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The functionality of cryptographic systems necessitates unpredictable, high-quality random 

numbers. High-quality random numbers must possess unpredictability, non-reproducibility, 

and strong statistical properties. To achieve these qualities, True Random Number 

Generators (TRNG) are employed. The randomness quality of TRNG-derived sources 

depends on the entropy source used. Physical noise sources, ring oscillators, metastable, 

acoustic sources, and chaotic attractors are commonly used as entropy sources. In recent 

years, the use of acoustic signals as entropy sources has attracted attention. However, the 

noise in the signals affects the bit sequence to be generated. In addition, the threshold and 

sampling interval applied to the frequency values obtained from the signals also determine 

the quality of the bit sequence to be produced. Choosing the most appropriate values for the 

entropy source, randomness and unpredictability of these values are important for the bit 

sequence to have good statistical properties and to be used in strong cryptographic 

applications. In this paper, a swarm intelligence-based approach is proposed to determine 

the optimal threshold and sampling interval by exploiting the power of randomness and 

unpredictability such as random initialization of swarm intelligence algorithms and 

obtaining different optimal solutions in each run. In the proposed approach, a bit sequence 

is generated by applying the values determined by the Improved Grey Wolf Optimization 

algorithm on the data taken from the MUSDB18 dataset as an entropy source. The generated 

bit sequences have been shown to be usable as initial value, seed value or additional input 

for cryptographic key and random number generators by obtaining a p-value greater than 

0.01 from the National Institute of Standards and Technology (NIST) test, statistical 

complexity test (SCM) and autocorrelation test with results close to 0 by obtaining 0.013, 

0.074 respectively. Furthermore, to show that the obtained bit sequences can be used as 

cryptographic keys in the encryption system, we perform encryption on two different images 

and present histogram and differential attack (UACI, NPCR) test results. 
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1. INTRODUCTION

Random numbers are used in many areas around the world. 

Reliable random number generation (RNG) is essential for 

cryptography, randomization, simulation, and many other 

applications. Therefore, RNG have been developed [1]. RNG 

are designed to generate random numbers according to a 

specified distribution. Pseudo-RNG generate random numbers 

using a deterministic algorithm and generally provide a 

sufficient level of randomness. However, for some 

applications, true random number generators (TRNGs) are 

more convenient to use [1]. 

TRNG use devices that generate random numbers from 

physical processes or noisy signals. When designing RNG, 

entropy, randomness level, reliability and performance are 

important factors. These generators have broad use, 

particularly in cryptography and other security applications [1]. 

Sound-based RNGs, also referred to as acoustic RNGs, are an 

example of using physical processes to generate random 

numbers, offering a supplementary method for generating 

randomness. Acoustic RNGs rely on the unpredictability of 

sound to generate random numbers. The randomness of sound 

arises from its complex signal that constantly changes over 

time and is influenced by multiple factors, including the 

environment, sound source, and receiver [2].  

Previous research has provided important information on 

generated bit sequences by using acoustic sources. The most 

important thing in cryptography is to have an unpredictable 

key. That is, it is very important that the keys generated are 

substantially random and difficult to predict. In this work, a 

statistically independent and homogeneously distributed 

random bit sequence is generated by sampling the audio 

signals from noise sources via the microphone, And FIPS 140-

1 is applied for the test results by using XOR as the post-

processing algorithm [2]. TRNG have a key role in 

cryptography that require unpredictable and non-deterministic 

random number sequences. It's so important to utilize the 

powerful entropy sources while generating random numbers. 

The authors used a computer microphone to provide a 

powerful source of entropy and demonstrated that the 
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proposed TRNG by passing the statistical tests such as NIST 

SP 800-22, DIEHARD and ENT is capable of generating a 

great percentage of true random numbers [3].  

In a study, white noise of video and audio sources used as 

entropy source and NIST SP800-22 test suite was used to test 

the randomness of the proposed system [4]. In literature [5], 

FM radio signals used as the entropy source and the results 

demonstrated an increase in the entropy rate. In another work, 

true random bits were generated using the hardware of a 

computer sound card, where a random environmental noise 

signal was input to the audio input using a microphone. 

Autocorrelation test results are presented by using the 

proposed MiBiS&XOR as a post-process [6]. Moreover, the 

random numbers generated by using an audio source can also 

be used in voice communication. Approximately 80% of true 

random numbers generated based on audio passed 15 

statistical tests, demonstrating that the proposed ARNG can be 

used to protect personal privacy in a PDA or smartphone [7]. 

The author proposed a scheme, which is generating 256 bits 

keys based on human voice or speech data and demonstrated 

that the proposed scheme passed 13 NIST tests [8]. In 

literature [9], a random bit sequence generated by using 

acoustic data as the entropy source. Audio encryption was 

performed with a sequence generated. NIST and Test U1 test 

suite were used for results. 

Sound-based RNGs have several characteristics that make 

them attractive for certain applications. First, they are 

relatively inexpensive and easy to implement, requiring only a 

microphone and a few electronic components. Second, they 

are inherently unpredictable because the noise they capture is 

unpredictable and uncontrollable. Third, they are independent 

of external factors such as temperature or electromagnetic 

interference that can affect other types of RNGs. Despite 

advantages, acoustic-based RNGs have several limitations. 

First, they are vulnerable to acoustic attacks, where an attacker 

can manipulate the acoustic environment to distort the random 

numbers generated by the RNG. Second, they are sensitive to 

environmental factors such as noise levels and acoustic 

reflections from the environment, which can affect the quality 

of the random numbers generated. Third, they have relatively 

low entropy rates, which means they may not be suitable for 

applications that require high-quality random numbers [2, 9]. 

Particularly low entropy rates are seen in single sound source 

recordings. In contrast, high entropy is seen in recordings 

containing different sound sources. Despite the use of high 

entropy sources obtained from different sound sources, it is 

seen that bit sequences generated according to manually set 

threshold and sampling interval do not always show valid 

statistical features [10].  

Two parameters play an essential role in producing a bit 

sequence from the entropy source. The first is the threshold 

value which is the reference parameter for bit sequence 

generation and is used to convert the values received from the 

entropy source into 0 and 1 bits. Secondly, the sampling 

interval is utilized to generate a bit sequence by drawing the 

values from the entropy source in a different order according 

to the sample interval, rather than sequentially, in order to 

maximize the randomness and unpredictability of the bit 

sequence. These parameters are normally set manually, such 

as the mean or standard deviation of the values for the 

Threshold value and numbers such as 10, 100, and 1000 for 

the sample interval. Even if the created bit sequence has a high 

entropy source, it may not always display good statistical 

properties [10]. In addition, since the predictability of the 

parameters determined in this way is high, the unpredictability 

of the bit sequence is low and is not suitable for cryptographic 

applications. In this paper, we use an optimization technique 

for selecting the threshold and sampling interval to tackle the 

above-mentioned problem. Reaching the optimal solution in 

mathematical models or data in a acceptable time is defined as 

an optimization problem and there are various optimization 

methods in the literature for solving this problem. The fact that 

optimization algorithms randomly generate the values in the 

phases they pass through while achieving the optimal solution 

leads to different results at each phase and each time when 

tackling the same problem with the same method [11]. 

Therefore, the results obtained with optimization algorithms 

have high randomness and unpredictability. Taking advantage 

of this aspect of optimization algorithms, we consider the 

selection of two parameters that play an important role in bit 

sequence formation as an optimization problem. We adapt the 

I-GWO [12] optimization algorithm, which is an improved 

version of the GWO [13] algorithm, one of the most powerful 

algorithms in recent times, to this problem. The GWO 

algorithm was inspired by the social life of grey wolves in 

nature, such as exploration, hunting, and acting as a group, and 

the hierarchical structure within the group, and was 

mathematically modeled by Mirjalili et al. [13]. It was 

mathematically modeled and created by Mirjalili et al. [13]. I-

GWO is a meta-heuristic developed by Nadimi-Shahraki et al. 

[12], due to some problems of the GWO algorithm such as 

decreasing population diversity and early convergence while 

reaching the optimal solution. It is a meta-heuristic method 

developed by Nadimi-Shahraki et al. [12], I-GWO and has 

recently been recognized as a powerful algorithm adapted to 

many problems such as engineering problems, signal 

processing, and feature extraction. In this study, audio data 

from the MUSDB18 dataset is used as the acoustic entropy 

source [14].  

The scheme of the proposed method is given in Figure 1. 

NIST, SCM and autocorrelation test results are shown to prove 

that the generated pure bit sequences are statistically sufficient. 

Acoustic-based RNGs have various uses in cryptography, 

security, and gaming. One of the most common applications is 

in the generation of cryptographic keys. Cryptographic keys 

are used to safeguard communications and transactions and 

must be unpredictable and truly random. Acoustic-based 

RNGs can provide a source of randomness that is difficult to 

predict, making them useful for generating cryptographic keys. 

In order to prove that the generated bit sequences can be 

utilized as a cryptographic key in encryption systems, image 

encryption/decryption has been conducted in F-AES [15]. 

Then, encryption and decryption operations have been done on 

two separate photos. It has been proved that the proposed 

system resulted in success by providing the histogram analysis 

results of the operations executed. It has been found that there 

is no difference between the original image and the decoded 

image when the value derived from the mean square error is 

zero. In addition, the number of pixel change rate (NPCR) and 

the unified averaged changed intensity (UACI) values are 

reported. 

The primary contributions of the proposed approach are as 

follows: 

I. More accurate and faster sampling intervals and 

threshold values are obtained in bit sequence 

generation. 

II. The randomness and unpredictability of the bit 

sequence increase with the optimization process. 
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III. The availability of the entropy source is determined 

faster. 

The study is structured as follows: the literature review is 

presented in the introduction. In Chapter 2, Grey Wolf and the 

improved Grey Wolf algorithm are first explained. Then, the 

proposed system design and bitstream generation are detailed. 

Section 3 presents the statistical analysis of the bitstream 

produced by the proposed system, as well as the practical 

implementation of the bitstream and the results obtained. 

Finally, Chapter 4 discusses the findings of the study and 

provides conclusions. 
 

 

2. PROPOSED METHOD 
 

In this section, we will initially present the GWO and its 

enhanced variation - the I-GWO metaheuristic algorithm, 

which takes inspiration from the life of grey wolves in nature 

to optimize bit sequence generation. Next, we will explicate 

the conventional methodology of generating bit strings and its 

limitations before delving into a thorough explanation of the 

recently developed approach for optimizing bitstream 

generation. The schematic of this suggested approach is 

depicted in Figure 1. 
 

 
 

Figure 1. Proposed system scheme 

2.1 GWO algorithm 

 

The social life and hierarchical order of grey wolves in the 

wild are modelled mathematically and a grey wolf 

metaheuristic algorithm is introduced. In the algorithm, grey 

wolves are divided into four different groups: alpha (α), which 

leads the group and is hierarchically dominant, beta (β), which 

supports alpha and is hierarchically second, omega (Ω), which 

is hierarchically the weakest, and delta (δ), which is superior 

to omega wolves. Mathematically, the position of alpha 

wolves is recognised as the best, beta as the second best and 

delta as the third best. The remaining solutions represent the 

omega wolves. In the algorithm, processes such as prey 

encirclement and hunting are managed under the leadership of 

alpha, beta and delta wolves [13]. 

 

2.1.1 Encircling prey 

First, Grey wolves encircle their prey. Eq. (1) and Eq. (2) 

provide a mathematical model for the encircling behaviour of 

wolves (2).  

 

𝐷 = |𝐶 ∗ 𝑋𝑝(𝑡) − 𝑋(𝑡)| (1) 

 

𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − (𝐴 ∗ 𝐷) (2) 

 

Eq. (1) computes the distance D between the prey and the 

wolf, while Eq. (2) updates the position of the wolf. In the 

equations, the t value stands for the current iteration, the A and 

C values for the coefficient vectors, Xp for the prey's position 

vector, and X for the wolf's position. Eq. (3) and Eq. (4) are 

used to calculate the values of A and C, respectively [13]: 

 

𝐴 = 2𝑎 ∗ 𝑟1 − 𝑎 (3) 

 

𝐶 = 2𝑟2 (4) 

 

The variable a is linearly reduced from 2 to 0 at each valid 

iteration. The r1 and r2 are vectors that take random values in 

the range of 0-1. 

 

2.1.2 Hunting 

After the wolves find and surround the prey, the hunting 

process begins with the alpha wolves taking the lead. 

Therefore, the positions of the beta and delta wolves are 

considered the top three solutions, with the position of the 

alpha wolf being the best. Omega Wolves represents other 

candidate solutions. This behavior of wolves is 

mathematically given below by Eqs. (5)-(7) [13]. 

 

𝐷𝑘 = |𝐶𝑑 ∗ 𝑋𝑘 − 𝑋| (5) 

 

𝑋𝑘 = 𝑋𝑘 − 𝐴𝑑 ∗ 𝐷𝑘 (6) 

  

𝑋(𝑡 + 1) =
(𝑋1 + 𝑋2 + 𝑋3)

3
 (7) 

 

Eqs. (5)-(7) above can be utilized to estimate the distance 

and final position of the current solution between the alpha, 

beta, and delta worms, respectively. In these equations, k = (α, 

β, δ) and d = (1,2,3). 

 

2.1.3 Attacking prey 

The Grey wolves finish the hunt by attacking their prey once 

it stops moving. The value of 'a' is decreased in order to 
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mathematically represent how a grey wolf approaches its prey. 

On a mathematical level, a also reduces the fluctuation range 

of A. In other words, over iterations, a decreases from 2 to 0, 

with A being a random value between -a and a. Wolves attack 

their prey when |A|<1. 

 

2.1.4 Prey search 

In accordance with the roles of the Alpha, Beta, and Delta 

wolves, Grey wolves hunt for prey. While hunting, wolves 

separate, then reunited attack. To make the search agent give 

up the prey, use A with random values greater than or lower 

than -1. This modelling, which also allows the GWO algorithm 

to search globally, defines the exploration phase. 

To provide context for the search process, a randomized 

population of possible solutions is initially created, with Grey 

wolves selving and representatives. Through iterations, alpha, 

beta, and delta wolves assess the potential location of the prey. 

The distance between each solution and the prey is then 

updated. In order to emphasize exploration and exploitation, 

the parameter a is decreased from 2 to 0. Candidates move 

away from prey when |A|>1 and toward prey when |A|<1, 

respectively [13]. 

 

2.2 I-GWO 

 

In GWO, α, β, and δ wolves guide ω wolves towards 

promising solutions in the search space. This behaviour of 

GWO may lead to trapping in local optimal solutions. From 

another point of view, it can lead to a decrease in population 

diversity and to getting stuck at the local optimum. To 

overcome such problems, an improved Grey wolf optimization 

algorithm is proposed in literature [12]. In I-GWO, a new 

movement approach is proposed. Individual hunting is another 

intriguing social behavior of grey wolves in addition to group 

hunting [16], which is the main motivation for I-GWO, and 

additional steps of I-GWO are described below [12]. 

Canonical GWO search strategy: In GWO, the top three best 

wolves α, β and δ are considered as the best fitness values 

found in the population. After that, the linearly reduced 

coefficient α and the values A and C are determined by Eqs. 

(3) and (4). Then, the encirclement of the Prey is identified by 

taking into the positions of Xα, Xβ and Xδ by Eqs. (5) and (6). 

The initial candidate for the new location is finally of the wolf 

Xi(t), called Xi-GWO (t+1), is determined by Eq. (7) [12]. 

Search technique using dimension learning-based hunting 

(DLH): DLH is a new search strategy that exchanges 

information between the current wolf and neighboring wolves 

during the exploration phase. This strategy solves the 

problems of GWO such as early convergence and reduced 

population diversity. DLH works as follows: First, a radius 

Ri(t) is calculated between the current location Xi(t) and the 

candidate location Xi(t+1) using Euclidean distance and a 

circle is formed with Xi(t) as the center. Then, within this 

circle, the neighborhoods Ni(t) of Xi(t) are formed and the 

multi-neighbor learning step is performed with Eq. (8) [12]. 

 

𝑋𝑖−𝐷𝐿𝐻,𝑑(𝑡 + 1) = 𝑋𝑖,𝑑 + 𝑟𝑎𝑛𝑑(𝑋𝑛,𝑑(𝑡) − 𝑋𝑟,𝑑(𝑡)) (8) 

 

where, Xn,d(t) is the dth size of the randomly selected neighbor 

wolf from Ni(t), Xr,d is the dth size of the randomly selected 

wolf from the population. 

The d'th dimension of Xi-DLH,d(t+1) is calculated using the 

d'th dimension of a wolf randomly selected from the 

population and a neighbor selected from Ni(t). Finally, the 

fitness scores of Xi-DLH,d(t+1), and Xi(t+1) are calculated and 

the location with the best score is determined as the new 

current location. 

Phase of selection and updating: Here, the fitness values of 

the two candidates are first compared, and the best candidate 

is chosen. Then, to update the new position of Xi(t+1), if the 

chosen candidate's fitness value is less than Xi(t), Xi(t) is 

updated by the selected candidate. Otherwise, Xi(t) in the 

population doesn't change [12]. 

 

2.3 Traditional bit sequence generation 

 

To use a bit sequence in cryptographic applications, the 

sequence have certain specific statistical properties such as 

randomness and unpredictability. There is a specific process 

for obtaining a bit sequence with these properties. The process 

begins with the selection of an entropy source. Next, the data 

obtained from this entropy source is utilized to generate a bit 

sequence using a sampling interval value and a threshold value. 

The generated bit sequence is subjected to statistical tests to 

assess its reliability. If the sequence fails these tests, a new 

sequence is generated by adjusting the sampling interval value 

and threshold value in the next step. This manual process 

continues until a reliable bit sequence is generated or the 

entropy source is changed. 

 

2.4 Proposed bit sequence generation method 

 

In this paper, we approach the generation of bitstreams as 

an optimization problem to overcome the drawbacks of 

manually generated bitstreams. We choose acoustic sound 

waves as the entropy source, using audio files from the 

MUSDB18 dataset [14]. To design the optimization algorithm 

based on the process described in the previous section, it goes 

through the following steps: 

I. The development of a transformation function and 

constraints to generate a bit sequence from the data obtained 

from the entropy source. 

II. The design of a fitness function that evaluates whether 

the generated bit sequence satisfies certain statistical 

properties, such as randomness and unpredictability. 

We detail these two important steps in the following 

sections and present the flowchart of the proposed approach in 

Figure 2. 

 

2.4.1 Transformation function 

By applying Eq. (9), defined below, a new bit sequence is 

generated based on the selected sampling interval value and a 

threshold value. 

 

∑ {
0     𝑘(𝑖+𝑑) < 𝑇

1    𝑘(𝑖+𝑑) ≥ 𝑇

𝑛

𝑖=1

 (9) 

 

The variable n in the equation represents the total number 

of data obtained from the entropy source, k represents the data 

in the i’th index, d represents the sampling interval and T 

represents the threshold value. For these values from I-GWO, 

a lower and upper limit needs to be defined. 

 

2.4.2 Fitness function 

As mentioned in the previous sections, the generated bit 

sequence must have randomness and certain statistical 

properties. Therefore, a new fitness function was defined to 
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ensure that the bit sequence generated with the selected values 

meets these criteria. NIST tests were used to construct the 

fitness function. The definition of the function is given below 

in Eq. (10).  

 

𝐹fitness(x) = 𝐹𝑓𝑟𝑒𝑞(x) {
0   𝑝 < t_v
𝑝   𝑝 > t_v

 

+𝐹𝑏𝑙𝑜𝑐𝑘(x) {
0   𝑝 < t_v
𝑝   𝑝 > t_v

+ 𝐹𝑟𝑢𝑛(𝑥) {
0  𝑝 < t_v
𝑝  p > t_v

 

+𝐹𝐿𝑟𝑢𝑛(𝑥) {
0  𝑝 < t_v
𝑝  p > t_v

+ 𝐹𝐷𝐹𝑇(𝑥) {
0  𝑝 < t_v
𝑝  p > t_v

 

(10) 

 

According to the equation, X represents the generated bit 

sequence. Ffrequnecy represents the frequency test, Fblock 

represents the block frequency test, Frun represents the flow 

test, FLrun represents the flow test of the longest ones in the 

block and FDFT represents the Discrete Fourier test . For all the 

defined tests to produce successful results, the p-value 

obtained from the tests must be greater than 0.01 Therefore t_v 

represents the threshold value and is equal to 0.01. In the 

defined application function, if the p value obtained from the 

frequency test is greater than 0.01, the other tests are applied. 

The results of the p-values obtained are summed and the 

conformity value is calculated. According to Figure 2, the 

flowchart of the proposed method can be observed. 

 

 
 

Figure 2. Proposed system flowchart 

 

 

2.4.3 Experimental setup of the proposed method 

In the optimization algorithm used, the lower limit for the 

sampling interval value is 1, the upper limit is n/5000, the 

lower limit for the threshold value is min(n) and the upper limit 

is max(n). The population size was also set to 50. 

Experimental studies of the proposed system were carried out 

on the MUSDB18 dataset. MUSDB18 is a dataset consisting 

of 150 full-length music tracks (~10 hours in duration) from 

different genres with decomposed drums, bass, vocals, and 

other tracks [14]. To test the stability of the system, we 

randomly selected audio files from the data set. Since a single 

trial for each audio file would be insufficient to test the 

stability of the system, 20 different trials were performed. 

Since the convergence rate usually decreases after 100 

iterations, each trial was performed in 100 iterations. In 

addition, to prove that the bit sequences obtained with the 

proposed system can be used in cryptographic applications, 

they are set as keys for the F-AES [15] image encryption 

algorithm. All of these processes and tests were performed on 

an Intel core i5 (1135G7), 16 GB DDR4 system. 

3. APPLICATION OF THE PROPOSED METHOD IN 

PRACTICE AND RESULTS OF THE ANALYSIS 

 

This section describes the experimental studies performed 

on the designed system. First, the NIST800.22 test suite [17] 

was applied to the bit sequences obtained in different ways 

throughout the study to verify their statistical properties. The 

NIST test results of the bit sequences obtained with manually 

determined sampling interval and threshold values and those 

obtained by applying post-processing algorithms are presented 

in Table 1. The NIST results of the bit sequences obtained 

using the proposed method are shown in Table 2. Then, to 

demonstrate the security of the bit sequence obtained by the 

proposed method in cryptographic applications, it was used as 

a key value for the F_AES algorithm. Two different images, 

randomly selected from the General-100 [18] dataset, were 

used for image encryption with F-AES. The security of the key 

is proven by presenting the results of histogram analysis and 

differential attack analysis at the end of this section. 
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Table 1. NIST test results of bit sequence generated according to manually determined threshold and sampling interval 

 

Test Original Data P-Value Result 
Post-Processing Algorithms Applied to Raw Acoustic Source P-Value 

XOR  Result Von Neumann  Result H Function Result 

Freq 0.4465 S - F - F 0.1472 S 

Freq BL - F - F - F 0.0101 S 

Run - F - F 0.9761 S 0.1433 S 

Long Run - F - F - F 0.1527 S 

BMR 0.0183 F 0.0321 F 0.9642 S 0.8057 S 

DFT - F 0.0147 F - F 0.6348 S 

Non-Over T.M. - F - F - F 0.1742 S 

Over T.M. - F - F - F - F 

MU - F - F - F - F 

LCT 0.2697 F 0.0484 F 0.5748 F - F 

Serial test  F - F 
- 

 
F - F 

App Ent - F - F - F - F 

Cum Sum - F - F - F 0.2667 S 
Notes: In the table, S = Success means that the test was passed and F = Fail means that the test was failed. In addition, values where the calculated p-value is 

much smaller than the reference value (0.01) and is shown as NA by the NIST test environment are indicated by a hyphen (-). Abbreviations of NIST Tests are 

given in Table 3. 

 

Table 2. NIST test results of bit sequence generated according to I-GWO determined threshold and sampling interval 

 

Test Optimization Based Bit Sequence P-Value Result 

Freq 1 S 

Freq BL 0.6149 S 

Run 0.9404 S 

Long Run 0.8069 S 

BMR 0.5326 S 

DFT 0.6069 S 

Non-Over T.M. 0.2710 S 

Over T.M. 0.5525 S 

MU 0.326 S 

LCT 0.7794 S 

Serial test 
0.8317 

0.9755 

S 

S 

App Ent 0.1790 S 

Cum Sum 0.9662 S 
Notes: In the table, S = Success means that the test was passed and F = Fail means that the test was failed. Abbreviations of NIST Tests are given in Table 3. 

 

Table 3. Abbreviations of NIST tests 
 

Test Abbreviation 

Frequency (Monobit) test Freq 

Frequency test within a block Freq BL 

Runs test Run 

Test for the longest Run of ones in a block Long Run 

Binary matrix rank test BMR 

Discrete Fourier transform Testi DFT 

Non-overlapping template matching test Non-Over T.M. 

Overlapping template matching test Over T.M. 

Maurer's Universal statistical test MU 

Linear complexity test LCT 

Approximate entropy test App Ent 

Cumulative Sums test Cum Sum 

 

3.1 Statistical test results 

 

The statistical test results of the bitstream obtained with the 

proposed approach were validated using the NIST800.22 test 

suite. The NIST statistical tests primarily evaluate the 

probability of small non-random segments in the bitstream. 

The key parameters involved in these tests are α and P. The 

significance level is called the α value, and a value of 0.01 

indicates that the bitstream is random with a 99% confidence 

level. The measure of randomness is called the P-value. If the 

P-value is 1, the numbers are completely random. Conversely, 

if P=0, the numbers are not random at all. To ensure 

cryptographic reliability, an appropriate significance level (α) 

must be chosen. A test is deemed successful if the P-value is 

equal to or greater than α, otherwise the test fails and the 

numbers are not random. The standard significance level 

typically ranges between 0.001 and 0.01. For this paper, a 

significance level of 0.01 is chosen. In order to consider a test 

successful, the obtained P-value must exceed 0.01. Based on 

the results presented in Table 1 and following the 

predetermined threshold, it is clear that the P-value for the pure 

bitstream obtained from the manually recorded pure audio 

source was significantly lower than 0.01 in most of the 

conducted tests. Some algorithms were used to modify the 

existing order in the raw bit sequence and improve its 

randomness. However, the post-processing algorithms did not 

yield favorable results as the p-value of the bit sequence 

obtained was considerably lower than the reference value in 

most tests. Upon analysis of the NIST test results presented in 

Table 2, it is clear that the proposed method has successfully 

passed all tests by achieving values exceeding the reference p-

value. Furthermore, the bit sequence generated by the 

proposed method exhibits a fully uniform distribution of 0s 

and 1s, which is evident by the frequency test result of 1. This 

approach yields bit sequences that are more random and 

unpredictable than those generated manually or through post-

processing algorithms. 
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Table 4. Autocorrelation test results 

 
Autocorrelation D 

Value 

X5 

Value 

Result 

Optimization based bit 

sequence 

8 0.074 Passed 

15 0.059 Passed 

Original data 8 -49.05 Unpassed 

15 8.79 Unpassed 

 

Table 4 presents the outcomes of the autocorrelation test. 

The correlation indicates the linear relationship among 

multiple variables, accepting values between +1 and -1. If it is 

zero or approaching zero, it implies there is no linear 

relationship between the variables. As illustrated in Table 4, 

optimization-based bit sequence produces favorable results for 

D values 8 and 15 [19]. 

The statistical complexity measure is displayed in Table 5. 

The statistical complexity measure for aperiodic sequences 

must be zero or nearly zero. The successful outcomes for the 

optimization-based bit sequence [19] are displayed in Table 5. 

 

Table 5. Statistical complexity measure result 

 

 
Original 

Data 

Optimization Based Bit 

Sequence 

Statistical complexity 

measure 
0.103 0.013 

 

3.2 Leveraging the generated random bit sequence as a 

cryptographic key 

 

The key value for the AES-based F-AES encryption 

algorithm in literature [15] was generated using the bit 

sequence obtained by our proposed method. We then utilized 

this generated key to perform encryption and decryption 

operations on randomly selected images from the General 100 

[18] dataset. Histogram analysis was conducted to confirm the 

successful encryption of the images, and the ensuing results 

are shown in Figures 3 and 4. To demonstrate the strength of 

the key value employed, differential attack analysis was 

performed.  

 

 
 

Figure 3. Histogram analysis graph of the boy image 

 
 

Figure 4. Histogram analysis graph of the stone image 

 

The histogram contains valuable statistical data on the 

image and also finds relevance in other applications like image 

compression and segmentation. Images that are encrypted 

should have a consistently balanced histogram as stated in 

literatures [8, 9]. Figures 3 and 4, we display sample images in 

their original, encrypted, and decrypted formats. Histogram 

analysis graphics for grayscale values are presented on the 

right hand side. A uniform distribution is evident for all values 

in the coded histogram analysis figures. However, the 

histogram of the original and the encrypted images' differ 

significantly. Uniformity makes it difficult to draw statistical 

inferences and develop statistical attacks targeting the 

proposed encryption technique. 

Differential attacks attempt to introduce a certain difference 

in the original text pair using a fixed-key encryption algorithm, 

and investigate the effect of the original text information by 

analyzing the effect of the corresponding encrypted output 

difference. The effect of a small change in the original text or 

key on the ciphertext is defined as an avalanche effect. The 

avalanche effect is increased in cryptographic systems to 

strengthen their defence against differential attacks. The 

avalanche effect is a desirable property in cryptographic 

algorithms because it allows small changes in the input to 

result in large changes in the output [20]. There are two 

quantities that are commonly used to evaluate the strength of 

image encryption algorithms against differential attacks. 

These are the number of pixel change rate (NPCR) and the 

unified average change intensity (UACI). These measures are 

calculated using an original image and an image that has been 

modified by a few pixels (typically one pixel). NPCR focuses 

on the number of changed pixels in the encrypted versions of 

these two images, while UACI focuses on the average changed 

intensity. Optimal values for NPCR and UACI are considered 

in the literature to be around 100% and 33% respectively.  

The results of our experiments are presented in Table 6, 

displaying the NPCR and UACI scores. The encrypted images 

show uniformly distributed histograms, rendering it 

problematic to derive statistical inferences from them via 
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histogram analysis. However, upon examining the statistics 

presented in Table 6, it is apparent that the NPCR and UACI 

values for both images align with those acknowledged in the 

literature. Based on the experimental results, it is evident that 

the bit sequence generated is appropriate for utilization in 

cryptographic applications. 

 

Table 6. UACI and NPCR test results 
 

Sample Pictures NPCR (UACI) 

Boy 0,99716 0.330 

Stone 0,99704 0.333 

 

Comparisons of the RNG are given in Table 7. 

 

Table 7. RNG comparisons 

 

Ref. 
Randomness 

Source 

Post 

Processing 
Tests 

[21] 
LFSR, discrete 

chaotic map 
- 

NIST, 

DIEHARD, 

TestU01 

[22] Memristor Trivium NIST, scale index 

[23] 
Electromagnetic 

noise 
XOR 

NIST, scale 

index, 

autocorrelation 

[24] MARC-bb XOR TestU01 

[25] Analog circuit XOR NIST 

Proposed 

method 

environmental 

sounds 
- 

NIST, statistical 

complexity, 

autocorrelation 

 

 

4. CONCLUSION 

 

To ensure that the random number generators produce 

statistically valid numbers that cannot be guessed or 

regenerated, it is imperative to use resilient entropy sources. 

When extracting a bit sequence from an entropy source, there 

are two key factors to consider: sampling interval and 

threshold value. Accurately determining these parameters is 

crucial for the efficient use of the entropy source. These 

conventional selection parameters can hinder the statistical 

properties of bit sequences derived from robust sources of 

entropy, consequently impairing the usability of the entropy 

sources.  

This study aims to identify the parameters that have a 

significant influence on enhancing the usability of the entropy 

source in a faster and more precise manner. The study further 

aims to increase the randomness and unpredictability of these 

parameters beyond a certain order and generate bit sequences 

with improved statistical properties. Swarm intelligence 

algorithms achieve varying results when solving the same 

problem due to their use of random initial values and 

subsequent random values. There findings suggest that meta-

heuristic algorithm solutions possess a strong degree of 

unpredictability and randomness. In the proposed approach, 

discovering the best threshold and sampling interval values 

through leveraging swarm intelligence algorithms’ power is 

viewed as an optimization challenge. The Grey Wolf 

Optimization (GWO) algorithm is based on the hunting and 

exploration abilities of grey wolves, which makes it a suitable 

approach for tackling problems. Entropy sources were chosen 

from various audio files within the MUSDB18. Bit sequences 

acquired through the proposed, conventional, and post-

processing methods underwent NIST tests, with subsequent 

calculations of their statistical features including randomness. 

As a result of the calculations, it is clearly seen that the p 

values obtained from the NIST tests of the proposed method 

are greater than 0.01, and the SCM and autocorrelation test 

results are close to 0 by obtaining 0.013, 0.074, showing better 

random distribution and better statistical properties compared 

to other bit sequences. Additionally, to demonstrate the 

applicability of the produced sequence in cryptography, it 

served as a cryptographic key in the F-AES encryption 

algorithm, and two images were subsequently encrypted. 

According to the results of histogram analysis and differential 

attack analysis, it is appropriate to use the generated bit 

sequence as the cryptographic key. 

In future studies, it is believed that swarm intelligence 

algorithms could functions as post-processing algorithms in 

TRNG systems. 
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