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In modern urban planning, agricultural production, and environmental monitoring, 

classification tasks necessitate sophisticated approaches due to the inherent complexity of 

hyperspectral images (HSIs), characterized by their abundant spectral bands and consequent 

high dimensionality. Such profusion poses significant challenges for effective data 

processing, analysis, and classification. Addressing these challenges, the application of deep 

learning, particularly Convolutional Neural Networks (CNNs), has emerged as a pivotal 

advancement. By exploiting the inherent spectral correlation and spatial context, these 

networks are adept at extracting pertinent features from the high-dimensional data of HSIs, 

thereby significantly enhancing classification performance. This study introduces four novel 

deep learning models optimized with the Adam algorithm: a 3-Dimensional Convolutional 

Neural Network (3D-CNN), a 2-Dimensional Convolutional Neural Network (2D-CNN), a 

recurrent 3D-CNN (R-3D CNN), and a recurrent 2D-CNN (R-2D-CNN). The Adam 

optimizer, known for its adaptive nature and the utilization of moving averages of gradients 

and their squares, is demonstrated to efficiently handle sparse gradients, thus providing 

stability during the optimization process. Comprehensive analyses were conducted on two 

publicly available databases—Indian Pine and Pavia University—yielding notable results. 

The employment of the Adam optimizer facilitated the attainment of exceptional 

performance metrics, evidenced by a kappa coefficient of 99.6%, a processing time of 

322.18 seconds, an overall accuracy of 99.97%, and an average accuracy of 97.6% for the 

Indian Pine dataset; similarly, for the Pavia University dataset, results showcased a kappa 

coefficient of 99.1%, a processing time of 293.74 seconds, an overall accuracy of 99.98%, 

and an average accuracy of 99.99%. These findings underscore the superiority of the 

proposed deep learning models, particularly the R-3D-CNN and R-2D-CNN, over 

traditional classification approaches. The study not only introduces a novel optimization 

technique for managing high-dimensional data but also provides a comparative analysis with 

conventional methods, affirming the exceptional capabilities of the advanced deep learning 

models in hyperspectral image classification. 

Keywords: 

deep learning, hyperspectral images, spatial 

context, spectral correlation, feature 

extraction, optimization algorithms, 

convolutional neural network (CNN), Adam 

optimizer 

1. INTRODUCTION

High-spatial and spectral-resolution images with hundreds 

of data bands could be produced with hyperspectral sensors. 

HSI is an influential tool in several industries, including 

environmental mining [1], meticulous agriculture [2], and 

environmental monitoring [3], as a consequence of the 

abundance of spatial and spectral data. The most important 

method of HSI extraction is HSI categorization. Nonetheless, 

because of the complicated features of HSI data, HSI 

classification is still difficult. The Hughes phenomenon may 

be due to the high dimensionality of HSI and the massive 

number of spectral bands [4]. Thus, it may not be appropriate 

to classify HSIs directly using spectral fingerprints [5]. 

However, the classification of hyperspectral data presents 

arduous challenges due to innate complexities. In a high-

dimensionality problem, each pixel in an HSI scene is 

characterized by a spectrum with hundreds of bands, resulting 

in data of high dimensionality and redundancy. Traditional 

classification techniques scuffle to effectively handle this 

complex data space, often leading to issues of overfitting, 

computational inefficiency, and difficulty in discriminating 

elusive spectral differences between classes. HSI data can be 

susceptible to noise, atmospheric interference, or artifacts 

caused by sensor limitations. These disturbances can degrade 

the quality of spectral signatures, affecting classification 

accuracy and making it challenging to distinguish a true signal 

from noise. Addressing these challenges needs innovative 

methods that can handle high-dimensional, complex, and 

noisy data effectively. 

Over the past ten years, several feature extraction 

techniques have also been implemented to address this issue. 

The dimension of HSI reduction is a familiar concept. 

Principal component analysis (PCA) is covered [6]. For HSI 
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classification, other nonlinear dimension reduction techniques 

are also used, such as manifold learning [7, 8]. Developed 

sparse subspace clustering is the foundation of the band 

selection method [9]. A kernel-based feature choice approach 

to finding a portion of the actual HSI is provided [10]. Many 

academics have worked on spectral-spatial feature extraction 

to enhance classification performance further. A lengthy 

morphological outline is presented in study [11] to merge 

spatial and spectral data. Surveys use a spectral-spatial 

categorization approach based on feature outlines [12]. For 

HSI classification, a discontinuity-preserving relaxation 

technique is created [13]. It clearly talks about the issue of 

pixels that are mixed up [14] and gives an overview of the 

spectral and spatial HSI categorization [15]. 

Deep-learning procedures have recently been performed in 

various disciplines, including image classification and data 

dimensionality reduction [16, 17]. Deep learning technology 

even outperformed human ability in face recognition in 2014 

[18]. Deep-learning techniques try to learn representative and 

discriminative characteristics from the data in a hierarchical 

form. A methodological tutorial on utilizing deep learning in 

remote sensing may be found [19]. For the first time, HSI 

classification is handled using deep learning [20]. Somewhere, 

a stacked autoencoder (SAE) is applied to extract the 

characteristics in the HSI dataset. A few of the enhanced 

autoencoder-based techniques that are presented as a result of 

this work [21-24] According to research, CNN may also 

provide helpful deep features for HSI categorization. 

Nevertheless, deep learning-based methods frequently require 

training networks with complicated structures, which makes 

the training process time-consuming. A condensed deep-

learning baseline known as a PCA network (PCANet) is 

presented [25]. PCANet is a significantly less complex 

network than CNN. Each layer's convolution filter bank 

comprises PCA filters, the nonlinear layer comprises binary 

quantization, and the feature pooling layer is altered to a layer 

consisting of block-wise histograms of the binary codes. In 

many images’ classification tasks, investigations show that 

PCANet is already highly competitive with and frequently 

outperforms conventional deep-learning-based features, 

despite being relatively straightforward [26-29]. HSI produces 

extensive data volumes due to the several spectral bands 

captured per pixel. Storing, processing, and transmitting this 

data can be resource-intensive, requiring efficient 

compression techniques. Balancing spectral and spatial 

resolution in HSI sensors is a challenge. Analyzing 

hyperspectral datasets involves computationally intensive 

tasks such as preprocessing, feature extraction, classification, 

and visualization. Another major limitation in HSI data 

classification is obtaining accurately labeled ground truth data 

for training and validation purposes. Addressing these 

limitations involves advancements in sensor technology, data 

processing algorithms, computational efficiency, and the 

progress of user-friendly tools for HSI data interpretation and 

analysis. 

However, with few training examples, deep learning-based 

approaches cannot perform well [30]. Reducing the amount of 

training datasets needed for deep learning-based HSI 

categorization is considered one of the future works [31]. To 

build a deep-learning approach with strong feature depiction 

capabilities, hundreds of thousands to one crore of training 

databases are typically required [32], but this is practically 

unattainable for the job of HSI categorization. The researcher 

knows some well-known datasets where conventional 

classical methods consistently compete with deep learning-

based ones when training samples are constrained. Although 

deep learning-based techniques show promise, the issue of 

small sample sizes needs to be fixed. 

 

 

2. RELATED WORK 

 

A framework for spectral-spatial feature-based 

classification (SSFC) that extracts spatial and spectral 

characteristics utilizing deep learning approaches and 

dimension reduction is presented in this paper [33]. This 

method shows a balanced local discriminant inserting method 

for getting spectral structures from a hyperspectral database 

with a lot of dimensions. The CNNs automatically find 

spatially connected components at high levels of aspect in the 

conditional. After that, the combination characteristics are 

extracted by merging the spatial and spectral data. The 

multiple-feature-based categorization is used to classify 

images. The presented SSFC technique for HSI categorization 

outperforms commonly utilized techniques, according to 

testing results on the familiar HSI database. There is a method 

called multi-grained network (MugNet) that uses little data to 

look into how deep learning techniques can be used to sort 

hyperspectral images into groups [34]. First, a multi-grained 

scanning strategy takes advantage of the spatial correlation 

among nearby pixels (picture element) and the spectral link 

between various bands. The recommended multi-grained 

scanning technique might integrate the spectral and spatial 

relationships between multiple grains to extract the combined 

spectral-spatial data. Second, we make most of the unlabeled 

picture elements found in hyperspectral images by using them 

as samples and creating convolution kernels that are semi-

supervised. Finally, to create a primary network that does not 

include several tuning hyperparameters, the performance of 

MugNet is calculated. 

To classify hyperspectral images, create a complete 

spectral-spatial residual network (SSRN) that only accepts 

exposed 3D blocks as an original image [35]. With different 

spectral signatures and spatial contexts in HSI, the spectral and 

spatial residual blocks in this network gradually take on unique 

traits. The residual blocks facilitate the backpropagation of 

gradients, which link each additional 3D convolutional layer 

to complete character mapping. To regularize the learning 

process and enhance the categorization performance of trained 

approaches, also impose batch normalization on every 

convolutional layer. Take advantage of deep learning methods 

to solve the HSI categorization issue. The presented method 

can use geographical context and spectral correlation to 

improve hyperspectral picture categorization [36]. The 

categorization of hyperspectral images particularly 

recommends four novel deep learning approaches: the 3D-

CNN, the R-3D-CNN, the R-2D-CNN, and the 2D-CNN. 

Using six publicly accessible data sets, we carried out very 

meticulous studies. Compared with other methodologies, 

experimental outcomes support the excellence of the 

recommended deep learning methods. 

Contextual deep learning, a feature learning technique that 

is quite efficient in classifying hyperspectral images, is present 

[37]. Related to the advanced feature extraction technique, the 

learning-based feature extraction algorithm is capable of 

classifying information more accurately. Yet, the 

categorization of hyperspectral images can benefit from 

geographical contextual information. Contextual deep 
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learning employs a supervised fine-tune approach to improve 

the feature separator while explicitly learning spatial and 

spectral information via a deep learning design. Many tests 

demonstrate that the recommended appropriate deep learning 

approach is a superior feature learning approach and can 

perform well even with a primary classifier. The vertex 

component analysis network (R-VCANet), a new simple deep 

learning approach, and the rolling guidance filter (RGF), 

which improve accuracy when there are few training examples, 

are proposed in this research [38]. With R-VCANet, the 

network is created using the spectral features and geographical 

information inherent to HSI data. The RGF is applied first to 

merge the spectral and spatial information. The RGF explores 

the contextual structural features and eliminates minor 

information from the HSI. Nevertheless, the most significant 

development is creating a novel network, dubbed the vertex 

element testing network, used to extract deep information from 

even HSI. According to investigations on three well-known 

databases, the presented R-VCANet-based method 

outperforms various traditional approaches, specifically when 

the training databases are minimal. 

A weighted incremental deep learning-based active learning 

algorithm is present for these applications [39]. The presented 

method chooses training samples that maximize the 

representativeness and uncertainty of the selection criterion. 

This technique effectively trains a deep network by choosing 

training samples between iterations. The presented algorithm 

is applied to categorize hyperspectral images and evaluated 

against other active learning-based classification techniques. 

It demonstrated that the recommended method successfully 

classifies hyperspectral images. The hyperspectral images are 

effectively classified in the spectral field using the deep CNNs 

presented in this paper [40]. Every spectral signature has these 

few layers employed to differentiate it from others. The 

presented method may be better at categorizing than older 

methods like SVM and standard deep learning-based methods, 

according to results from analyses of multiple HSI samples. 

A brand-new approach to classifying hyperspectral images 

developed on multi-view deep neural networks that integrate 

spectral and spatial characteristics with just a few labeled 

examples is presented in this paper [41]. First, process the 

original hyperspectral image to extract spatial and spectral 

information. Every spectral vector is the spectral logic of a 

single image or picture element. The second part shows a 

multiple-viewing-point deep autoencoder method that 

combines the HSI's spatial and spectral features into a single 

hidden depiction space. A semi-supervised graph CNN is 

trained in the fused concealed depiction space to classify HSI. 

Findings indicate that the recommended technique performs 

classification tasks competitively compared to traditional 

methods. 

A deep multi-view learning approach is presented in this 

report to address the HSI small sample issue [42]. To 

effectively handle massive data sets, the logistic regression via 

variable splitting and augmented Lagrangian (LORSAL) 

algorithm [43] is created. For the categorization of 

hyperspectral images, some more sophisticated classification 

techniques have recently been established [44, 45]. Put forth a 

brand-new multiple-feature learning (MFL) technique that 

combines various features to classify hyperspectral images 

[46]. The approach can handle both linear and nonlinear 

classification. Using the 3D discrete wavelet transform, a 

novel SVM-based classification (SVM-3-DG) approach is 

presented in study [47]. 

 

 

3. METHODOLOGY 

 

The rationale for choosing specific CNN architectures like 

3D-CNN, R-3D-CNN, 2D-CNN, and R-2D-CNN methods 

typically depends on the nature of the data, its dimensions, and 

the spatial-spectral characteristics of the images. The novel 

3D-CNN, R-3D-CNN, 2D-CNN, and R-2D-CNN methods 

utilized for HSI categorization are shown in this section. We 

initially extract a tiny patch focused on every picture element 

to create the categorization approaches for these methods. Our 

proposed approach, the 3D-CNN and R-3D-CNN methods, 

uses the spectral correlations and spatial information of picture 

elements, but the 2D-CNN and R-2D-CNN methods only use 

spatial contexts. 

 

3.1 The 2D convolutional neural network (2D-CNN) 

 

Our 2D-CNN method is separated into three sections, as 

exposed in Figure 1: patch extraction, feature extraction, and 

label identification. We initially extract a tiny patch focused 

on every pixel from a hyperspectral image to serve as the 

essential feature. The feature maps of these patches are then 

developed with a built-in deep learning method. As a 

concluding phase, the feature map of the similar patch is 

utilized to categorize every picture element label. We don't 

include the pooling layers for any of the four methods to retain 

as much pixel information as possible. The following diagram 

depicts the 2D-CNN methods of three-phase processing. 

 

 
 

Figure 1. 2D convolutional process of 2D-CNN method 

 

Assuming that a hyperspectral image of size W×H×C is 

provided to us, where H and W stand for the image's height 

and width, respectively, and C stands for the number of 

spectral bands, Predicting the labels for every pixel in the 

image is our goal. Given that labels for spatially nearby pixels 

frequently match, the proposed approach should consider 

"spatial coherence." The initial step in the presented method 

of processing is to extract a P×P×C patch for every picture 
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element. A pixel, the patch's center, is the location about which 

every patch is built. There might not be enough data for the 

picture elements close to the edge of the image to create a 

patch that is the expected size. As a result, we use the mirror-

padding process of picture elements to generate the spatial 

context. 

The next processing stage handles every extracted patch as 

a separate image with multiple channels. To extract the feature 

maps for the patch, we can thus use a deep CNN method with 

2D layers. The 2D-CNN operator at every layer is more 

appropriately stated in the subsequent Eq. (1): 

 

𝑢ⅈ𝑗
𝑥𝑦

= 𝐺 (𝑑ⅈ𝑗 +∑ ∑ ∑ 𝜗ⅈ𝑗
𝑠𝑎𝑏𝑢ⅈ−1

(𝑥+𝑎)(𝑦+𝑏)

𝑊𝑗−1

𝑏=0

𝐻𝑖−1

𝑎=0𝑠

) (1) 

 

Here, uⅈjxy stands for the outcome at point (x, y) of the j is 

amount of feature map at the i layer, dij denotes the bias term, 

G(.) represents the activation function of the layer, and s 

indexes over the set of feature maps of the (ⅈ-1)th layer, which 

are the inputs to the ith layer. Where i denotes the specific 

layer under consideration. Hi and Wj are the width and height 

of this kernel, and ϑijsab is the point (a,b) of the convolution 

kernel that connects the ith feature map to the jth feature map. 

Use the ReLU function as the initiation G function for the 

proposed approach, which is described in Eq. (2) below:  

 

𝐺(𝑥) = max⁡(0, 𝑥) (2) 

 

Three convolutional layers are used in our 2D-CNN model. 

We ignore the pooling layers from the 2D-CNN method to 

protect the essential data of every picture element. The 

prediction is then built using a fully connected layer that inputs 

the feature maps from the previous 2D-CNN. In this case, we 

use the soft-max function to calculate the probability for every 

class. For multiple categorizations, the soft-max function 

extends the sigmoid function. The cross-entropy process was 

also chosen as the actual function that will guide the 

Backpropagation created training operation. 

Here, M and c stand in for every variable in our 2D-CNN 

method. We use the following soft-max function to convert the 

scores gd (Ii,j,l; (M,c)) of every class of interest dϵ{1,…,N} into 

the qualified possibilities as we train the 2D-CNN method by 

maximizing the likelihood (3): 

 

𝑞 (𝑑|𝐼ⅈ,𝑗,𝑙 ⁡; ⁡(𝑀, 𝑐)) =
𝑒𝑔𝑑(𝐼𝑖,𝑗,𝑙⁡;⁡(𝑀,𝑐))

∑ 𝑒𝑔𝑟(𝐼𝑖,𝑗,𝑙⁡;⁡(𝑀,𝑐))
𝑟𝜖{1,…,𝑁}

 (3) 

 

By reducing the negative log-likelihood used in the training 

process, the parameters (M,c) are learned (4). 

 

𝐿(𝑀, 𝑐) = −∑ln𝑞(𝐼ⅈ,𝑗,𝑙|𝐼ⅈ,𝑗,𝑙; (𝑀, 𝑐))

𝐼𝑖,𝑗,𝑙

 
(4) 

 

When the pixel at the position (i,j) in the image Il has the 

proper class label, denoted by the notation Ii,j,l. Adam 

optimizer with Backpropagation, maximizes the objective 

function. Using the argmax process, the outcome layer of the 

presented approach forecasts the label of the picture element 

at (i,j) of a data point I at testing time (5). 

 

𝑙𝑖,�̂� = argmax 𝑞 (𝑑|𝐼ⅈ,𝑗,𝑙 ⁡; ⁡(𝑀, 𝑐)) . 𝑑𝜖{1, … , 𝑁} (5) 

 

3.2 The 3D-CNN method (3D-CNN) 

  

The previous is taken by examining the identical area with 

various spectral bands. Whereas the final is not, this is one of 

the key distinctions between a HSI and a common image. It is 

preferable to consider hyperspectral correlations since the data 

created by hyperspectral bands has some connections; for 

example, nearby hyperspectral bands provide the same images. 

The spatial context can be utilized by the 2D-CNN method, 

but the hyperspectral correlations are discarded. To create a 

3D-CNN process to deal with this problem. 

The process specifics of the 3D-CNN method are 

comparable to the 2D-CNN approach, as illustrated in Figure 

2. The primary distinction is that the 3D-CNN process has an 

additional reordering phase. The C hyperspectral bands are 

reordered in this phase in an increasing direction. This 

sequential ordering of images of associated spectral bands can 

maintain their correlations in a spectral context. The two 

methods' patch extraction and label recognition phases are 

remarkably comparable. Rather than using a 2D convolution 

operator for the feature extraction stage, the 3D-CNN method 

is utilized. The 3D convolution operation is explicitly written 

in the following Eq. (6): 

 

𝑢ⅈ𝑗
𝑥𝑦

= 𝐺 (𝑑ⅈ𝑗 +∑ ∑ ∑ ∑ 𝜗ⅈ𝑗𝑠
𝑘𝑎𝑏𝑢(ⅈ−1)𝑠

(𝑥+𝑎)(𝑦+𝑏)(𝑧+𝑘)

𝐶𝑖−1

𝑘=0

𝑊𝑖−1

𝑏=0

𝐻𝑖−1

𝑎=0𝑠

) 
(6) 

 

Here, ϑijskab is the point at the (a,b,k)th location of the 

kernel associated with the sth feature map of the prior layer, 

where Ci is the size of the 3D kernel together with the spectral 

dimension and j is the number of kernels in the ⅈth layer. Once 

more, activation function G is assumed to be the ReLU 

function. 

 

 
 

Figure 2. 3D convolutional process of 3D-CNN method 
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Figure 2 depicts the 3D convolution technique. We can see 

that a 3D patch is subject to the 3-D convolution process in 

stages, such as inner to outer, top to bottom, and left to right. 

A convolution layer is created at every stage and positioned in 

the appropriate location on the feature map. As a result of this 

technique, a feature map is a smaller 3D cube. Similar to 

training a 2D-CNN method, training a 3D-CNN method 

involves computing the possibility of every class using the 

soft-max function. Moreover, by expanding the log-likelihood 

of the training set, we express the analysis procedure as an 

optimization issue. Adam optimizer with Backpropagation is 

additionally used for network training. 

 

3.3 The recurrent 2D-CNN method (R-2D-CNN) 

 

As the categorization of a picture element depends on the 

properties of a tiny patch adjacent to the picture element rather 

than the features instantly committed to the picture element, 

the 2D-CNN method, as previously mentioned, may generate 

undesirable noise even if it can take advantage of the spatial 

context. To create an R-2D-CNN method to utilize the spatial 

environment more effectively. A multiscale deep neural 

network is used by the R-2D-CNN method to fuse numerous 

shrinking patches into multiple instances, which it then uses to 

make predictions. 

To make things clear, we refer to the instances as the first 

phase, the second phase, and the qth phase, correlating after the 

larger patches to the minor patches, here the Pth phase 

frequently correlates to the picture element for categorization, 

i.e., a 1×1 patch. A R-CNN structure, in which a fundamental 

2D-CNN block is repeatedly reused, makes up the R-2D-CNN 

deep neural network. It extracts the feature maps for the initial-

phase instances using the essential 2D-CNN block. The similar 

2D-CNN block extracts the following-phase feature maps by 

concatenating these feature maps with the second-phase 

representatives. Up until the qth level instances are fused, this 

process is repeated. The probability of every class is calculated 

after applying a soft-max layer. We can examine the spatial 

context data and concentrate additional on the data closest to 

the picture element for categorization by using the numerous 

shrunk patches. As a result, the undesirable noises might 

decrease. 

 

 
 

Figure 3. R-2D-CNN method contains two fundamental 2D-

CNN 

 

Figure 3 represents the foremost framework of the R-2D-

CNN method. At the qth phase, the system is sustained with the 

original "feature image" Gq of F +C, which consists of H 

feature maps for the (q-1)th instances, C is HSI for the qth 

occurrences, and 1≤ q≤ Q. F means the number of feature maps 

created by the 2D-CNN method. The method is described in 

formal terms as follows (7): 

 

𝐺𝑞 = [𝐺(𝐺𝑞−1, 𝐼ⅈ,𝑗,𝑙
𝑞

)], 𝐺1 = [0, 𝐼ⅈ,𝑗,𝑙] (7) 

 

where, Ii,j,l refers to the actual patch that encloses the picture 

element at coordinates (i,j) on the training image l. Since there 

is no occurrence since a prior to build the feature maps, the 

network just accepts the actual image as input in the first phase. 

Despite having multiple phases, the R-2D-CNN method 

problem does not improve with the number of phases. The 

explanation is that the parameters for many levels are expected, 

as shown in Figure 3. 

The gradients are generated utilizing the Backpropagation 

through time (BPTT) procedure throughout the 

Backpropagation method, just like the 2D-CNN model during 

model training. More specifically, we train the method using 

the BPTT algorithm after first unfolding the network, as 

depicted in Figure 3. Contrary to the 2D-CNN method, the 

recurrent multilevel architecture forces us to acquire the 

network limitations (W, b) through a novel loss function (8). 

The loss function is established using (7): 

 

𝐼(𝐺) + 𝐼(𝐺 ◦ 𝐺) + ⋯+ 𝐼(𝐺 ◦𝑞 𝐺) (8) 

 

I(G) is the log-likelihood of the 2D-CNN model established 

in (3), ◦q stands for the composition operation carried out q 

times. In order to provide the appropriate label at the location, 

each network instance is trained (i,j). The R-2D-CNN method 

can learn from its errors and fix them in subsequent iterations. 

The R-2D-CNN model can also categorize dependences, 

which involves predicting an instance's label based on the label 

of an earlier occurrence centered on location (i,j). 

It is important to note that the sizes of the tiered sample in 

order for the R-2D-CNN method to be appropriately planned 

for the instances to be combined by the feature maps of the 

prior instances. To achieve this, we must initially determine 

how a feature map's size variations at what time is employed 

in a 2D convolution layer. Here rzs-1 represents the (s-1)th 

convolution layer's feature map size. Then, the formula (9) 

below is utilized to calculate the size of the feature map 

generated by the mth convolution layer: 

 

𝑟𝑧𝑠 =
𝑟𝑧𝑠−1 − 𝑐𝑉𝑠

𝑡𝑉𝑠
+ 11 (9) 

 

where, tVs is the stride size, and cVs is the size of the sth 

layer's convolution kernel. To determine the size of a feature 

map created by the 2D-CNN block (8). As a result, we can 

calculate the instances' proper sizes for various categories. 

 

3.4 The recurrent 3D-CNN method (R-3D-CNN) 

 

We created the R-3D-CNN method to use hyperspectral 

images' spatial and spectral contexts more effectively. Like the 

R-2D-CNN model, multilevel RNNs that gradually shrink a 

patch into multiple instances also support the R-3D-CNN 

paradigm. R-2D-CNN method and the R-3D-CNN method 

differ primarily in two ways. The primary distinction is that 

the prior uses the 3D convolution process, while the last 

utilizes their 2D equivalents. As a result, the R-3D-CNN 

method could be a recurrent addition to the 3D-CNN process. 

The second distinction is that feature maps produced at the 

current level must be concatenated with instances from the 

following level once they have been pre-processed. We use 3D 
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convolution layers for this purpose, which causes the spectral 

bands to have variable lengths. In order to adjust to the shifting 

sizes, we must pre-process the instances of the following level 

using specific 3D spectral channel convolution techniques. 

An illustration of the proposed R-3D-CNN method is shown 

in Figure 4. A multi-layer RNN with P-tiered instances makes 

up the model. With the R-2D-CNN method, the matching 

feature maps are extracted using a "simple" 3D convolution 

network and then concatenated with the instance from the 

following phase to develop novel feature maps at every phase. 

This approach is repetitive until completely tiered samples 

have been included. A pre-processing step is added to the 

spectral networks to maintain consistency between the sizes of 

feature maps at the present phase and the sizes of the 

occurrences at the following phase. The cross-entropy 

objective function is next applied, and a soft-max layer is lastly 

added. 

The BPTT method is once again used in the optimization 

process. The R-3D-CNN approach's complexity is comparable 

to the R-2D-CNN approach since the recurrent structure uses 

the same network parameters at several stages. We must 

reorder the hyperspectral images in the 3D-CNN method by 

spectral band ordering. As with the R-2D-CNN paradigm, the 

size of tiered instances must also be wisely calculated. 

 

 

4. RESULT AND DISCUSSION 

 

To assess the proposed approaches' effectiveness, we 

selected two publicly accessible hyperspectral image data sets. 

We also used LORSAL, MFL, and SVM-3-DG as the 

baselines for performance comparison. We employed two 

performance metrics: the average accuracy of every class, the 

overall accuracy of every class indicated on AA and OA, the 

kappa coefficient (Kc), and time consumption. 

 

4.1 Datasets 

 

Pavia University scene: Using the ROSIS [Reflective 

Optics System Imaging Spectrometer] sensor, this 

hyperspectral image data set captures Pavia University in Italy. 

The image data collection has a spatial resolution of 610×340 

pixels and 103 hyperspectral bands. It contains spatial 

information with fine details, enabling the observation of 

objects and features within the scene at a high level of detail. 

Spectrally, it covers a range of contiguous bands, providing 

detailed spectral information for each pixel. It covers various 

terrains, buildings, vegetation, and urban landscapes within 

the university premises. Nine classes are designated in the 

image, as seen in Figure 7(e): tree, asphalt, bitumen, gravel, 

metal sheet, shadow, bricks, meadow, and soil. 

Indian pines scene: The AVIRIS sensor captures remote 

sensing images of Indian pines in north-western India. The 

data set was obtained in 1992. The dataset represents a 

snapshot of the area captured during the specific time of the 

AVIRIS flight in 1992. It encompasses various land cover 

types, such as agricultural fields, forests, and other natural and 

man-made features. The hyperspectral image has a spatial 

resolution of 145×145, a picture element, and 224 

hyperspectral bands. Only 200 hyperspectral bands were 

selected because there were noisy bands present. The bands 

104-108, 150-163, and 220 that covered the water-absorbing 

zones are eliminated. There are 16 classes in the actual data 

that are not all exclusive. For our experiment, we separated the 

labeled data into 70 percent of training sets and 30 percent of 

testing sets at random, as shown in Figure 7(a). In order to 

balance computational efficiency and model convergence, 

batch sizes ranging from 17 to 62 are used in experiments on 

these datasets. The learning rate parameters of these two 

datasets are tuned between 0.001 and 0.01. Adam Optimizer is 

used due to its adaptive learning rates and efficiency in 

optimizing CNNs. For effective regularization, dropout rates 

of 0.32 are employed in fully connected layers to prevent 

overfitting. 

 

4.1.1 Outcomes for the Pavia University scene 

The deep learning models used in this experiment have 

structures similar to those used in the original Indian pines 

scene experiment. The main modification is several 

parameters to correlate to the 102 hyperspectral bands of the 

improved database. Recall that the first data set had 200 bands. 

Created on the Pavia University scene database, Table 1 shows 

the experimental findings for each approach. 

 

 
 

Figure 4. Network parameters for R-3D-CNN method across multiple shared levels 
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Table 1. Categorization outcomes of the Pavia University scene 

 

Classes 
LORSAL 

[43] 

MFL 

[46] 

SVM-3DG 

[47] 

2D-CNN 

Method 

3D-CNN 

Method 

R-2D-CNN 

Method 

R-3D-CNN 

Method 

1 91.2 100 99.45 93.21 99.41 99.76 100 

2 96.92 99.93 99.86 99.87 100 100 100 

3 64.07 93.64 87.12 93.34 98.15 99.34 100 

4 88.57 98.59 99.67 88.04 95.88 94.65 100 

5 99.75 99.5 100 92.67 98.97 99.03 100 

6 57.76 99.67 99.07 99.36 99.96 100 100 

7 59.05 99.75 95.73 92.67 99.01 99.02 100 

8 80.45 99.1 96.38 94.19 99.35 100 100 

9 97.89 100 98.94 88.56 83.56 96.06 99.97 

OA 86.74 99.42 98.62 96.35 98.89 99.63 99.98 

AA 81.74 98.91 97.36 98.55 97.14 98.65 99.99 

Kc - - - 93.31 95.02 97.24 99.1 

Time (s) - - - 125.4 156.78 238.14 293.74 

 

Once more, it is clear that the presented R-3D-CNN exceeds 

the R-2D-CNN methods, the LORSAL method, the MFL 

method, and the SVM-3DG method. Compared to the MFL, 

which had an OA of 99.42 percent, the R-3D-CNN model's 

OA is 99.988 percent, a difference of 0.56%. And when we 

consider lowering error rates, the R-3D-CNN method 

surpasses the MFL technique by more than 95%. Results from 

the 3D-CNN and 2D-CNN models are equivalent to those 

from the SVM-3-DG approach. The LORSAL classifier 

performs the least well of all the techniques. The 

categorization outcomes for all the processes are illustrated in 

Figure 5. 

 

 
 

Figure 5. Pavia University scene (a) Ground truth image, (b) 

2D-CNN result, (c) 3D-CNN result (d) R-2D-CNN result and 

(e) R-3D-CNN result 

 
 

Figure 6. Effect of training sample proportion vs. Accuracy 

for Pavia University scene 

 

In this experiment, we examined how different training 

sample sizes affected the evaluation of the presented deep 

learning techniques. Evaluate the training sample proportion 

and accuracy for the Pavia University scene database. The 

presented deep learning methods, 3D-CNN, R-3D-CNN, 2D-

CNN, and R-2D-CNN, demonstrate improved performance as 

training sets increase, as shown in Figure 6. 

 

4.1.2 Outcomes for the Indian pines scene 

The investigational findings using different data sets are 

then reported. The results of every method are displayed in 

Table 2. We note that the R-3D-CNN method, whose OA is 

99.97%, performs best. Even if the MFL's OA is 97.05%, the 

R-3D-CNN method performs better than it by 0.32% when 

error rates are considered. 

The primary justification for this is that the R-3D-CNN 

method includes spectral and spatial contexts. The previous is 

incidental using the 3-D convolution procedure, and the last 

uses the recurrent multilevel structure. The R-2D-CNN 

method is evaluated as the next greatest in AA and OA, and 

the LORSAL, the 3D-CNN method, and the 2D-CNN method 

follow it. Despite not considering spectral correlations, the R-

2D-CNN's structures may efficiently record the spatial context 

for consequent data categorization. Our investigational 

outcomes show the spatial context is more essential than the 

spectral correlations for HSI categorization. The findings of 

MFL are superior to those of SVM-3-DG and LORSAL, as 
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shown in Table 2. Yet, its performance is significantly inferior 

compared to different deep learning algorithms. Because it can 

extract EMAP data relevant to the spectral-spatial contexts, the 

MFL obtains a comparable evaluation to that of the 3D-CNN 

and the 2D-CNN approaches as a potential classification 

approach. A visual comparison of the effectiveness of each 

technique is displayed in Figure 7. 

 

Table 2. Categorization outcomes of Indian pines scene 

 

Classes 
LORSAL 

[43] 

MFL 

[46] 

SVM-3DG 

[47] 

2D-CNN 

Method 

3D-CNN 

Method 

R-2D-CNN 

Method 

R-3D-CNN 

Method 

1 85.71 85.71 64.29 74.23 87.76 79.94 100 

2 89.88 96.24 80 96.76 97.23 99.86 100 

3 82.04 92.65 73.47 97.82 98.49 99.11 100 

4 82.61 97.1 97.1 75.67 99.76 100 100 

5 91.61 97.2 91.61 98.46 98.59 98.31 100 

6 99.08 99.54 97.7 97.29 98.14 100 100 

7 100 100 62.5 100 100 88.65 100 

8 100 100 100 100 100 100 100 

9 83.33 100 100 100 100 100 100 

10 85.81 92.04 75.78 98.85 99.21 99.32 100 

11 88.83 98.5 95.37 99.98 99.92 100 99.92 

12 88.64 96.02 86.36 97.31 98.56 99.87 99.03 

13 100 98.36 98.36 100 97.65 99.43 100 

14 96.02 99.47 97.08 99.42 100 100 100 

15 83.33 97.37 100 95.23 94.14 99.45 97.43 

16 85.71 100 78.21 100 100 97.59 97.32 

OA 90.1 97.05 89.44 98.13 98.25 99.35 99.97 

AA 88.47 96.89 87.61 97.68 99.09 97.59 99.6 

Kc - - - 97.07 97.25 97.38 99.2 

Time(s) - - - 149.47 179.8 271.26 322.18 

 

Table 3. Descriptive statistics of Pavia scene 

 

Statistics 
LORSAL 

[43] 

MFL 

[46] 

SVM-3DG 

[47] 

2D-CNN 

Method 

3D-CNN 

Method 

R-2D-CNN 

Method 

R-3D-CNN 

Method 

Mean 81.74 98.90889 97.35778 93.54556 97.14333 98.65111 99.99667 

Standard Error 5.719757 0.676585 1.378501 1.349262 1.748169 0.647271 0.003333 

Median 88.57 99.67 99.07 93.21 99.01 99.34 100 

Mode 99 100 99 92.67 99 100 100 

Standard 

Deviation 
17.15927 2.029756 4.135504 4.047787 5.244507 1.941813 0.01 

Sample 

Variance 
294.4406 4.119911 17.10239 16.38458 27.50485 3.770636 0.0001 

Kurtosis -1.69887 7.66773 5.634035 -0.30016 7.555099 1.326689 9 

Skewness -0.51764 -2.71734 -2.3034 0.381959 -2.70354 -1.5868 -3 

Range 41.99 6.36 12.88 11.83 16.44 5.35 0.03 

Minimum 57.76 93.64 87.12 88.04 83.56 94.65 99.97 

Maximum 99.75 100 100 99.87 100 100 100 

Sum 735.66 890.18 876.22 841.91 874.29 887.86 899.97 

Count 9 9 9 9 9 9 9 

 

Table 4. Descriptive statistics of Indian pines scene 

 

Statistics 
LORSAL 

[43] 

MFL 

[46] 

SVM-3DG 

[47] 

2D-CNN 

Method 

3D-CNN 

Method 

R-2D-CNN 

Method 

R-3D-CNN 

Method 

Mean 90.1625 96.8875 87.36438 95.68875 98.09063 97.59563 99.60625 

Standard Error 1.689927 0.968596 3.28821 2.056763 0.789279 1.36826 0.225961 

Median 88.735 97.865 93.49 98.655 98.9 99.655 100 

Mode 100 100 100 100 100 100 100 

Standard 

Deviation 
6.75971 3.874383 13.15284 8.227052 3.157116 5.473039 0.903843 

Sample 

Variance 
45.69367 15.01085 172.9972 67.68439 9.96738 29.95416 0.816932 

Kurtosis -1.38387 3.792907 -0.85985 4.448971 8.04569 7.82471 3.779605 

Skewness 0.468609 -1.8647 -0.74157 -2.3671 -2.70595 -2.83086 -2.23758 

Range 17.96 14.29 37.5 25.77 12.24 20.06 2.68 

Minimum 82.04 85.71 62.5 74.23 87.76 79.94 97.32 

Maximum 100 100 100 100 100 100 100 

Sum 1442.6 1550.2 1397.83 1531.02 1569.45 1561.53 1593.7 

Count 16 16 16 16 16 16 16 
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Figure 7. Indian pines scene (a) Ground truth image, (b) 2D-

CNN result, (c) 3D-CNN result (d) R-2D-CNN result and (e) 

R-3D-CNN result 

 

Table 3 summarizes the comparison of descriptive statistics 

method to describe the features of the Pavia University dataset. 

 

 
 

Figure 8. Effect of training sample proportion vs. Accuracy 

for Indian pines scene. 

 

 
 

Figure 9. (a) R-3D-CNN Loss vs epochs and (b) R-3D-CNN 

Accuracy vs epochs 

Figure 8 shows the performance of the training sample 

proportion vs. accuracy for the Indian pines scene dataset, 

showing improved performance as training data increases. 

Table 4 summarizes the comparison of descriptive statistics 

methods to describe the features of the Indian Pine dataset. 

The graphs of accuracy and loss over training and validation 

processes on diverse subjects are depicted in Figure 9. 

 

 

5. CONCLUSION 

 

In this study, we investigated deep learning approaches for 

categorizing HSI. Four deep learning models have been 

created and developed, including the 3D-CNN, R-3D-CNN, 

2D-CNN, and 2D-CNN. Based on two freely accessible HSI 

data sets, rigorous experiments were carried out. Our 

experimental findings support the excellence of these deep 

learning approaches over more conventional machine learning 

techniques like LORSAL, MFL, and SVM-3DG. Due to its 3D 

convolutional fixer and recurrent network architecture, it can 

efficiently utilize spatial and spectral contexts. The presented 

R-3D-CNN method frequently overcomes competing 

approaches for the maximum of the database and connects 

more quickly. If categorization evaluation is defined regarding 

error rate, the R-3D-CNN and R-2D-CNN perform more than 

30% better than the baselines. The categorization outcomes of 

the Indian pines scene using R-3D-CNN provide efficient 

performance based on kappa coefficient, time consumption, 

overall accuracy, and average accuracy of 99.6%, 322.18 

seconds, 99.97%, and 97.6%, respectively. Similarly, the 

categorization outcomes of the Pavia University Scene using 

R-3D-CNN are efficient performance-based kappa coefficient, 

time consumption, overall accuracy, and average accuracy of 

99.1%, 293.74 seconds, 99.98%, and 99.99%, respectively. 

Although the proposed approaches are superior, deep learning 

methods frequently require more training data than 

conventional machine learning techniques. Processing of 

Pavia data cubes and Indian Pine data cubes with numerous 

spectral bands leads to increased training and inference times. 

Consequently, adding previous field data to the provided deep 

learning methods resolves a significant future analysis area. 
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