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Heart failure, a condition characterized by a decline in cardiac pumping capacity, 

necessitates precise assessment of cardiac function due to its systemic impact on blood 

circulation. Dynamic cardiac ultrasound imaging serves as a crucial tool for evaluating left 

ventricular function. The quality of these images directly influences the accuracy of 

diagnostics and the effectiveness of treatments. Existing cardiac ultrasound image 

processing technologies face limitations in enhancing details, noise reduction, and capturing 

dynamic information. This study introduces a novel image processing technique that 

integrates visual attention mechanisms and generative adversarial networks (GAN) to 

enhance the details of dynamic cardiac ultrasound images. Additionally, it employs an 

algorithm based on dynamic contour models for image segmentation and assessment of left 

ventricular function. The application of these techniques aims to improve the processing 

quality of cardiac ultrasound images, enabling more accurate assessments of left ventricular 

function and providing more effective support for the diagnosis and treatment of heart failure 

patients. 
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1. INTRODUCTION

In contemporary medical diagnostics, precise assessment of 

cardiac function is crucial for the treatment and management 

of patients with heart failure. Heart failure is a severe clinical 

condition involving a decline in cardiac pumping capability, 

affecting systemic blood circulation [1-3]. Dynamic cardiac 

ultrasound imaging, a non-invasive and cost-effective 

diagnostic method, can visually display the cardiac motion 

state and is valuable for assessing left ventricular function [4, 

5]. However, traditional cardiac ultrasound images often face 

limitations in resolution and capturing dynamic details due to 

equipment and technological constraints, necessitating 

advanced image processing technologies to enhance 

diagnostic accuracy and efficiency. 

Although cardiac ultrasound imaging is widely used in 

clinical diagnostics, the accuracy of assessing left ventricular 

function in heart failure patients remains a challenge. The 

function of the cardiac left ventricle directly influences patient 

prognosis, and precise functional assessment can guide 

clinical treatment decisions, such as drug selection and dosage 

adjustments [6-8]. Therefore, developing new cardiac 

ultrasound image processing technologies to better analyze 

and interpret image data holds significant clinical importance 

for enhancing diagnostic accuracy and timeliness [9-12]. 

Current cardiac ultrasound image processing methods have 

made certain advancements but still have many deficiencies. 

For example, many existing algorithms struggle to effectively 

handle noise in images and are not sufficiently precise in 

capturing cardiac details in dynamic images, limiting their 

effectiveness in actual clinical applications [13-16]. Moreover, 

these methods often overlook visual attention information in 

images, which is crucial for accurately identifying critical 

cardiac areas [17, 18]. Thus, researching and developing new 

image processing algorithms is particularly urgent. 

This paper proposes a new dynamic cardiac ultrasound 

image processing technology, consisting of two innovative 

research parts. First, a detail enhancement algorithm for 

dynamic cardiac ultrasound images based on visual attention 

mechanisms and GAN, which can significantly improve the 

clarity and dynamic representation of images, thereby better 

revealing the cardiac functional status. Second, a technique for 

dynamic cardiac ultrasound image segmentation and left 

ventricular function assessment based on dynamic contour 

models, which not only improves segmentation accuracy but 

also enhances the precise measurement of left ventricular 

function parameters. Through the application of these two 

technologies, this study aims to advance the field of cardiac 

ultrasound image processing, providing more precise 

diagnostic support for heart failure patients, thereby 

optimizing treatment strategies and improving patient quality 

of life. 
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2. DYNAMIC CARDIAC ULTRASOUND IMAGE 

DETAIL ENHANCEMENT ALGORITHM  

 

In the diagnosis and treatment of heart failure patients, 

accurate assessment of left ventricular function is crucial as it 

directly relates to the formulation of treatment plans and 

improvement of prognosis. The dynamic cardiac ultrasound 

image detail enhancement algorithm proposed in this paper, 

based on visual attention mechanisms and GAN, improves 

image quality and highlights critical cardiac structures. This 

makes dynamic cardiac ultrasound images clearer and more 

accurate in displaying the cardiac dynamics. The application 

of this technology not only effectively reduces uncertainties 

during the diagnostic process but also provides more precise 

structural and functional information of the heart. This assists 

physicians in accurately assessing the left ventricular function 

of heart failure patients, thereby guiding personalized 

treatment strategies. 

 

2.1 GAN  

 

The enhancement of dynamic cardiac ultrasound images 

involves dealing with the heart's motion patterns and subtle 

changes in cardiac structures, which is crucial for capturing 

and enhancing details related to cardiac motion. This paper 

applies GAN to the enhancement of dynamic cardiac 

ultrasound image details, focusing on converting unclear or 

low-quality ultrasound images into high-quality, detailed 

images. In this process, the generator model takes a random 

vector A representing the latent image feature space as input, 

following a probability distribution oe(a), where κ represents a 

continuous or discrete feature space. Through training, the 

generator model oϕ(a) learns to simulate the distribution of 

actual ultrasound images oe(a), thereby generating samples 

similar to real ultrasound images. Figure 1 shows the 

schematic diagram of the GAN structure used. 

 

 
 

Figure 1. Schematic diagram of the GAN structure used 

 

In the application of detail enhancement in dynamic cardiac 

ultrasound images, the core of using GAN lies in processing 

the complex grayscale distribution and detailed features of 

cardiac motion in dynamic cardiac ultrasound images through 

a deep generative model. This method involves an adversarial 

process between a generator and a discriminator, where the 

generator attempts to create synthetic images from random 

noise vectors C that are as close as possible to real ultrasound 

images. These noise vectors C follow a predefined distribution 

o(c) and are transformed into image data through a deep neural 

network h:C→κ, aiming to make the transformed images o(c) 

approximate the distribution of real cardiac ultrasound images 

oe(a). Compared to infrared high dynamic image detail 

enhancement, dynamic cardiac ultrasound image detail 

enhancement not only deals with the complexity of image 

grayscale but also precisely captures and enhances key details 

of cardiac motion, such as the thickness of the ventricular 

walls and the dynamic changes of the cardiac valves, which 

have a direct impact on correctly interpreting the cardiac 

functional status and guiding clinical decisions. 

(1) Discriminator  

In the algorithm, the key task of the Discriminator F(a,θ) is 

to distinguish whether the input sample a is sourced from the 

real cardiac ultrasound image distribution oe(a) or produced by 

the generator model oϕ(a). The output of the discriminator 

ranges between 0 and 1, where 1 indicates the sample is a real 

image, and 0 indicates it is a generated image, essentially 

assessing the probability of the sample being a real cardiac 

ultrasound image as o(b=1|a). Correspondingly, the 

probability that the sample originates from the generator is 

o(b=0| a)=1-F(a,θ). 

 

( ) ( )1 ,o b a f a = =  (1) 

 

This setup is particularly important in dynamic cardiac 

ultrasound image enhancement, as compared to infrared high 

dynamic imaging, cardiac ultrasound involves more complex 

dynamic physiological structures, such as the dynamic 

changes of the ventricular walls and valves. This requires the 

discriminator not only to recognize the authenticity of the 

image but also to assess the naturalness and physiological 

accuracy of the dynamic details within the image. 

The discriminator optimizes its performance through the 

cross-entropy loss function, which effectively promotes the 

authenticity and accuracy of the generated images, thus 

supporting the precise assessment of left ventricular function 

in heart failure patients. Given a sample (a,b), with b={1,0} 

indicating whether the sample is from the real distribution oe(a) 

or the generator model oϕ(a), the parameters of the generator 

and discriminator are represented by ϕ and θ respectively, with 

the loss function expressed as: 
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(2) Generator  

In the algorithm, the main objective of the Generator H(c,ϕ) 

is to produce synthetic images from a random noise vector z 

that are indistinguishable from real cardiac ultrasound images, 

thereby deceiving the discriminator into incorrectly 

identifying their origin. In this process, the target function for 

the generator is empirically chosen to provide good gradients 
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to facilitate effective learning and adjustments during model 

training. Especially in dynamic cardiac ultrasound image 

enhancement, consideration is given to the spatiotemporal 

details of the images, such as the subtle movements and 

structural changes during the cardiac pumping cycle. This 

requires the generator not only to produce visually authentic 

static images but also to capture the authenticity of these 

physiological dynamics. 
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Choosing to use the log(b) function, where gradients are 

smaller near the value of 1, may lead to reduced training 

efficiency, especially when the discriminator perceives the 

generated images to be almost indistinguishable from real 

images, i.e., (1-H(c,ϕ),θ)→1. Therefore, selecting a target 

function suitable for the characteristics of dynamic cardiac 

images is crucial for enhancing training feedback and boosting 

the model's generative capabilities, ensuring the generated 

cardiac images are not only visually accurate but also 

realistically dynamic, thus effectively supporting the precise 

assessment of left ventricular function in heart failure patients. 

(3) Training  

In the algorithm, the training process often requires special 

attention as it can be unstable. To ensure that the generator and 

discriminator reach a balance, the training of the discriminator 

should not be too strong initially, as this might prevent the 

generator from learning sufficiently, nor too weak, as this 

could cause the images produced by the generator to lack 

realism. During training, a key practice is that the 

discriminator is usually updated multiple times for each single 

update of the generator. This strategy ensures that the 

discriminator has adequate discerning capability before 

starting to train the generator, ensuring that the generator 

receives effective feedback and improves its generative power. 

In the application of dynamic cardiac ultrasound image detail 

enhancement, this is particularly important because the 

ultrasound images need to capture the dynamic changes and 

subtle features of the heart. An overly simplistic training 

process could make it difficult for the generator to produce 

sufficiently realistic images. The number of times the 

discriminator is updated during training is a hyperparameter, 

depending on the specific application scenario and the 

required quality of generation. This training method helps 

ensure that the GAN generates ultrasound images that are both 

realistic and sufficiently detailed for assessing left ventricular 

function in heart failure patients. 

 

2.2 Network model based on visual attention mechanism 

and GAN 

 

This study, based on visual attention mechanisms and GAN, 

has developed a specialized algorithm for dynamic cardiac 

ultrasound image detail enhancement. Its network structure 

incorporates a U-Net-based generator and a Patch-based 

discriminator. The schematic diagram of the network structure 

is shown in Figure 2. In this setup, the generator receives 

dynamic cardiac ultrasound images as input and outputs 

enhanced detail images along with corresponding saliency 

maps, which highlight key areas within the cardiac images, 

thereby guiding physicians to notice potential abnormalities or 

significant physiological information. The generator includes 

two decoders: one for enhancing cardiac images and another 

specifically for generating saliency maps. By introducing short 

connections between the encoder and the cardiac image 

enhancement decoder, this design aims to maintain the 

integrity of image details and enhance the flow of information 

from lower to higher layers. The saliency map decoder is 

attached to each layer of the cardiac image enhancement 

decoder, but they do not share weights, ensuring that the 

generation of saliency maps is focused on key visual features 

of the image. The role of the discriminator is to analyze the 

differences between images produced by the generator and 

real cardiac ultrasound images, further pushing the generator 

to produce more accurate and diagnostically valuable images. 

Specifically, a generator combining ResNet and U-Net 

architectures has been used to improve image quality and 

accelerate network convergence. Notably, ResNet's residual 

blocks are embedded into the bottleneck part of the U-Net 

structure to effectively capture and refine the high-level 

semantic information in cardiac ultrasound images, aiding in 

better depicting the complexity of cardiac dynamics. The 

addition of four ResBlocks expands the receptive field, thus 

enhancing the perception quality of cardiac structural details. 

The strength of the U-Net structure lies in each encoder block 

being directly copied to a decoder part of the same size, with 

short connections promoting information flow and reducing 

the problem of gradient vanishing, thus maintaining the edges 

and low-level details of the image. Additionally, a saliency 

map decoder is introduced for saliency prediction based on the 

visual attention mechanism, performing pixel multiplication 

of the two outputs of the generator, highlighting areas crucial 

for the assessment of left ventricular function. The 

discriminator employs a PatchGAN structure, which allows it 

to evaluate specific sections of the image rather than the whole, 

providing a more refined true/false determination. 

 

 
 

Figure 2. Schematic diagram of the network structure for 

dynamic cardiac ultrasound image detail enhancement 

algorithm 

 

To ensure effective and stable convergence of the algorithm, 

the loss functions are set in stages within the algorithm. In the 

first stage, only the generator is trained, using L1 loss to 

optimize pixel accuracy, essentially optimizing the generator 

for Peak Signal-to-Noise Ratio (PSNR), aimed at initially 

improving the overall quality of the image to ensure that the 

generated images maintain high structural consistency with 

real images. This stage lays the foundation for the stability of 

subsequent GAN training, as the optimized generator can 

produce samples closer to real cardiac ultrasound images. 
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Suppose the enhanced images and saliency maps output by the 

generator are represented by H1(a) and H2(a), and their 

corresponding real samples by b1 and b2. The product of 

corresponding elements of the matrices is represented by the 

symbol ○. The L1 loss and the region of interest L1 loss 

function expressions for the first stage are: 

 

( )1 1 1UEM R H a b = − 
 (4) 

 

( ) ( )1 2 1 2 1 1
EPUM R H a H a b b = − 

 (5) 

 

In the second stage, the GAN architecture is introduced, 

using cross-entropy loss to train the discriminator, as well as 

combining L1 loss and GAN loss to optimize the generator, to 

improve the realism and dynamic detail expression of the 

generated images, especially the precise depiction of cardiac 

dynamics such as the motion of the ventricular walls and valve 

function. Assuming the generator is represented by H and the 

discriminator by F, the loss functions for the generator and 

discriminator are:  
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To further enhance the visual quality of the images, 

convolutional layer outputs are used as semantic information. 

Assuming that the feature map of the m-th layer from a pre-

trained CNN model is represented by θm(*), the definition of 

the perceptual loss is as follows:  

 

( ) ( )( )1 1
1

o m lM R H a b  = −
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 (8) 

 

The total loss function for the generator in the second stage 

can be represented as:  

 

UE EPU EPU H H o oLOSS M M M M  = + + +  (9) 

 

 

3. DYNAMIC CARDIAC ULTRASOUND IMAGE 

SEGMENTATION AND LEFT VENTRICULAR 

FUNCTION ASSESSMENT  

 

Compared to traditional ultrasound image segmentation, 

cardiac ultrasound image segmentation faces more challenges, 

mainly due to the dynamic changes in cardiac structures and 

the inherent noise and low contrast characteristics of 

ultrasound images. Especially when assessing the left 

ventricular function in heart failure patients, accurately 

identifying the boundaries and dynamic changes of the left 

ventricle is crucial. Thus, in the task of dynamic cardiac 

ultrasound image segmentation for left ventricular function 

assessment, this study focuses on how to effectively integrate 

image gradient information with regional information to 

enhance segmentation accuracy and the ability to resolve 

complex cardiac structures. For this purpose, this study 

proposes combining gradient-related local edge information 

with region-based segmentation techniques to explore whether 

this fusion method can improve segmentation results, thereby 

generating a more precise left ventricular model. Figure 3 

shows a schematic diagram of a four-level pyramid. 

 

 
 

Figure 3. Four-level pyramid schematic diagram 

 

Specifically, this paper employs a multi-resolution theory-

based dynamic contour model that uses Gaussian pyramid 

techniques to process dynamic cardiac ultrasound images for 

more precise detection and segmentation of the left ventricular 

edges. Initially, a set of Gaussian pyramid images is 

established for the cardiac ultrasound image, starting from the 

top layer’s low-resolution image, using the segmentation 

model to preliminarily determine the approximate edges of the 

left ventricle. These initial edges are then transferred to the 

next level of higher-resolution images through 2x 

interpolation, serving as the initial curves for the evolving 

contours. Subsequently, the segmentation model continues to 

evolve and fine-tune the curves, moving step-by-step 

downwards, each time refining and adjusting the contours to 

fit the higher resolution image features, until the bottom layer 

of the pyramid, i.e., the original image resolution, is processed.  

 

3.1 Top layer image processing 

 

Compared to high-resolution original images, the edges in 

the top layer images are more precise and unaffected by 

internal brightness irregularities, which is particularly 

important for dynamic cardiac ultrasound images, as cardiac 

images often exhibit blurring and dynamic changes due to 

ongoing heart movement. In handling the lowest resolution 

image edges within the proposed Gaussian pyramid-based 

dynamic contour model, the process starts by creating a low-

resolution image at the top of the Gaussian pyramid structure. 

After Gaussian filtering of this image, the image gradient 

function |I^| is used to generate an edge map. This edge map 

provides a clear visual indication at a lower resolution, 

showing the main edge positions of the left ventricle. The 

obtained low-resolution edge map provides a stable starting 

point for the subsequent segmentation process, which then, 

through continuous refinement and interpolation steps, 

progressively restores to higher resolutions, constantly 

optimizing and adjusting the segmentation contours until the 

precision of the original image is reached.  

The segmentation algorithm starts with the top layer 

image—the lowest resolution image in the Gaussian 

pyramid—using a simplified model to preliminarily identify 

the contours of the left ventricle. Specifically, this paper 

introduces the level set method, which uses an implicit 

function ϕ called a level set to represent curves or interfaces in 

the image, continually updated during the segmentation 

process. This step establishes the rough positions as the 

foundation for the entire segmentation process, providing a 

starting point for the next step of refinement. The update 
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iteration formula is as follows: 
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To enhance the model's edge-capturing capability and 

address common issues of noise and blurring in cardiac 

ultrasound images, this method introduces a Gradient Vector 

Field (GVF) as an external force, represented by Nθ. GVF is 

based on edge information and can create an extensive capture 

domain, allowing the model to attract contours from a distance 

towards the true edges, not just those areas near the initial 

contours. Applying this external force on the lowest resolution 

top-layer image effectively pulls the initially identified 

contours towards more accurate edge positions, which is 

particularly important in dynamic images where the edges 

continuously change due to the beating of the heart. Assuming 

the positive constant is represented by ε, the calculation 

formula is:  

 

( )

( ) ( ) ( )
2 2

1 2IN OUT

DI N
s

U z U z

 
    



   

  
=   −      

 −  − + −
 

 (11) 

 

In practical applications, compared to the external force 

term hθ in the traditional Geodesic Active Contour (GAC) 

model, the newly introduced external force term Nθ provides 

a broader range of edge attraction. This means that after 

incorporating this external force into the level set model, even 

if the initial contour setup is not close enough to the true edges, 

it can still be effectively attracted to the correct position. After 

processing the top layer image, refinement through each layer 

of the Gaussian pyramid uses the results from the previous 

layer as the initial condition for the next layer, gradually 

evolving towards higher resolution layers. This process, from 

coarse to fine segmentation, not only ensures accurate edge 

capture but also accommodates the complex needs of 

assessing left ventricular function in dynamic cardiac 

ultrasound images. 

 

3.2 Lower layer image processing 

 

In the task of dynamic cardiac ultrasound image 

segmentation aimed at assessing left ventricular function, 

processing the lower layer images based on the Gaussian 

pyramid structure requires adjusting the segmentation 

methods to accommodate the finer details and challenges of 

uneven brightness. The rough contours obtained from the top 

layer image are passed down to the next layer using a 2x 

interpolation method, by which time the contours are already 

closer to the true edges, but the lower layer images, due to 

higher resolution, display more details and local brightness 

irregularities. Therefore, the global dynamic contour model 

used on the top layer image is no longer suitable at this stage 

primarily because it is not fit for fine local adjustments and 

cannot handle uneven brightness issues. In processing the 

lower layer images, models more suited for local detail 

adjustments are typically used, such as edge-based 

segmentation models that employ local-specific edge guiding 

force fields, which can more effectively handle detail issues at 

higher resolutions and reduce computational burden. 

In this specific task of dynamic cardiac ultrasound image 

segmentation, the GAC model is chosen to process the lower 

layer images of the pyramid. Similar to its traditional 

application, the GAC model primarily uses image gradient 

information to guide the evolution of contours in this 

application. However, directly using the GAC model in 

cardiac ultrasound images may lead to the contours evolving 

towards incorrect edges, especially in areas where the edges 

are weak or blurred. Therefore, for accurate contour tracking 

of the left ventricle, especially in high-resolution images, it is 

necessary to appropriately adjust the traditional GAC model to 

ensure that the contours can accurately capture the dynamic 

boundaries of the left ventricle. Assuming the gradient 

characteristic function on image U(a,b) is 

h(U)=1/1+|(Hδ*U)|2, represented by h. The main force 

dragging the contour to the target edge in the GAC model is 

represented by the term hθ, and the reconstructed GAC 

level set iteration equation is given by: 

 

h h
s


  


=    + 


 (12) 

 

To enhance segmentation precision and overcome 

difficulties caused by the inherent noise and edge blurring of 

ultrasound images, this method introduces a prior shape 

constraint energy in the lower layer image processing 

workflow. This energy setting is based on the observation of 

maintaining approximate contour consistency from the top to 

the bottom layers in the image pyramid. By introducing this 

shape energy in the level set form, a stable shape constraint 

can be provided for the contour during the evolution process, 

preventing the contour from deviating too far from the actual 

boundaries of the left ventricle. This step is particularly 

important as it helps the model overcome issues of mis-

segmentation that may arise from solely relying on local 

gradient information of the image, especially given the high 

precision requirements for edge localization in dynamic 

assessment of left ventricular function. Assuming the sigmoid-

type function T(θ)=rθ-r-θ/rθ+-θ is represented by T(θ), and the 

level set function interpolated from the previous layer of the 

pyramid is represented by θ0, the level set expression for this 

energy is: 

 

( ) ( )( )
2

2 0

1

2
R T T fafb 



= −  (13) 

 

3.3 Lower layer image processing 

 

In the segmentation process at the bottom layer of the 

pyramid, the final evolution of the contour is accomplished by 

combining several different influencing factors. Initially, the 

basic shape of the curve is controlled using ∫Ψ|G(θ)|dadb to 

ensure the contour's smoothness and continuity. Following 

that, according to the GAC model, image gradient information 

is used to attract the contour to the target edge, refining the 

contour to the true boundaries of the left ventricle. Lastly, the 

prior shape energy function is minimized using the steepest 

descent method to further optimize the contour, ensuring it 

conforms not only to the image edge information but also to 

the pre-defined shape of the left ventricle. Assuming the 

weighting coefficients are represented by β1, β2, and β3, the 
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final iterative function for θ on the bottom layer of the pyramid 

is given by:  

 

( ) ( )
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 (14) 

 

In the task of dynamic cardiac ultrasound image 

segmentation for left ventricular function assessment, the 

mathematical implementation of the dynamic contour model 

based on the Gaussian pyramid addresses specific cardiac 

imaging challenges such as image blurring caused by 

continuous heart motion and indistinct left ventricular 

boundaries. To optimize model performance and ensure 

convergence within a multi-resolution framework, a 

penalization term (2θ-(θ/|θ|)) is used to avoid 

reinitialization of the level set function, helping to maintain the 

stable evolution of the contour without losing accuracy. In the 

numerical implementation, spatial derivatives ∂θ/∂a, ∂θ/∂b are 

calculated using the central difference method to achieve more 

precise spatial location information, while the time derivative 

∂θ/∂s is realized through forward difference. These methods 

are chosen to accommodate the dynamic characteristics of 

cardiac ultrasound images, ensuring rapid and precise tracking 

of the left ventricular boundaries across different cardiac 

cycles. This mathematical approach provides a solid 

computational basis for efficient and reliable assessment of 

left ventricular function, adapting to the complex variations in 

left ventricular boundaries in a dynamic environment. 

 

3.4 Left ventricular function assessment 

 

In the diagnosis and treatment of heart failure patients, the 

assessment of left ventricular function is directly linked to 

measuring cardiac pumping efficiency. Using dynamic cardiac 

ultrasound imaging technology, dynamic functional and 

structural changes of the left ventricle can be visually observed. 

Utilizing high-precision dynamic cardiac ultrasound image 

segmentation results, the following steps can be implemented 

to accurately assess left ventricular function: 

(1) Left Ventricular Volume Measurement: Initially, by 

accurately determining the left ventricular boundaries through 

image segmentation, the volume of the left ventricle can be 

calculated at different cardiac cycle stages. End-diastolic 

volume (EDV) and end-systolic volume (ESV) are crucial 

parameters in assessing left ventricular function. 

(2) Ejection Fraction (EF) Calculation: The EF is a core 

metric for evaluating left ventricular pumping capability, 

calculated as: EF=(EDV-ESV)/EDV*100%. A low EF value 

typically indicates impaired cardiac pumping function and is 

one of the key indicators of heart failure. 

(3) Wall Thickness and Motion Analysis: Through 

segmentation results, the thickness variations of the left 

ventricular wall during the cardiac cycle and the wall motion 

speed can also be measured, which helps to assess the 

functional state of the cardiac muscle and detect potential local 

muscle motion abnormalities. 

(4) Other Parameter Analysis: Specifically including stroke 

volume, cardiac output, peak ejection rate, peak ejection time, 

peak filling rate, peak filling time, overall longitudinal strain, 

overall circumferential strain, global radial strain, etc. 

(5) Regional Function Assessment: Using segmentation 

technology, the left ventricle can be divided into regions, 

analyzing volume changes and wall motion in each area to 

identify functional impairments in specific cardiac regions.  

In implementing these assessment steps, it is necessary to 

consider the patient's specific circumstances, including the 

uniqueness of the cardiac structure and the patient's overall 

health condition. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Table 1. Evaluation metrics for single frame dynamic cardiac 

ultrasound images by different image enhancement 

algorithms 

 

Algorithm 
Evaluation 

Metric 

Sequence 

One 

Sequence 

Two 

SRAD 
TMQI 0.9685 0.9015 

FSITM 0.9456 0.9564 

DTCWT 
TMQI 0.9856 0.9682 

FSITM 0.9485 0.8893 

BM3D 
TMQI 0.9454 0.8124 

FSITM 0.9587 0.9426 

Total Variation 

Denoising 

TMQI 0.9782 0.9784 

FSITM 0.9562 0.9623 

The Proposed 

Algorithm 

TMQI 0.9863 0.9789 

FSITM 0.9784 0.9762 

 

 
 

Figure 4. Normalized mean change curves of images by 

different algorithms 

 

In Table 1, we can observe the performance of different 

image enhancement algorithms on single frame images from 

dynamic cardiac ultrasound image sets. From the evaluation 

metrics TMQI and FSITM, it is evident that the algorithm 

proposed in this paper demonstrates superior performance on 

both sequences. Specifically, for Sequence One and Sequence 

Two, the TMQI scores for the proposed algorithm are 0.9863 

and 0.9789 respectively, and FSITM scores are 0.9784 and 

0.9762 respectively. Compared to other algorithms, such as 

SRAD, DTCWT, BM3D, and Total Variation Denoising, our 

algorithm not only performs best overall in TMQI scores but 

also shows higher image similarity and detail retention 

capability in FSITM scores. Notably, BM3D shows 

significantly lower TMQI scores on Sequence Two, only 

reaching 0.8124. The analysis clearly indicates that the 
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dynamic cardiac ultrasound image detail enhancement 

algorithm based on visual attention mechanisms and GAN 

proposed in this paper has significant advantages in terms of 

detail clarity and image authenticity. By effectively enhancing 

image quality, this algorithm can better reveal cardiac 

functional status, which is crucial for accurately assessing left 

ventricular function in heart failure patients. Moreover, the 

high TMQI and FSITM scores of this algorithm suggest that its 

superior performance is not limited to image enhancement but 

also in maintaining original image features and enhancing 

image comparability, which is particularly important for 

clinical diagnosis and subsequent image analysis. 

From Figure 4, it is apparent that different image processing 

algorithms have distinct effects on enhancing dynamic cardiac 

ultrasound images. We compared the normalized mean change 

curve data for algorithms such as SRAD, DTCWT, BM3D, 

Total Variation Denoising, and the algorithm proposed in this 

paper based on visual attention mechanisms and GAN. It is 

evident from the figure that the SRAD algorithm shows higher 

normalized means in most sequences, indicating a more 

pronounced enhancement effect, especially in the middle and 

later parts of the sequence, where it outperforms other 

algorithms. However, SRAD's mean fluctuates significantly, 

which may indicate unstable enhancement effects. DTCWT 

and BM3D demonstrate certain enhancement capabilities 

during processing but generally have lower means compared 

to SRAD and Total Variation Denoising. The Total Variation 

Denoising algorithm exhibits a more stable and consistent 

enhancement effect throughout the sequence, though its 

enhancement magnitude is not as pronounced as SRAD's. 

Compared to the aforementioned algorithms, the proposed 

algorithm typically has lower normalized means but shows 

smaller fluctuations and higher consistency. This is because 

the proposed algorithm employs visual attention mechanisms 

and GAN, which not only help maintain the naturalness and 

true representation of image details but also effectively avoid 

excessive enhancement that can lead to loss of detail. While 

numerically it might seem inferior to algorithms like SRAD, 

in reality, the proposed algorithm places a greater emphasis on 

enhancing image quality while maintaining the natural feel 

and diagnostically relevant details of the images. It can be 

concluded that although the proposed algorithm does not 

achieve the highest in normalized mean, it has a distinct 

advantage in terms of detail preservation and naturalness. By 

intelligently identifying and enhancing key areas of cardiac 

structure, the algorithm can better reveal the cardiac functional 

status. 

Table 2 details the comparison of left ventricular function 

parameters between heart failure patients and healthy groups 

obtained through dynamic cardiac ultrasound imaging feature 

tracking technology. The table reveals significant statistical 

differences between the two groups in several key indicators. 

Particularly, the ESV is significantly higher in the heart failure 

group compared to the healthy group (57.15±18.32 ml vs 

45.23±9.84 ml, P=0.0004), indicating impaired ventricular 

contraction function in heart failure patients. The EF also 

shows significant differences between the groups, with lower 

EF values in heart failure patients (55.23±9.47% vs 

61.23±5.47%, P=0.001), further confirming reduced left 

ventricular pumping efficiency in heart failure. Additionally, 

global radial strain and circumferential strain are significantly 

lower than in the healthy group, suggesting decreased 

contractile force and deformability of ventricular myocardial 

fibers in heart failure patients. 

 

Table 2. Left ventricular measurements: Dynamic cardiac ultrasound imaging feature tracking parameters 

 
Parameter Heart Failure Group n=28 Healthy Group n=26 F/Z-value P-value 

EDV 126.32±25.23 121.15±15.23 1.045t 0.300 

ESV 57.15±18.32 45.23±9.84 3.023t 0.0004* 

Stroke volume 67.23(19.23) 73.23(17.23) -2.235u 0.023* 

Cardiac output 4.72(1.40) 5.32(1.00) -1.542u 0.124 

EF 55.23±9.47 61.23±5.47 -3.326u 0.001** 

Peak ejection rate 426.23±104.15 478.23±104.23 -1.325t 0.189 

Peak ejection time 112.48(37.00) 112.48(81.00) -0.875t 0.365 

Peak filling rate 398.23±99.58 436.12±114.58 -1.895u 0.074 

Peak filling time 165.23(48.14) 165.23(92.14) -0.068t 0.936 

PER /EDV 3.36±0.77 3.89±0.72 -2.134u 0.036* 

PER /EDV 3.01±0.48 3.56±0.71 -3.216t 0.021* 

Overall longitudinal strain -21.25(3.75) -21.25(3.65) -0.612u 0.534 

Overall circumferential strain -22.13±3.74 -24.13±2.74 4.045t <0.001** 

Global radial strain 46.33±16.14 61.23±15.48 -2.895t 0.005** 

 

Table 3. Correlation analysis between left ventricular function parameters and dynamic cardiac ultrasound image processing 

metrics in heart failure patients 

 

 
Stroke Volume EF PFR/EDV PFR/EDV 

r-value p-value  r-value p-value  r-value p-value  r-value p-value  

Gradient Magnitude 0.164 0.389 -0.134 0.445 0.224 0.224 -0.156 0.389 

Edge Response -0.365 0.052 0.289 0.124 0.204 0.278 0.157 0.421 

Edge Direction -0.312 0.114 -0.081 0.658 -0.073 0.705 -0.136 0.448 

Edge Coherence -0.041 0.826 0.009 0.968 0.105 0.595 -0.221 0.236 

Histogram Equalization Effect -0.325 0.091 -0.156 0.389 -0.154 0.415 0.061 0.754 

Sharpening Index -0.369 0.052 -0.101 0.623 -0.071 0.725 0.078 0.658 

Texture Heterogeneity -0.231 0.214 0.024 0.901 -0.135 0.456 0.072 0.721 

Local Binary Pattern (LBP) Statistics -0.201 0.289 -0.028 0.874 -0.048 0.815 -0.105 0.618 

Contour Change Rate -0.167 0.369 -0.256 0.178 -0.214 0.279 -0.389 0.041 

Regional Expansion/Contraction Speed -0.189 0.324 0.189 0.356 -0.135 0.456 0.157 0.378 

Shape Stability 0.052 0.789 -0.033 0.854 -0.109 0.589 0.047 0.815 
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Table 4. Correlation analysis between left ventricular myocardial strain and dynamic cardiac ultrasound image processing 

metrics in heart failure patients 

 
 Overall Circumferential Strain Global Radial Strain 

 r-value p-value  r-value p-value  

Gradient Magnitude -0.046 0.811 0.017 0.921 

Edge Response -0.489 0.007** 0.189 0.325 

Edge Direction 0.136 0.478 -0.178 0.336 

Edge Coherence 0.154 0.426 -0.189 0.354 

Histogram Equalization Effect 0.000 0.989 0.002 0.987 

Sharpening Index -0.124 0.51 -0.178 0.314 

Texture Heterogeneity 0.002 0.987 0.087 0.658 

 LBP Statistics 0.128 0.521 -0.136 0.478 

Contour Change Rate 0.325 0.077 0.005 0.987 

Regional Expansion/Contraction Speed -0.009 0.985 0.289 0.158 

Shape Stability -0.084 0.658 -0.224 0.235 

 

Table 5. Intra-and inter-observer variability in dynamic cardiac ultrasound 

 

 
Intra-observer (n=12) 

ICC 

95% Confidence 

Interval 
Inter-observer (n=12) ICC 

95% Confidence 

Interval 

Global Longitudinal Strain 0.915 0.702-0.985 0.856 0.548-0.968 

Global Circumferential 

Strain 
0.925 0.723-0.978 0.925 0.756-0.978 

Global Radial Strain 0.935 0.789-0.989 0.936 0.806-0.987 

 

Table 3 provides the results of the correlation analysis 

between left ventricular function parameters and dynamic 

cardiac ultrasound image processing metrics in heart failure 

patients. The table reveals that most image processing metrics 

do not show significant correlation with left ventricular 

function parameters, indicating that the relationship between 

cardiac function parameters and single image processing 

metrics might be complex, requiring a comprehensive 

evaluation using multiple metrics. For example, the correlation 

coefficient between edge response and EF is 0.289, although 

not statistically significant (p=0.124), the positive correlation 

suggests that enhanced edge response may be associated with 

better cardiac function status. Furthermore, the correlation 

coefficient for contour change rate with the last column metric 

(possibly a type of functional ratio or change rate) is -0.389, 

reaching statistical significance (p=0.041), suggesting that an 

increase in contour change rate might be associated with a 

decline in certain cardiac function parameters. 

Table 4 presents the correlation analysis between left 

ventricular myocardial strain and dynamic cardiac ultrasound 

image processing metrics in heart failure patients. The analysis 

indicates that most image processing metrics show weak 

correlations with myocardial strain, displaying no strong 

statistical significance. However, it is noteworthy that edge 

response shows a strong negative correlation with overall 

circumferential strain (r-value=-0.489, p-value=0.007**), 

suggesting that enhanced edge response is associated with 

decreased circumferential strain, potentially indicating 

impaired myocardial function. Additionally, regional 

expansion/contraction speed, although not reaching statistical 

significance (p-value=0.158), shows a correlation coefficient 

(r-value=0.289) suggesting that increased 

expansion/contraction speed may be related to improvements 

in radial strain. 

These findings highlight the potential application of the 

dynamic cardiac ultrasound image processing technology 

proposed in this paper in cardiac function assessment. Through 

detailed enhancement and precise image segmentation, this 

technology not only improves image clarity and dynamic 

representation but also enhances the ability to measure left 

ventricular function parameters, particularly in myocardial 

strain assessment. Although most image processing metrics do 

not show strong direct correlations with myocardial strain, this 

technology, by providing clearer and more accurate images, 

enables clinicians to interpret cardiac functional status and 

pathological changes more effectively. 

Table 5 provides data on intra- and inter-observer variability 

in dynamic cardiac ultrasound imaging, showing the intraclass 

correlation coefficients (ICCs) and their 95% confidence 

intervals. The results demonstrate very high intra-observer 

consistency with ICCs of 0.915, 0.925, and 0.935 for global 

longitudinal, circumferential, and radial strain, respectively, 

ensuring the repeatability of measurements. The 

corresponding 95% confidence intervals further confirm the 

reliability of these estimates. Similarly, inter-observer 

consistency is also high, especially for global circumferential 

and radial strain, with ICCs of 0.925 and 0.936, respectively, 

and confidence intervals of 0.756-0.978 and 0.806-0.987, 

showing the consistency of evaluations among different 

observers. High observer consistency ensures the reliable 

application of these techniques in clinical settings, reducing 

variability between operators and making cardiac function 

assessment more accurate and consistent. 

 

 

5. CONCLUSION 

 

This paper introduces a novel dynamic cardiac ultrasound 

image processing technology, which by integrating visual 

attention mechanisms and GAN to enhance image details, and 

using dynamic contour models to improve image 

segmentation and assessment of left ventricular function. The 

main objective is to enhance image dynamic representation 

and measurement precision, thereby more accurately revealing 

cardiac functional status. 

Experimentally, by comparing dynamic cardiac ultrasound 

images processed by different image enhancement algorithms, 

it has been found that the algorithm proposed in this paper, 

based on visual attention mechanisms and GAN, offers 

significant advantages in terms of detail clarity and dynamic 
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representation. Through dynamic cardiac ultrasound image 

feature tracking analysis, this technology can effectively 

measure and distinguish left ventricular function parameters 

between heart failure patients and healthy individuals, 

demonstrating higher accuracy and consistency than 

traditional methods. Correlation analysis further validates the 

connection between image processing metrics and left 

ventricular function parameters in heart failure patients. 

Although the correlation for some metrics is not significant, 

key metrics such as edge response and contour change rate 

show clear correlations. By assessing intra- and inter-observer 

consistency, the reliability of this technology and its potential 

for clinical application have been confirmed. 

The dynamic cardiac ultrasound image processing 

technology introduced in this study significantly enhances the 

detail representation and measurement precision of the images, 

providing a powerful tool for the diagnosis and treatment 

monitoring of heart failure patients. By improving image 

quality and assessment accuracy, the technology can more 

effectively reveal subtle changes in cardiac function, 

providing crucial decision support for clinicians. 

Despite achieving a range of positive results, there are some 

limitations to this study. For example, the correlation between 

some image processing metrics and cardiac function 

parameters is not significant enough; future research could 

overcome this issue by integrating more image features and 

conducting deeper analysis. Additionally, the sample size of 

the study is relatively small, and future research should 

validate the effectiveness and reliability of these techniques in 

a broader patient population. Future studies could also explore 

applying these techniques to other types of heart diseases and 

further optimizing the algorithms to suit different clinical 

settings and needs, thereby comprehensively enhancing the 

diagnostic and therapeutic value of cardiac ultrasound imaging. 
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