic architecture of this network in standard 

mode [18]. 

As shown in Figure 14, the size of input images for standard 

Inception-ResNet is considered (229×229×3). To reduce the 

computational cost of the model, we set the dimensions of the 

input images to (160×160×3). Figure 15 displays one of the 

blocks used in this architecture, called Inception-ResNet-B. 

 
 

Figure 14. Inception-ResNet standard architecture [18] 

 

 
 

Figure 15. Inception-ResNet-B block [18] 

 

To reduce the computational cost, we replaced the third 

branch of the Inception-ResNet-B block with the SqueezeNext 

(SqNxt) block and named the new block SNResNet. In 2018, 

Gholami et al. designed the SqNxt architecture to reduce the 

computational cost of models implemented on embedded 

systems. This block consists of a combination of ResNet and 

SqueezeNet blocks and their optimization [6].  

The SqNxt block presents a set of noteworthy advantages 

that position it as a valuable component within deep neural 

network architectures. It adeptly strikes a balance between 

model size and computational efficiency, a critical 

consideration in contemporary deep learning endeavors. This 

balance is elegantly achieved by the incorporation of a 

"squeeze" layer, which harmoniously combines 1x1 

convolutions and pointwise activations. This amalgamation 

serves the purpose of effectively reducing input channels 

while preserving essential information. In addition, the ability 

of the SqNxt architecture is highlighted by the presence of 

expand layers. These layers harness the potential of 1x1 

convolutions, followed by 3x3 convolutions, yielding a 

judicious augmentation of channel dimensions. This 

augmentation significantly strengthens the model's capacity to 

represent complex features without imposing undue 

computational burdens. Additionally, SqNxt introduces skip 

connections, drawing inspiration from the ResNet paradigm. 

These connections are instrumental in facilitating more 

streamlined gradient flow during training, thus enhancing the 

model's training efficiency and convergence properties. In 

pursuit of further computational efficiency, certain iterations 
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of SqNxt incorporate reduction layers. These layers 

judiciously reduce spatial dimensions within feature maps, 

thereby yielding substantial reductions in computational 

overhead for subsequent layers. Collectively, the SqNxt block 

exemplifies a refined approach to deep learning, enabling the 

creation of compact yet potent models ideally suited for 

deployment in resource-constrained settings or applications 

necessitating real-time processing. Figure16 shows the 

structure of the SqNxt block. 

Figure 17 shows the proposed SNResNet block, an 

optimized version of the Inception-ResNet-B block using the 

SqNxt block. 

With this method, the number of computational parameters 

of the model decreased from 22,779,312 to 19,258,384. This 

amount is equivalent to a 15.56% reduction in the calculation 

parameters of the model. The next step to optimize the basic 

architecture of the Inception-ResNet is to use the activation 

functions proposed in section 3. Inception-ResNet, by default, 

uses the ReLU activation function. At this stage, we replaced 

ReLU with our proposed activation functions. We will finally 

have two models using the proposed activation function and 

its generalized version. The first model uses the activation 

function of Eq. (10), and the other uses the activation function 

of Eq. (11). Figure 18 shows the final architecture of the 

proposed SNResNet block after replacing the proposed 

activation functions. 

 

 
 

Figure 16. SqNxt block structure [18] 

 

 
 

Figure 17. An optimized version of Inception-ResNet block-B by using SqNxt block 

 

 
 

Figure 18. Optimized Inception-ResNet-B block using 

SqNxt block and suggested activation functions 

In the training phase, the triplet loss is used as our loss 

function. This function was first introduced by the Google 

research team to design the FaceNet model [5]. We also used 

the Adam optimizer to optimize the model in the 

backpropagation stage [19]. Our models extract 512 features 

from people's faces, by which each person can be identified. 

 

 

6. EXPERIMENTAL RESULTS 

 

In this section, we will express the experimental results 

obtained by the proposed models. We used the CASIA-

WebFace dataset to train the models. Model's batch size in the 

training stage was set to 8. The training process was conducted 

as follows: first, face detection is performed by the method 

presented in section 4. Then the according to the requirement 

of triplet loss, three faces (anchor, positive and negative) are 

entered into the model for training in groups of 8. Figure 19 

shows an example batch of the input data to the model. 

Each model is trained for 50 epochs. The first model is 

implemented with the Rish activation function (Eq. (10) and 

α=1) and the second with α = 0.01. The first model obtained 

the accuracy of 91.95%, and the second achieved the higher 

accuracy of 94.63%. Figures 20 and 21 show the training 

graphs for the two proposed models, respectively. 
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Figure 19. A batch of face images prepared for training the model  

 

 
 

Figure 20. Accuracy graph of training and validation data for the first model (The activation function is Rish with α=1) 

 

 
 

Figure 21. Accuracy graph of training and validation data for the second model (The activation function is Rish with α=0.01) 
 

In Table 1, we compared the accuracy of the validation data 

of the proposed models with other models. We compare the 

Inception-ResNet network with different activation functions 

against the optimized SNResNet network. 

 

Table 1. Comparing the accuracy of the proposed models 

with other models 
 

 
 

Figure 22. Some results of the validation data that shows the 

resistance of the proposed models against age changes 

Architecture 
Activation 

Function 

Loss 

Function 
Accuracy 

Inception-

ResNet 
ReLU 

ArcFace 

[20] 
84.24% 

Inception-

ResNet 
RReLU ArcFace 83.75% 

Inception-

ResNet 
SELU ArcFace 80.62% 

Inception-

ResNet 
Mish ArcFace 84.41% 

Inception-

ResNet 
Rish (α=1) ArcFace 84.96% 

SNResNet Rish (α=1) Triplet Loss 91.95% 

SNResNet Rish (α=0.01) Triplet Loss 94.63% 
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Figure 23. Some results of the validation data that show the 

resistance of the proposed models to changes in facial 

appearance 

 

 
 

Figure 24. Some results of the validation data that shows the 

resistance of the proposed models against emotional changes 

 

 
 

Figure 25. An example of validation data that includes label 

noise (the positive sample is not the same as the anchor)  

 

Our proposed models have better generalization power. As 

shown in Figure 22, the proposed models resist against age 

changes. 

In addition, the proposed model of SNResNet was able to 

withstand facial appearance changes, such as makeup, beard, 

glasses, and other things. Figure 23 shows this issue. 

The results of the validation data show that the proposed 

model is also resistant to emotional changes like anger, 

sadness, and happiness, examples of which are shown in 

Figure 24. 

Unfortunately, the CASIA-WebFace dataset has label noise. 

Hu et al. reported that this noise is between 9.3% and 13% [21]. 

This means that when we make our triple data, there is a 

possibility that this noise will cause the model to be wrong. 

We observed an average of 4.75% label noise on 100 samples 

of validation data outputs.  To check the amount of label noise, 

we obtained label noises four times, each time in 100 

validation data, in which 3, 5, 5, and 6 label noises were 

observed, respectively. As a result, in ideal conditions, any 

model trained with this data set will have about a 5% error in 

the validation data. So, for the models trained with the Casia-

WebFace dataset, the maximum accuracy they can achieve in 

the validation stage is 95%. 

In Figures 22-25 the first number indicates the distance 

between the anchor and the positive, and the second indicates 

the distance between the anchor and the negative. 

Figure 25 displays an example of a label noise challenge. 

We investigated the FLOPS of the proposed models next. 

The obtained FLOPS for our models are 2.4013B and 2.4042B, 

respectively (“B” stands for billion). These values of FLOPS 

are 15.72% and 15.61% lower than the standard model, 

respectively, while our proposed activation function had more 

computational cost; this indicates that optimizing the 

Inception-ResNet-B block by the SqNxt block has been 

efficient. Table 2 compares the amount of FLOPS of our 

models with other models. Our models show the least amount 

of FLOPS in this table. 

 

Table 2. Comparison of FLOPS of the proposed models with 

standard models. (B stands for billion) 

 
Backbone Activation 

Function 

FLOPS 

Inception-ResNet-V1 ReLU 2.8492B 

Inception-ResNet-V1 Mish 2.8523B 

SNResNet 

(proposed) 

Rish (α=1) 2.4013B 

SNResNet 

(proposed) 

Rish (α=0.01) 2.4042B 

 

Table 3. Comparing the classification accuracy of the proposed models with other advanced models on LFW dataset 

 
Method Year Loss Architecture Training Set Accuracy 

SphereFace [22] 2018 A-Softmax ResNet64 CASIA-WebFace 99.42% 

 2019 AMS-Softmax ResNet50 CASIA-WebFace 99.34% [23] 

Marginal Loss 2019 Marginal Loss ResNet50 CASIA-WebFace 98.91% [23] 

ArcFace 2019 ArcFace ResNet50 CASIA-WebFace 99.35% [23] 

ACNN [24] 2020 Arcface ResNet-100 DeepGlint-MS1M 99.83 

RCM Loss [25] 2020 Rotation Consistent Margin loss ResNet-18 CASIA-WebFace 98.91 

Ben Fredj et al.’s work [26] 2021 Softmax with center loss GoogleNet-Inception CASIA-WebFace 99.2 

----- 2023 Softmax Inception-ResNet-V1 CASIA-WebFace 98.85% 

----- 2023 Triplet Loss Inception-ResNet-V1 CASIA-WebFace 99.05% 

IAM [27] 2020 IAM loss Inception ResNet-V1 CASIA-WebFace 99.12 

SNResNet 2023 Triplet Loss SNResNet (Rish (α=1)) CASIA-WebFace 99.41% 

SNResNet 2023 Triplet Loss SNResNet(Rish (α=0.01)) CASIA-WebFace 99.68% 
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We used the LFW dataset to check the performance of the 

proposed models with other advanced face recognition models. 

Table 3 compares the classification accuracy of the proposed 

models with other face recognition models using LFW dataset. 

The classification accuracy of our models was 99.41% and 

99.68%, respectively. 

 
 

7. DISCUSSION 

 

During this work, we encountered certain limitations, 

notably related to hardware constraints during the model 

training process. Specifically, we used a 1660 GPU for the 

training, which imposed a restriction on the achievable batch 

size, capping it at 8. 

Another problem was label noise of the CASIA-WebFace 

dataset. As indicated in Section 6, this dataset contains various 

types of noise, with approximately 5% attributed to label noise 

among the overall range of 9.3% to 13%. Regrettably, the task 

of identifying and mitigating this noise significantly escalates 

the computational demands on our system, and rectifying this 

dataset's label noise presents a formidable challenge that could 

serve as a potential avenue for future research. This label noise 

presence had a notable impact on the accuracy of all models 

trained on this dataset, none of which achieved an accuracy 

exceeding 90% during the evaluation phase with test data. 

However, our proposed model managed to attain an 

impressive accuracy of 94.63%, marking the highest reported 

accuracy to date. 

The dataset primarily comprises classes related to 

Hollywood celebrities, resulting in limited ethnic diversity 

representation. This inherent challenge can hinder the model's 

performance across various ethnicities. To address this issue, 

we applied data augmentation techniques. 

The CASIA-WebFace dataset, like many face recognition 

datasets, exhibits a long-tail distribution in terms of the 

number of images per individual or identity. In a long-tail 

distribution, a small number of identities have a large number 

of images, while the majority of identities have relatively few 

images. This distribution is common in real-world scenarios, 

as there are typically many more "common" individuals with 

numerous images (e.g., celebrities or public figures) and 

relatively fewer images of "uncommon" individuals. The long-

tail distribution in the CASIA-WebFace dataset can have 

important implications for face recognition research and the 

training of machine learning models. When the dataset is used 

to train models, the overrepresentation of some identities and 

underrepresentation of others can lead to issues like bias and 

overfitting. Models may perform exceptionally well on the 

well-represented identities but struggle with the less-

represented ones. To mitigate the effects of the long-tail 

distribution, we employed data augmentation techniques and a 

triplet loss function. 

 

 

8. CONCLUSIONS 

 

In this paper, we proposed a face recognition model to 

enhance face identification accuracy and decrease the model's 

computing cost. For this purpose, we introduced a new deep 

architecture called SNResNet. The proposed model is an 

optimized deep architecture of Inception-ResNet. In 

SNResNet, we combined the Inception-ResNet-B block with 

the SqNxt block. Using this method, we reduced the FLOPS 

of the proposed models by 15.72% and 15.61%, respectively, 

compared to the standard model. Furthermore, the number of 

model parameters optimized by our proposed method is 

15.56% less than the standard model. To increase the accuracy 

of the proposed model, we introduced a new activation 

function called Rish which is a combination of ReLU and 

Mish. Then we designed the generalized Rish activation 

function with a trainable hyper-parameter to optimize the Rish 

activation function to solve different problems. We used the 

Rish activation function and its generalization in the 

SNResNet architecture and finally obtained two face 

recognition models. We considered triplet loss as the loss 

function for both models and used Adam as the optimizer. We 

used the CASIA-WebFace dataset to train the proposed 

models. The second model, Rish with α=0.01, achieved an 

accuracy of 94.63% for the validation data using the Casia-

WebFace dataset. However, the highest possible accuracy for 

this dataset is 95% in ideal conditions. To check the 

performance of the proposed models and compare them with 

other models, we used the benchmark data set of LFW. The 

classification accuracy in the LFW criterion for our proposed 

models are 99.41% and 99.68%, respectively. In comparison, 

the model's accuracy used the Inception-ResNet base network, 

and the triplet loss function is 99.05%; This shows the 

excellent performance of Rish's activation function. 
In addition to face recognition, SNResNet works well in 

other tasks like image classification, object detection, semantic 

segmentation, medical image analysis as well as Inception-

ResNet architecture. Because SNResNet optimized Inception-

ResNet architecture. Therefore, the use of SNResNet in these 

tasks is recommended as future works.  
SNResNet can work well for practical face recognition 

applications such as surveillance systems, identity verification 

and authentication, healthcare, airports and travel. Because in 

practical applications, model accuracy and model size are very 

important. Our model with 94.63% accuracy and its 90 MB 

size is efficient for implementation on most of todays' 

computers. 

 

 

REPLICATION OF RESULTS 

 

The code of the paper is placed in the link below: 

https://github.com/mosdiba/SNResNet/blob/4e5d9ed6925e

b38ab8ce9eb3b8b4cd80fffbc7e2/SNResNet.ipynb. 

The dataset used in this article is CASIA-WebFace, which 

could not be uploaded due to its large volume. 
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