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Knee Osteoarthritis (KOA) is a prevalent condition that deteriorates with time and may lead 

to disability. Diagnosis depends on subjective symptom evaluation and radiograph analysis. 

The Kellgren-Lawrence (KL) grading system is widely used to assess the severity of knee 

osteoarthritis, with grades ranging from 0 (no osteoarthritis) to 4 (severe osteoarthritis). The 

detection and classification of KOA play a crucial role in medical diagnosis and treatment 

planning. It enables healthcare professionals to detect the condition at an early stage to take 

necessary precautions through medication to prevent its progression, leading to a better 

quality of life for those affected by it. In this work, we propose an approach for knee 

osteoarthritis classification using fine-tuned deep learning models. We employed the 

concept of transfer learning by utilizing three pre-trained EfficientNet models: EfficientNet-

B5, EfficientNet-B6, and EfficientNet-B7. By customizing the layers of the model, transfer 

learning enables us to use prior knowledge and models to enhance the performance of new 

tasks with limited data. The proposed system aims to automate the KL grading process by 

analyzing knee X-rays and classifying them into one of the five grades using fine-tuned 

EfficientNet models. Each model's performance is evaluated. The experimental results show 

that the EfficientNet-B7 model achieved the highest accuracy of 78.53%, while 

EfficientNet-B5 and EfficientNet-B6 attained accuracies of 75.14% and 76.47%, 

respectively.  

Keywords: 

deep learning, EfficientNet, Kellgren and 

Lawrence (KL), Knee Osteoarthritis (KOA), 

transfer learning 

1. INTRODUCTION

The most common kind of arthritis, knee osteoarthritis is a 

degenerative disorder of the knee joint that restricts movement 

and worsens the quality of life for millions of people [1]. 

Although there is no known treatment for KOA, there are 

several medical, environmental, and biological risk factors that 

can be altered and those that cannot, are known to contribute 

to the emergence and development of the illness [2]. Knee 

osteoarthritis is radiologically categorized using the Kellgren-

Lawrence grading system, which categorizes it into five 

classes. From grade 0 to grade 4, it advances. To determine the 

seriousness of the condition, knee osteoarthritis must be 

graded. The 5 classes are divided into healthy(0), doubtful(1), 

minimal(2), moderate(3), and severe(4) class types. The KL 

grades are illustrated in Figure 1. 

The two main components of treating knee OA illness are 

diagnosis and treatment. The best outcomes for illness 

management are achieved when diagnosis and therapy are 

combined. Based on symptoms and signs, a diagnosis 

determines the presence of a disease in a patient, whereas 

treatment focuses on the disease itself to provide palliative and 

curative effects. The purpose of treatment is to halt the 

progression of the disease and prevent it from reaching its 

most severe state; therefore several diagnoses can be made to 

track the course of the illness. The prognosis might be used to 

forecast future illness occurrences and treatment outcomes by 

expanding our understanding of how diseases progress [3]. 

KOA diagnosis can result in variation in assessment among 

clinicians. Pain perception can vary among individuals, 

making it difficult to measure and track disease progression. 

Furthermore, early symptoms of KOA are often unrecognized, 

and joint pain is sometimes perceived as a normal part of 

aging. KOA symptoms can also overlap with other 

musculoskeletal conditions or systemic diseases, making it 

important to carefully evaluate and distinguish it from other 

forms of arthritis like rheumatoid arthritis. 

Currently, it is impossible to predict knee OA because of the 

unknown association between variables. Predicting disease 

development and creating a preventative strategy is 

challenging for medical professionals. As far as we are aware, 

there is no predictive tool used in clinical practice. The notion 

of creating diagnostic and prognostic prediction models for the 

healthcare sector was recently developed [3], and it might be 

applied to improve the present knee OA management system. 

X-ray imaging and patient-reported outcome measures

(PROMs) are now the major methods used to diagnose knee

OA. Arthroscopic examination, physical examination, joint
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aspiration, and advanced imaging systems are further 

diagnostic methods for diagnosing knee OA. Diagnoses of 

knee OA often occur in the middle to end stages of the illness 

when there is already significant evidence of permanent joint 

damage. Early diagnosis enables healthcare professionals to 

provide timely and appropriate interventions, leading to 

improved prognoses, enhanced treatment options, and 

ultimately better quality of life for patients. The earlier the 

diagnosis, the better the chances of slowing down the 

progression of the disease and preventing permanent damage. 

It is important to keep in mind that all currently available 

diagnostic techniques demand time-consuming, high-level 

interpretation from medical professionals. As a result of the 

success of the data-driven approach in other areas of 

healthcare, deep learning algorithms and sensor technologies 

are now being used to exploit present diagnostic systems. 

 

 
 

Figure 1. Grading of KOA 

 

 

2. RELATED WORK 

 

Deep learning is a powerful technique for the categorization 

and analysis of images that is extensively used in many 

industries, including the medical industry, and performs 

admirably. Deep Convolutional Neural Networks (CNNs) and 

machine learning (ML) have recently demonstrated significant 

superiority in identifying even the smallest variances in 

biological joint structural alterations in X-rays [4]. The early 

detection and treatment of knee OA may be made possible by 

a deeper understanding of the condition. The best strategy to 

manage knee OA is thought to be with early treatments and 

preventative measures. Unfortunately, there hasn't yet been a 

reliable method that is widely used to detect the disease in its 

earliest stages. 

The High-Resolution Network (HRNet) was utilized by Jain 

et al. [5] to collect the multi-scale aspects of knee X-rays and 

an attention mechanism was added to enhance performance. 

For the validation of network learning, they additionally used 

Gradient-based Class Activation Maps (Grad-CAMs). In the 

above study, due to the radiograph’s lack of complex 

characteristics, certain radiographs could not be appropriately 

categorised.  

To autonomously identify the region of interest (ROI) inside 

X-rays, Swiecicki et al. [6] devised a methodology that made 

use of the RPN (region proposal network). Posteroanterior 

(PA) and Lateral (LAT) views were both used in this approach 

as the model's input. In clinical practices, certain cases might 

lack one of these views, which would render this method 

unusable. One potential limitation of comparing the model's 

scores with radiologist-assigned grades is the inherent 

variability in radiologist ratings. Radiologists may interpret 

images differently, which could impact the assessment of the 

method's performance and make it difficult to establish a 

definitive benchmark. 

A CNN using ResNet architecture was trained by Olsson et 

al. [7]. To accomplish knee localization and KL-grade 

prediction, Zhang et al. [8] utilized various residual neural 

network (ResNet) architectures—ResNet-18 and ResNet-34.  

Using baseline plain radiographs, Leung et al. [9] suggested 

a multitask DL model based on ResNet-34 to diagnose the 

severity of OA and forecast the likelihood of total knee 

replacement (TKR) in the next nine years.  

Chen et al. [10] proposed a customized YOLOv2 network 

to detect knee joints from X-ray images and utilized fine-tuned 

CNN models such as ResNet, DenseNet, InceptionV3 and 

VGG to classify the detected knee joint images using an 

adjustable ordinal loss. Shamir et al. [11] methodology 

involves identifying informative image content descriptors 

and transforms, assigning weights using Fisher scores to the 

images, and using a weighted nearest neighbour’s algorithm to 

predict the KL grade. Guan et al. [12] used knee X-ray images 

to predict KOA with VGG16 and DenseNet, along with a 

support vector machine (SVM) on non-image data. Based on 

the YOLO and DenseNet models, the authors [13] developed 

an OA prediction model that integrates the two deep neural 

network models for classification and joint cropping. To 

construct a collaborative training model, they integrated the 

DL model with data on radiographic and demographic risk 

factors, similar to the study [12]. This study used a relatively 

small dataset of 1950 knees from the Osteoarthritis Initiative 

(OAI) database. These models are developed and evaluated 

specifically for predicting the progression of radiographic 

medial joint space loss in the knee's medial compartment over 

a 48-month follow-up period. The applicability of the models 

to predicting other endpoints or in different time frames is not 

explored. 

Abdullah and Rajasekaran [14] located the knee joint space 

width (JSW) region using a faster region with CNN (RCNN) 

architecture and employed pre-trained networks, ResNet-50 

for feature extraction and AlexNet for KOA severity 

classification. The selection criteria for patients above 50 years 

old with OA symptoms might introduce a bias towards older 

patients, potentially limiting the generalizability of the model 

to a broader demographic. 

To identify OA lesions in both knees based on the KL scale, 

Cueva et al. [15] proposed a semi-automatic CADx model 

employing Deep Siamese convolutional neural networks and 

ResNet-34. For learning the similarity measure between the 

radiographs, Tiulpin et al. [16] implemented a technique using 

a deep Siamese network. The image resolution in this study 

was reduced to 8-bit that could have resulted in the loss of 

detailed information from the images, impacting the accuracy 

and performance of the model. There were instances where the 

model misclassified certain images, as there were differences 

between its predicted KL grade and the assessments made by 

a radiologist and an orthopaedist. This suggests that there may 

be inaccuracies in the ground truth KL grades of the dataset.  
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By modifying the template matching method, Antony et al. 

[17] were able to identify the knee joint centre’s using a linear 

SVM and Sobel horizontal image gradients. Through 

classification and regression, a CNN was then used to evaluate 

the severity of knee OA. Inception-ResNet-V2 was used by 

Kwon et al. [18] to extract features from radiography images 

that were then used by an SVM for the multi-classification of 

KOA. This study evaluated the performance of the model 

internally and used a relatively small sample size. However, 

the lack of open-source databases containing both 

radiographic images and gait data for KOA patients hinders 

external validation of the model. Although gait data provides 

significant information on joints, its complexity and the 

variety of features extracted could lead to challenges in 

interpretation, implementation, and clinical adoption. It does 

not delve into potential difficulties in processing and utilizing 

gait data.  

The primary goal of this work is to develop a deep learning 

model using Knee digital X-ray images and classify KOA 

using the developed model. Deep learning models are 

modified to fit our KOA database using the transfer learning 

technique and validated through testing for detecting KOA. 

The rest of the work is divided into the following sections. 

Our suggested technique, which involves dataset gathering, 

extraction of features and classification, is described in Section 

3. Investigative results are shown and contrasted with existing 

state-of-the-art models in Section 4. The conclusion can be 

found in Section 5. 
 

 

3. METHODOLOGY 
 

The transfer learning technique aids in the transfer of the 

learned skills of the pretrained models and in the gathering of 

knowledge needed to handle fresh data. Transfer learning 

enables the reuse of pre-existing parameters, such as 

convolution weights from a model learned on a huge dataset, 

for training new models with a limited number of annotated 

images. 

In this work, the B5, B6, and B7 models of EfficientNet 

were investigated. The implemented methodology's block 

diagram is shown in Figure 2. The dataset used includes 4796 

participants aged between 45 and 79. It comprises of 4130 X-

ray images, each representing two knee joints, resulting in a 

total of 8260 knee joints. To overcome the issue of class 

imbalance in classification, data augmentation is performed on 

the dataset as the severe class's x-ray images have the fewest 

while the healthy class's images have the greatest number. The 

X-ray image resolution used in this work is 224x224. The 

proposed approach commences with gathering X-ray images 

from the KOA Dataset, augmenting the data, followed by 

feature extraction and classification of the KOA using a deep 

learning model. 

 

3.1 Collection of datasets and pre-processing 

 

The knee X-ray dataset is taken from the Kaggle database 

[19]. It consists of 5 class types—healthy, doubtful, minimal, 

moderate, and severe. Data augmentation is applied when 

employing transfer learning to train a dataset. Hence, the 

length of an original dataset has been increased using data 

augmentation techniques such as flipping, rotation, shifting, 

etc. The samples from the dataset for training, testing and 

validation are displayed in Table 1. Several transformations 

are applied to the images, such as rotating them by an angle of 

20 degrees in either direction or performing horizontal flipping 

for X-Ray images. Shifting techniques such as width and 

height shift with a factor of 0.2 are also utilised. Furthermore, 

zooming in by a factor of 0.2 is applied to the images as well. 

 

 
 

Figure 2. Block diagram of knee classification 
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Table 1. Total augmented knee X-ray images 

 
Knee Type Total Training Validation Testing 

Healthy [0] 6503 4571 655 1277 

Doubtful [1] 2987 2091 305 591 

Minimal [2] 4347 3031 423 893 

Moderate [3] 2170 1514 211 445 

Severe [4] 1667 1513 53 101 

Total 17,674 12,720 1647 3307 

 

3.2 Classification through deep learning  

 

In the implementation of our deep learning model for KOA 

classification, we utilized the commonly used ReLU activation 

function and a fully connected layer (FC) with the SoftMax 

layer as the last layer. Changes to offsets and weights are made 

using optimizers such as root mean square propagation 

(RMSprop), stochastic gradient descent with momentum 

(SGDM) and adaptive moment estimation (ADAM). The 

SGDM accelerates an undesirable descent path to reduce 

oscillation. It is performed by combining the learning rate η 

with the prior stage update vector γ. 

 

𝑣𝑡 = 𝛾𝑣𝑡−1 + η∇𝜃𝐽(𝜃) (1) 

 

𝜃𝑡+1 = 𝜃𝑡 − 𝑣𝑡 (2) 

 

𝑣𝑡 - momentum, 𝜃𝑡+1-parameter. 

 

Using an exponentially decaying average, RMSprop 

adaptively converges and is defined as:  

 
𝐸|𝑔2|𝑡 = 𝛾𝐸|𝑔2|𝑡−1 + (1 − 𝛾)𝑔𝑡

2  (3) 

 

𝜃𝑡+1 = 𝜃𝑡 −
η

√𝐸|𝑔2|𝑡+∈
𝑔𝑡  (4) 

  

𝐸|𝑔2|𝑡 - running average, 𝑔𝑡 = ∇𝜃𝐽(𝜃). 

 

The Adams optimizer determines the learning rates for 

every parameter. The second moment's variance 𝑣𝑡  and the 

first moment's mean 𝑚𝑡 are updated as: 

 
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (5) 

 
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2 (6) 

It is common practice to either use input images with greater 

resolutions for training and testing or to enhance the depth or 

breadth of the CNN to scale a model. Although these methods 

boost accuracy, they frequently lead to subpar outcomes and 

the need for time-consuming human correction. While 

increasing individual dimensions enhance the model’s 

performance, it was found that optimizing network 

performance required balancing all network dimensions—

depth, width, and image resolution—against the available 

resources. 

 

3.2.1 EfficientNet 

EfficientNet scales up models rapidly and easily using a 

technique known as a compound coefficient. Compound 

scaling consistently scales each dimension with a 

predetermined fixed set of scaling factors rather than 

arbitrarily changing depth, resolution, or width. EfficientNet's 

developers created seven models in varying dimensions using 

an AutoML and scaling approach, outperforming most CNNs' 

accuracy while being much more efficient [20]. 

For developing the method of compound scaling, the 

authors systematically studied the impacts that each scaling 

technique has on the model's performance and efficiency. The 

compound scaling method is shown in Figure 3. The 

compound scaling method is based on the idea of balancing 

dimensions of width, depth, and resolution by scaling with a 

constant ratio. The scaling coefficients of EfficientNet variants 

are shown in Table 2. 

The equations below show how it is achieved 

mathematically, 

 

Resolution R = γ Ø, Depth D = α Ø, Width W = β Ø, 

Such that α. β2.γ2 ≈ 2 

 α ≥ 1, β ≥ 1, γ ≥ 1 

(7) 

 

Comparing the compound scaling technique to other 

random scaling techniques, it helped to improve the model 

accuracy and efficiency of previous CNN models, like ResNet 

and MobileNet, by about 1.4% and 0.7%, respectively [20]. 

The experimental findings demonstrated that using 

EfficientNet on the other dataset under consideration 

significantly increases overall prediction accuracy when 

compared to a known baseline [21, 22]. Table 3 displays the 

EfficientNet-B0 baseline network's parameters. 

 

 

 
 

Figure 3. Model scaling. (a) network of baseline; (b)-(d) Individual scaling of depth, width and resolution in a network; (e) 

uniform scaling of resolution, width and depth in a network 
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Table 2. EfficientNet model scaling coefficients-(B0, B5, 

B6, B7) 

 
Model 

(EfficientNet) 

D_coe 

(Depth) 

W_coe 

(Width) 

S_coe 

(Scale) 

B0 1 1 1 

B5 2.2 1.6 456/224 

B6 2.6 1.8 528/224 

B7 3.1 2.0 600/224 

 

Table 3. Baseline EfficientNet-B0 network’s parameters 

 
ith 

Stage 
Operators Resolution 

#No of 

Channels 

#No of 

Layers 

1 Conv3×3 224×224 32 1 

2 
MBConv1, 

k3×3 
112×112 16 2 

3 
MBConv1, 

k3×3 
112×112 24 4 

4 
MBConv1, 

k3×3 
56×56 40 4 

5 
MBConv1, 

k3×3 
28×28 80 5 

6 
MBConv1, 

k3×3 
14×14 112 5 

7 
MBConv1, 

k3×3 
14×14 192 7 

8 
MBConv1, 

k3×3 
7×7 320 2 

9 
Conv1 × 1 

&Pooling&FC 
7×7 1280 1 

 

 

4. EXPERIMENTAL RESULTS 

 

Our model was trained and tested using a dataset of knee X-

rays which are classified using the KL grading system. The 

findings of this work demonstrated the potential for classifying 

knee OA with the help of X-ray images using transfer 

learning-based EfficientNet. 

 

4.1 Parameters considered 

 

The learning rate of 0.001, epochs of 10,15,20, batch size of 

20 and 32, and different optimizers are used in these models, 

which is represented in Table 4. The test set was used to 

determine the accuracy after the model had been trained on the 

knee KOA dataset. 

 

Table 4. Considered parameters 
 

Parameters Inputs 

Optimizer Adams, RMSprop, SGD 

Pooling Maximum pooling 

Batch size 20,32 

Learning rate 0.001 

Drop factor 0.4 

Maximum epochs 10,15,20 

 

Epochs are simply the number of iterations. The model is 

trained at 10 epochs while maintaining a batch size of 20. We 

observed that as the epochs increase, the training accuracy 

increases. A learning rate of 0.001 is considered. The drop 

factor of values 0.2 and 0.4 was considered. Optimizers 

improve model performance by adjusting weight parameters 

that reduce the loss function and minimize experienced loss. 

By comparing the true value and the predicted value from a 

neural network, the loss function determines loss. Optimizers 

such as RMSprop, SGDM, and ADAMs are utilized to 

enhance the performance of deep learning models. 

To train models, at least 10 epochs were taken into account. 

The model was trained using the three different optimizers 

with these parameters. The experimental results of the model's 

fine-tuning are shown in Tables 5-7.  

Using the Adams optimizer, EfficientNet-B5 attained the 

best accuracy of 75.14%, EfficientNet-B6 obtained the best 

accuracy of 76.47% and EfficientNet-B7 achieved the greatest 

accuracy of 78.53% of all on the 5-class dataset. Figure 4 

depicts the loss function of the top-performing fine-tuned 

models. 

 

Table 5. EfficientNet-B5 fine-tuned investigative results 

 
Tested 

Parameter 

Optimizers   

ADAMs RMSprop SGDM 

Batch size 20 20 20 

No. of epochs 10 10 10 

Learning rate 0.001 0.001 0.001 

Drop factor 0.4 0.4 0.4 

Accuracy 75.14% 71.23% 64.73% 

 

Table 6. EfficientNet-B6 fine-tuned investigative results 

 
Tested 

Parameter 

Optimizers   

ADAMs RMSprop SGDM 

Batch size 20 20 20 

No. of epochs 10 10 10 

Learning rate 0.001 0.001 0.001 

Drop factor 0.2 0.2 0.2 

Accuracy 76.47% 69.80% 56.14% 

 

Table 7. EfficientNet-B7 fine-tuned investigative results 

 
Tested 

Parameter 

Optimizers   

ADAMs RMSprop SGDM 

Batch size 20 20 20 

No. of epochs 10 10 10 

Learning rate 0.001 0.001 0.001 

Drop factor 0.2 0.2 0.2 

Accuracy 78.53% 72.35% 67.88% 

 

 
(a) EfficientNet-B5
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(b) EfficientNet-B6 

 

 
(c) EfficientNet-B7 

 

Figure 4. The loss function of fine-tuned EfficientNet 

models 

 

4.2 Equations for performance measures 

 

The performance of the model is represented by a confusion 

matrix. Table 8 displays the confusion matrix for a 

classification involving the "P" class, characterized by 

dimensions of P × P.  

 

Table 8. P class confusion matrix 

 

True Class 

Predicted 

Class 
   

Class 1 Class 2 … Class P 

Class 1 X11 X12 … X1P 

Class 2 X21 X22 … X2P 

. 

: 

. 

: 

. 

: 

. 

: 

. 

: 

Class P XP1 XP2 … XPP 

 

The confusion matrices produced by our models are shown 

in Figures 5-7. Measures of performance like Accuracy, F1-

score, recall, and precision are computed [23-30]. The 

following is a collection of formulas for calculating 

performance measures. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑐𝑙𝑎𝑠𝑠 𝑘) =  
𝐶𝑘𝑘

∑ 𝐶𝑗𝑘
𝑛
𝑗=1

  (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑐𝑙𝑎𝑠𝑠 𝑘) =  
𝐶𝑘𝑘

∑ 𝐶𝑘𝑗
𝑛
𝑗=1

  (9) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 (𝑐𝑙𝑎𝑠𝑠 𝑘) =  
2 × 𝐶𝑘𝑘

∑ 𝐶𝑘𝑗+𝑛
𝑗=1 ∑ 𝐶𝑗𝑘

𝑛
𝑗=1

  (10) 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑐𝑙𝑎𝑠𝑠 𝑘)  =  
∑ 𝐶𝑗𝑗−𝐶𝑘𝑘

𝑛
𝑗=1

(∑ 𝐶𝑗𝑘−𝐶𝑘𝑘
𝑛
𝑗=1 )+(∑ 𝐶𝑗𝑗−𝐶𝑘𝑘)𝑛

𝑗=1

  
(11) 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝐶𝑘𝑘

𝑛
𝑗=1

∑ ∑ 𝐶𝑘𝑗
𝑛
𝑗=1

𝑛
𝐾=1

  (12) 

 

 
 

Figure 5. EfficientNet-B5’s confusion chart 

 

 
 

Figure 6. EfficientNet-B6’s confusion chart 

 

 
 

Figure 7. EfficientNet-B7’s confusion chart 
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Table 9. EfficientNet-B5 performance measures 

 

Class 
Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

Fl-

Score 

(%) 

Doubtful 92.94 26.73 86.20 41.52 

Healthy 78.85 90.52 93.43 84.29 

Minimal 64.54 84.77 93.63 73.20 

Moderate 84.36 73.93 96.02 78.80 

Severe 78.70 84.16 99.50 81.34 

Average 79.87 72.02 93.75 71.83 
The test accuracy of the model is 75.14% 

 

Table 10. EfficientNet-B6 performance measures 

 

Class 
Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

Fl-Score 

(%) 

Doubtful 82.52 34.35 87.32 48.51 

Healthy 79.49 92.25 94.38 85.39 

Minimal 68.59 82.64 93.05 74.96 

Moderate 81.00 76.63 96.04 78.74 

Severe 84.15 68.32 99.01 75.41 

Average 79.15 70.84 93.96 72.60 
The test accuracy of the model is 76.47% 

 

 

Table 11. EfficientNet-B7 performance measures 

 

Class 
Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

Fl-

Score 

(%) 

Doubtful 66.42 45.52 88.90 54.56 

Healthy 78.71 92.64 94.76 85.11 

Minimal 78.50 78.50 92.05 78.50 

Moderate 90.40 80.45 97.01 85.14 

Severe 78.18 85.15 99.53 81.52 

Average 78.44 76.45 94.45 76.96 
The test accuracy of the model is 78.53% 

 

Tables 9-11 provide a summary of the performance metrics 

for all the fine-tuned models. From the tabulated results, it is 

obvious that the fine-tuned B7 model when performed on a 5-

class dataset attained the highest test accuracy of 78.53%.  

 

4.3 Comparison of models 

 

Table 12 lists the performance measures obtained by several 

models in the literature. Our EfficientNet-B5, B6, and B7 

models outperformed existing models in the literature with a 

75.14%, 76.47%, and 78.53% accuracy rate.  

 

Table 12. Comparison of different studies 

 
Experimental 

Study 

Number of 

Images 

Number of 

Classes 
Models Precision (%) F Score (%) Recall (%) Accuracy (%) 

Antony et al. 

[17] 
14,732 5 CNN 56 56 60 60.3 

Cueva et al. 

[15] 
31,164 5 RESNET34 65.80 - 61.6 61.71 

Tiulpin et al. 

[16] 
27,293 5 

Deep Siamese 

Convolutional Neural 

Network 

- - - 66.71 

Kwon et al. 

[18] 
728 5 

(only radiographical 

images) INCEPTION 

RESNETV2 

60 55 55 64.7 

Proposed 

Model 

 

17,674 5 

EfficientNet-B5 

EfficientNet-B6 

EfficientNet-B7 

79.87 

79.15 

78.44 

71.83 

72.60 

76.96 

72.02 

70.84 

76.45 

75.14 

76.47 

78.53 

 

 

5. CONCLUSION 

 

Identifying and classifying KOA with precision and 

accuracy is a challenging task, especially given the similarity 

between different Kellgren-Lawrence (KL) grades. 

Automated classification models can aid in early detection, 

enabling timely interventions and personalized treatment 

plans. In this paper, a deep-learning-based EfficientNet 

algorithm has been employed for the detection and 

classification of knee osteoarthritis. The three EfficientNet 

models in this research are B5, B6, and B7. These models were 

trained using transfer learning. It was found that EfficentNet-

B5, B6, and B7 produced accuracies of 75.14%, 76.47% and 

78.53%. Compared to the variants of EfficientNet, the fine-

tuned EfficientNet-B7 model achieves the best classification 

performance. A limitation of our model is its apparent 

underperformance in classifying KL-0 and KL-1 classes, 

likely due to the subtle distinction between these two classes. 

The results obtained show that automated OA detection and 

prediction based on X-ray images of the knee is possible and 

is faster than manual detection and classification. As a result, 

an automatic diagnostic system can save time, enabling 

doctors to focus on clinical findings. Our future work will 

include exploring new techniques and methods to optimize 

performance and develop robust diagnostic tools for detecting 

and classifying the KOA. It also involves integrating 

additional information, such as the existence or severity of 

symptoms. Additionally, it is intended to adapt and evaluate 

the techniques created for the examination of joint illnesses 

other than OA, such as rheumatoid arthritis and osteoporosis. 
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