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Touchless fingerprint recognition is becoming increasingly popular as biometric 

authentication in terms of both ease and cleanliness. Furthermore, they offer advantages in 

terms of speed, robustness, and flexibility in challenging circumstances while also meeting 

the increasing need for touchless technologies in a post-COVID-19 era. These touchless 

fingerprint images have a unique quality that sets them apart from traditional ink-based and 

live-scan fingerprints. Existing touch-based fingerprint matchers often struggle to extract 

reliable minutiae features due to differences in contrast, illumination, and magnification. In 

contrast to touch-based systems, which have their own set of problems, such as the existence 

of latent fingerprints or deformation brought about by pressing fingers over a sensor surface, 

touchless acquisition processes have none of these problems. In this paper, a novel Dual-

Cross Generative Adversarial Networks framework with Capsule Networks-based PCA 

filtration is proposed to accurately recognize the touchless fingerprint. In the proposed 

model, Capsule network-based PCA filtration is utilized for fast feature embedding with a 

convolutional architecture to collect spatial information. To handle all the diversification, 

Dual-Cross Generative Adversarial Networks is modeled to restore and recognize the 

fingerprint. The performance of the proposed system is assessed using two widely 

recognized datasets (the PolyU Cross dataset and the Benchmark 2D/3D dataset). The 

experimental results show that the proposed system achieves an accuracy of 99.51% and 

99.13%, respectively, and significantly reduces the Equal Error Rate compared to the 

baseline. 
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1. INTRODUCTION

The World Health Organization (WHO) has advised 

avoiding contact with objects in public places to prevent 

transmission of the new coronavirus 2019 (COVID-19), which 

is now causing widespread outbreaks. Capturing touchless 

fingerprints, in which the finger is not brought into direct 

contact with the sensor, is a promising and exciting 

development in the field of security [1] and hygiene. By 

eliminating the need for direct finger-to-scanning-device 

contact, touchless fingerprint recognition provides a secure 

biometric authentication mechanism. Fingerprint recognition 

technology in the cyber security realm has the potential to 

significantly improve user authentication and authorization 

procedures. Historically, passwords have served as a means of 

verifying a user's identity. However, it is important to note that 

it is susceptible to theft or unauthorized access, therefore 

introducing potential security vulnerabilities, so it is 

inadequate in terms of security. In contrast, biometric methods 

such as touchless fingerprint recognition may be both more 

reliable and more convenient for authenticating users. A 

rapidly expanding area of research that has been investigated 

for more than ten years. Verifying a person's identity through 

this method involve using the unique characteristics of their 

fingerprint. Fingerprints, which are the ridge friction patterns 

on the tips of one's fingers, are a common form of biometric 

identification. Automated fingerprint recognition systems 

have had tremendous success for a variety of applications after 

several years of study [1]. The typical touch-based fingerprint 

recognition method faces difficulties while acquiring 

fingerprints [2]. Low fingerprint quality is caused by problems 

such as a latent fingerprint left on the sensor surface by a 

previous user during the acquisition of a touch-based 

fingerprint [3, 4]. Additionally, the pressure applied to the 

sensor surface causes fingerprint deformation and distortion 

[3]. Distortions may result from uneven finger pressure on the 

device, changes to the finger ridge from strenuous activity or 

accidents, changing lighting conditions on the finger skin, or 

motion artifacts during image capture. Ridge flow can be 

interrupted when fingerprints come into contact with the 

scanner. During capture, a significant amount of background 

noise may also be added [5]. Instead of having to physically 

touch a fingerprint reader, this technology can record and 

analyze the unique patterns and properties of a person's 

fingerprint using modern image processing techniques and 

algorithms. The use of touchless fingerprint identification 

technologies [2] could make biometric identification one of 

the most trustworthy processes. As an alternative to 

conventional touch-based fingerprint identification systems, 

the first touchless system was presented in 2004 [3]. In order 
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to overcome the limitations of touch-based fingerprint 

recognition systems, it is necessary to improve the acquisition 

process by reducing restrictions. This will allow for the 

development of new applications and improve their overall 

usability and acceptance by users. Furthermore, a touchless 

fingerprint image does not include any latent fingerprints and 

does not exhibit any distortion. 

Touchless fingerprint recognition is commonly 

characterized as a sequential procedure comprising four 

distinct stages: capturing the fingerprint image, preprocessing, 

feature extraction, and ultimately recognizing the fingerprint, 

as shown in Figure 1. 

 

 
 

Figure 1. Touchless fingerprint recognition model 

 

a) Touchless fingerprint image capturing 

In touchless fingerprint capturing one or more fingers can 

be presented to an optical device like a camera or lens. The 

National Institute of Standards and Technology [6] produced 

a document to evaluate techniques of touchless fingerprint 

capturing, the document also includes appropriate instructions 

for equipment that may do touchless fingerprint capturing. 

Typically, when the fingerprint image has been obtained, it 

will be analyzed.  

b) Preprocessing 

Perform cleaning and preprocessing on the fingerprint 

images. Typical preprocessing procedures involve reducing 

noise, enhancing images, and normalizing data. Perform 

cleaning and preprocessing on the fingerprint images. Typical 

preprocessing procedures involve reducing noise, enhancing 

images, and normalizing data. The majority of touch-based 

fingerprint images obtained from the devices are in grayscale 

and suitable for feature extraction. However, the majority of 

touchless finger-imaging solutions offer color RGB images 

that need to undergo preprocessing prior to feature extraction 

[7, 8]. 

The illumination sources have an impact on the ability of a 

camera to capture fingerprints. Touchless fingerprints 

typically have a low contrast between the ridges and valleys of 

the fingerprint, which can lead to poor performance when 

attempting to extract feature points. it's hard to control how 

fingers are placed on sensors during acquisition, which can 

cause images to be distorted and in different poses. To solve 

such problem preprocessing is done. The primary challenges 

of preprocessing touchless finger are Image segmentation, low 

contrast [2] and low resolution [3]. In this step, the background 

area of an image is excluded and only those areas that contain 

pertinent information are taken into account. Through average 

squared image gradients, an orientation field is estimated. A 

fingerprint image should have smooth lighting after being 

enhanced. 

c) Recognition of fingerprint 

A Deep learning model is employed to acquire and derive 

features from the preprocessed touchless fingerprint images. 

This comprise of several steps such as feature extraction, 

feature matching and so on. After the features have been 

retrieved, they will be compared to a database of known 

fingerprints. This could involve analyzing the fingerprint's 

pattern and shape in addition to its individual minutiae in order 

to verify a person's individuality. This requires determining 

the precise location, direction, and nature of each minute detail, 

including a ending of ridge, a bifurcation, or an island. To 

Extracting the Minutiae-Based Feature [4, 5, 9], Images need 

to be changed from RGB to greyscale, Consequently, learning 

must also be used to ROI [10], which includes tasks like 

identifying fine details, extracting ridges and valleys, and 

estimating the direction of fingers. Once the finger has been 

located, the ROI can be retrieved by adjusting the image’s size 

and resolution to their baseline values. 

d) Evaluation 

It is critical to ensure that the fingerprint recognition method 

satisfies the particular requirements of your application, be it 

for identity verification, access control, or any other use case, 

by conducting exhaustive testing and evaluation. 

In this paper, a novel Dual-Cross GAN [11-14] click or tap 

here to enter text.framework with Capsule Network [15] based 

PCA filtration is proposed, for accurately recognize the 

touchless fingerprint images. Capsule Network based PCA 

filtration is utilized for fast feature embedding with 

convolutional architecture to collect spatial information and 

important differentiating characteristics in order to offset the 

information loss caused by pooling operations. A filtration 

method is used to find the precise match of the fingerprint 

based on the extracted features. This is done to construct 

uncorrelated variables, which limit the loss of information and 

optimize variation over time. These goals are accomplished by 

optimizing variation throughout time and minimizing the loss 

of information. Dual-Cross GAN is modeled to restore and 

recognize the fingerprint so that it may be used to manage all 

of the variation. Consequently, the effectiveness of the 

framework based on accurately recognizing the fingerprint 

from the generated fingerprint is assessed Touchless 

Fingerprint Recognition with Capsule Networks and PCA 

Filtration using Dual-Cross Generative Adversarial Networks. 

 

 

2. RELATED WORK 

 

Significant research has been done in the rapidly developing 

field of touchless fingerprint identification over the past few 

years. The efficacy of deep convolutional neural networks in 

addressing many challenges in computer vision has motivated 

researchers to employ trained networks for direct predictions 

of fingerprint details. There have been a number of promising 

studies that feed raw fingerprint images into untrained deep 

neural networks in exchange for the output of directly gathered 

information.  

Developed a technique to color-based segmentation [16] 

that was used for the extraction of ROI. The authors utilized 

962



 

this strategy in conjunction with a frequency estimation map. 

In addition to that, in order to extract the ROI, they carried out 

a region expanding operation and utilized a Gaussian 

probability density function [17]. A similar strategy took 

advantage of the fingertip's ridge line properties. The finger 

was separated into separate, non-overlapping blocks in this 

instance. The ROI included ridge-line characteristics that 

could be seen inside a block, further demonstrate that a ROI 

extraction based on finger shape features is also feasible in 

constrained scenarios [18]. By identifying distinguishing 

features like fingertips and discontinuities, the authors were 

able to statically calculate the ROI. Deep touchless fingerprint 

unwrapping [19] involves the segmentation of the input image 

into patches of varying sizes, followed by the training of a 

neural network to classify the labels associated with each patch. 

This approach employs a patch-based prediction technique, 

while additionally integrating JudgeNet to anticipate the 

presence of minutiae and LocateNet to accurately determine 

their locations. There exist intriguing scenarios wherever the 

complete fingerprint image is employed to forecast the minute 

elements of the score map. A sophisticated convolutional 

neural network [20] is used to effectively analyze grayscale 

touchless fingerprint images. The primary objective is to 

simultaneously acquire accurate position detection and 

direction calculation through the network's learning process. 

This approach employs a combination of offline learning and 

online testing. A novel loss function is introduced to facilitate 

the joint learning of granularity detection and direction 

regression using complete fingerprint data [9]. A novel 

approach to person authentication, which involves the 

utilization of touchless fingerprint selfies alongside palmprint 

selfies, hence enhancing the efficiency of the multi-biometric 

system [21]. In this study, three local descriptors, namely 

"local phase quantization" (LPQ), "local ternary patterns" 

(LTP), and "binarized statistical image features" (BSIF), were 

employed to obtain key characteristics from touchless 

fingerprint and palmprint selfies. The selection of these 

descriptors was motivated by their ability to provide simplicity 

and efficiency in the feature extraction process. The multi-

biometric score level system was created, merges the matching 

scores utilizing two distinct fusion strategies The improved 

Gabor filters along with intrinsic image decomposition and 

filtering for enhancement [22] is used. While an improvement 

over traditional touched-based fingerprint methods, these 

techniques are still vulnerable to low-contrast images and 

prone to false positives due to the aforementioned spurious 

detail. Additionally, this uses a cross-database evaluation and 

COTS comparison. An integrated Gabor filter framework [23], 

approach is utilized to extract and analyze both finger vein and 

fingerprint information. A novel method called "supervised 

local-preserving canonical correlation analysis" (SLPCCAM) 

for generating feature vectors of fingerprint-vein (FPV) 

patterns through feature-level fusion Ultimately, the process 

of personal identification is executed by the utilization of the 

nearest neighbor classifier, which relies on the utilization of 

FPVFVs. A method a method in which isolate regions of 

interest and normalize uneven lighting, the obtained images 

are first put through rigorous preprocessing stages than gather 

localized feature data and efficiently add this regional data to 

the matching stage [3]. 

Table 1 shows a comparison of various touchless fingerprint 

identification techniques. 

 

Table 1. Various touchless fingerprint recognition techniques 
 

Author Approach Accuracy 

Attrish et al. 

[24] 

The fingerprint image is 

transformed into a fixed 

length embedding by the 

Siamese network, which is 

then used to determine a 

similarity score between the 

reference and probing images. 

 

EER=2.19% [24] 

Grosz et al. 

[25] 

TPS spatial transformer for 

500 ppi scaling and 

deformation correction of 

touchless fingerprints. Fusion 

of minutiae and CNN texture 

representations. 

 

EER= 0.72% [25] 

EER=0.30% [25] 

Lin et al. 
[26] 

A resilient paradigm for 

correcting TPS deformations, 

involving the precise matching 

of minutiae and ridges. 

 

EER=14.33% 

[26] 

EER=19.81% 

[25] 

Zhang et al. 

[9] 

Multi-task fully convolutional 

neural network for learning 

precise locations and 

directions of minutiae 

simultaneously. 

 

EER = 1.94% [9] 

EER= 4.28% [9] 

Kumar and 

Zhou [3] 

Retrieve localized feature data 

and seamlessly integrate it 

into the matching phase. 

 

EER=3.95% [3] 

Labati et al. 

[27] 

The neural networks are 

utilized to assess the disparity 

in orientation across two 

touchless fingerprint captures. 

EER=2.20% [27] 

 

 

3. PROPOSED WORK 

 

The Dual-Cross GAN framework with PCA filtration based 

on Capsule Network is discussed in this section. first present a 

summary of the suggested algorithm. After that, a detailed 

description of our Dual- Cross GAN network's design follows. 

Finally, we provide implementation information and validate 

fingerprints. 

 

3.1 Overview of the proposed algorithm 

 

When extracting features using the prior restoration 

approach, some data was lost due to pooling layers, which 

negatively impacted recognition accuracy. In addition, the 

recognition system needs to be automated so that it can cope 

with the variations in fingerprint images and produce reliable 

results. Furthermore, there is only one sort of error that can be 

handled by the earlier conventional models that have been 

published in the literature. It is not possible to handle all 

artefacts and recognize fingerprint images with complete 

accuracy. Therefore, it is necessary to create a framework that 

can effectively address all of the aforementioned problems. 

Therefore, this proposal, proposes a unique Dual-Cross GAN 

framework with Capsule Network based PCA filtration 

framework as illustrated in Figure 2 for accomplishing precise 

fingerprint identification automatically by restoring the region 

of interest. 
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Figure 2. Proposed framework 

 

a) Image preprocessing 

At the initial step, a touchless fingerprint image 

preprocessing technique is employed that extracts the input, 

detects the fingerprint using the modified Haar-like pattern 

using the SVM algorithm [28], and performs optimized 

alignment and cropping of the required portion of the image, 

allowing the complexity of processing unwanted regions to be 

deduced at an early stage, after that, a dual normalization of 

size and pixels is carried out so that the appropriate input can 

be provided to the network throughout the succeeding step. 

b) Capsule network based PCA filtration 

An optimum Capsule Net-based PCA filtration is performed 

after the pre-processing stage, using a capsule neural network 

to capture spatial information and major distinguishing factors 

to compensate for the loss of information inherent in pooling 

processes. The collected features are then sent into a Principal 

Component Analysis (PCA) model.  

 

 
 

Figure 3. Capsule network 

 

Figure 3 displays a straightforward Capsule Network 

architecture [29]. There are simply two convolutional layers 

and one fully connected layer, making this a very simple 

architecture. The Preprocessed image of size 28×28 is given to 

the first convolution layer(Conv1), which executes 256 

convolutional with kernel of size 9×9, with a stride of 1, ReLU 

activation function. This layer converts pixel intensities to the 

20 ×20 local features that are then used as inputs for the 

primary capsules. In order to create 32 capsule maps with an 

8D vector as the capsule, the second layer additionally 

executes 256 convolutional operations with a stride of 2. Each 

16D capsule in the final Layer, receives input from all capsules 

in the layer below. 

For total input ‘Ni’, the vector output ‘vi’ for each capsule 

‘i’ is given by 

 

𝑣𝑖 =
||𝑁𝑖||2

1+||𝑁𝑖||2

𝑁𝑖

||𝑁𝑖||
  (1) 

 

The previous layer capsule output ‘pj’ is then multiplied by 

a ‘Mji’ weight matrix to generate the input ‘Ni’ which is a 

weighted sum over all ‘prediction vectors’ �̂�𝑖|𝑗  and 𝑎𝑗𝑖  is a 

coupling coefficient. 

 

𝑣𝑖 = ∑ 𝑎𝑗𝑖𝑗 �̂�𝑖|𝑗  (2) 

 

�̂�𝑖|𝑗 = 𝑀𝑗𝑖𝑝𝑗 (3) 

 

The coupling coefficients between capsule i and every other 

capsule in the layer above are calculated using the softmax of 

𝑠𝑗𝑖 . 

 

𝑎𝑗𝑖 =
exp(𝑠𝑗𝑖)

∑ exp(𝑠𝑗𝑖)𝑘
  (4) 
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Then the collected features are given to PCA filtration, here 

complete dataset consisting c+1 dimension. In machine 

learning paradigm c represents X_train and 1 represents 

Y_train (labels). So X_train + Y_train equals our entire 

training dataset. 

where the best possible fingerprint match is found by 

generating independent variables that minimize the amount of 

time-varying correlation. The operation is completed if the 

correlation is higher than a threshold; otherwise, if the 

fingerprint is not identified, there is a low quality that needs to 

be fixed. 

 

 

c) Dual-cross GAN framework 

This network is based on the modelling of two separate 

GAN networks. The Dual Generative Adversarial Network 

(GAN) [12] was introduced as a method for conducting image-

to-image translation without the need for paired data. Dual 

GAN aims to develop the ability to convert images from a 

source domain X to a desired domain Y. Dual Gan is a 

framework consisting of two generators, G1 and G2, which are 

trained to learn the mappings from X to Y and from Y to X, 

respectively [30]. Additionally, there are two corresponding 

adversarial discriminators, D1 and D2. A schematic model and 

information flow is depicted in Figure 4. 

 

 
 

Figure 4. Dual-cross GAN 

 
As depicted in Figure 4, G1 is used to translate the image 

𝑥 ∈ 𝑋  to domain Y, D1 assesses the fittingness of the 

translation 𝐺1(𝑥, 𝑛) in Y, where random noise is denoted by n. 

The function 𝐺1(𝑥, 𝑛) is subsequently transformed back into 

the original domain X using the function G2. Discriminator D1 

is trained using y as positive samples and G1(x, n) as negative 

samples. Generators G1 and G2 are set up to make "fake" 

outputs that fool the respective discriminators D1 and D2 and 

to keep the two rebuilding losses to a minimum. The overall 

objective of Dual GAN is Expressed: 

 

Ɩ(𝐺1, 𝐺2, 𝐷1 , 𝐷2) = Ɩ𝐺𝐴𝑁(𝐺1, 𝐷2, 𝑋, 𝑌) +
Ɩ𝐺𝐴𝑁(𝐺2, 𝐷1, 𝑌, 𝑋) + ƞƖ𝐷𝑢𝑎𝑙_𝑐𝑜𝑛(𝐺1, 𝐺2)  

(5) 

 

where, ƞ represents a parameter that regulates the impact of 

losses, and ƖGAN represent the adversarial loss. 

 

Ɩ𝐺𝐴𝑁(𝐺1  , 𝐷2 , 𝑋, 𝑌) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝐷2(𝑥|𝑦)] +

𝔼𝑛~𝑝(𝑥)
[log (1 − 𝐷2(𝐺1  (𝑛|𝑦))]  

(6) 

 

where, 𝑙𝑜𝑔𝐷2(𝑥|𝑦)  represents the probability that the 

generator has correctly classified the actual image. It could 

more accurately classify the fake image produced by the 

generator by maximizing log (1 − 𝐷2(𝐺1 (𝑛|𝑦)) . In this 

scenario, the generator 𝐺 aims to produce images that are 

indistinguishable from real images 𝑦 by the discriminator D2. 

In order to map 𝑌 → 𝑋, this procedure is utilized as well. On 

the other hand, due to the fact that adversarial loss by itself is 

unable to ensure the formation of the intended image, 

Dual_con loss was suggested as an alternative. This loss can 

be expressed as follows: 

 

Ɩ𝐷𝑢𝑎𝑙_𝑐𝑜𝑛(𝐺1  , 𝐺2) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[||𝐺1(𝐺2(𝑥)) −

𝑥||1] + 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)
[||𝐺2(𝐺1(𝑦)) − 𝑦||1]  

(7) 

 

In GAN1, a Convolutional Neural Network (CNN) with a 

variational encoder structure is utilized, with a leaky ReLu 

activation function and a tanh function in the final layer of the 

network, to ensure normal distribution, and a convolutional 

kernel is employed to convolve and deconvolve optimally with 

the Adam algorithm for parametric optimization. After that, a 

discriminator is generated with the help of VGG19, and the 
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sigmoid function is used to perform batch normalization upon 

the convolutional layers of the network. The GAN2 is a 

DeblurGan with a Feature Pyramid network and a ResNet-like 

topology. Because of the cross-setup between GAN1 and 

GAN2, a high performance is achieved when processing 

fingerprint images. From the resulting fingerprint images, the 

fingerprint image is then correctly identified using PCA. 

Because of this, the suggested framework may be used to 

correctly identify fingerprint, resolving the problems with 

earlier networks. 

 

 

4. RESULT AND DISCUSSION 

 

In this section, the precise experimental findings that were 

collected are presented in order to evaluate the efficiency of 

the proposed framework. The proposed Dual-Cross GAN 

framework with Capsule Network based PCA filtration is 

implemented in Python. The output of the implementation and 

the results obtained are discussed in this section. 

 

4.1 Dataset description  

 

Two touchless fingerprint datasets, Benchmark 2D/3D [25] 

and PolyU Cross [26], are utilized in our investigations in 

order to examine the proposed technique and then compare it 

with different techniques. The data in the PolyU Cross dataset 

come from two different sets. 2016 touchless fingerprint 

images from a total of 336 fingers, with six impressions taken 

from each finger, were used in the first session. The second set 

of 960 fingerprint images, which were taken between two and 

twenty-four months after the initial set for the same clients, 

includes six fingerprint impressions for each unique finger. 

1500 different fingers were used in the collection of 9000 

touchless fingerprint scans that make up the benchmark 2D/3D 

dataset. There are two separate perspectives, and each 

perspective produces two impressions. 

 

4.2 Implementation results 

 

After the training dataset, the touchless fingerprint images 

are pre-processed to create the test set, and a ratio of 3:1 is 

taken into consideration while dividing the dataset between 

training and testing. In this paper, the data loader function was 

utilized for gathering fingerprint image data, with the batch 

size chosen as 4 and the shuffling turned on, so that the 

sequence of four image data from the same batch taken at 

various times can be randomly shuffled in order to minimize 

the influence of the input sequence on PCA training. Figure 5, 

show the processing of single fingerprint image using the 

proposed framework. 

 

 
 

Figure 5. Processing of single fingerprint image using the 

proposed framework 

 

4.3 Experimental evaluations 

 

The overall performance of the proposed framework in 

terms of accuracy and Equal Error Rate is depicted in Figure 

6. The framework that was suggested has obtained an accuracy 

(ACU) of 99.51% for the PolyU dataset and 99.13% for the 

benchmark 2D/3D dataset. Additionally, the proposed model 

has achieved an Equal Error Rate (EER) of 1.81% for the 

PolyU dataset and 3.34% for the benchmark 2D/3D dataset. 

As a result, the proposed model is shown to operate more 

effectively. The model is validated in the next part by a 

comparison to the traditional approaches. 

 

 
(a) 

 
(b) 

 

Figure 6. Performance of the proposed framework (a) for 

Accuracy (b) for equal error rate 

 

4.4 Comparison metrics  
 

In Figure 7 shown the ROC curves for fingerprint 

recognition are compared for several techniques on two 

different datasets. Their related AUCs and EERs have been 

compared in Table 1. We can observe that for both the datasets, 

the suggested method's ROC curve is higher than that of other 

approaches. As shown in Table 2, our proposed method is 

successful in achieving a drop in EER for the PolyU Cross 

dataset and the Benchmark 2D/3D dataset. According to these 

findings, the performance of our suggested method is superior 
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to that of previous methods. Figure 8 shows a comparison of 

the CMC curves of various fingerprint recognition techniques 

using the PolyU Cross dataset and the Benchmark 2D/3D 

dataset, respectively. On both sets of data, we are able to see 

that the CMC curve generated by proposed method has a value 

that is noticeably higher than that generated by the other 

methods. 

 

 
(a) 

 
(b) 

 

Figure 7. ROC curve (a) PolyU dataset, (b) Benchmark 

2D/3D dataset 

 

 
(a) 

 
(b) 

 

Figure 8. CMC curve (a) PolyU dataset, (b) Benchmark 

dataset 
 

Table 2. AUCs and EERs of different methods on touchless 

fingerprint recognitions 

 
Dataset Method ACUs(%) EER(%) 

PolyU Cross 

dataset [26] 

Proposed Method 

ContactlessNet [5] 

ContactlessMinuNet 

[9] 

Nist Mindtct [6] 

99.51 

97.33 

99.33 

93.03 

1.81 

4.8 

1.94 

13.35 

Benchmark 

2D/3D dataset 

[25] 

Proposed Method 

ContactlessNet [5] 

ContactlessMinuNet 

[9] 

Nist Mindtct [6] 

99.13 

74.39 

98.24 

81.84 

3.34 

31.8 

4.28 

22.94 

 

 

5. CONCLUSION 

 

In this paper, we have presented a framework for touchless 

fingerprint recognition with Capsule Network based PCA 

filtration using a Dual-Cross GAN Network. Our experimental 

results on two publicly available databases, which were 

discussed in the previous section, show that they perform 

significantly better than conventional techniques. Over two 

distinct databases, the Benchmark 2D/3D dataset and the 

PolyU cross dataset, the proposed model has obtained 

accuracy (ACUs) of 99.51% and 99.13% and Equal Error Rate 

(EER) of 1.81% and 3.34%, respectively.  

The offered method is hypothesis-driven and has the 

potential to be implemented in a variety of experimental 

touchless environments. The findings of the experiments 

indicate that the approach that was proposed has the potential 

to effectively improve the overall accuracy of touchless 

fingerprint recognition systems. Additionally, the results that 

were obtained were compared to earlier work and determined 

to be superior in every way.  

In summary, touchless fingerprint recognition is a cutting-

edge technology with revolutionary possibilities for access 

control and identity verification. Touchless fingerprint 

recognition systems have proven to be more user-friendly than 

their predecessors, and they are quickly becoming a 

mainstream biometric performance modality. Therefore, we 

will direct our future studies toward developing novel methods 
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for dealing with some of the forthcoming difficulties 

associated with touchless fingerprinting, such as accelerating 

feature extraction, decreasing the time needed to process 

images, and detecting fingerprint liveness. 
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