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With the rapid advancement of remote sensing technology, satellite imagery has become 

increasingly vital in global geographic information systems, environmental monitoring, and 

resource management. However, cloud cover frequently degrades the quality of satellite 

images, limiting their effectiveness in many critical areas. Traditional methods for cloud 

detection and removal, such as threshold analysis and spectral feature analysis, often fail to 

achieve satisfactory results due to environmental constraints and algorithmic limitations. In 

response, this study employs deep learning techniques, specifically superpixel segmentation 

and generative adversarial networks (GAN), to address this issue. This paper begins by 

discussing the importance of cloud detection and removal in satellite imagery and reviews 

existing major techniques and methods. It then explores the application of superpixel 

segmentation based on local adaptive distance for automatic cloud boundary identification, 

along with innovative applications of GAN for surface information reconstruction in cloud-

covered areas. These methods not only enhance the accuracy of cloud detection but also 

effectively optimize the cloud removal process, paving the way for further applications of 

satellite imagery. 

Keywords: 

satellite imagery, cloud detection, cloud 

removal, superpixel segmentation, 

generative adversarial networks (GAN), 

deep learning 

1. INTRODUCTION

With the rapid development of remote sensing technology, 

satellite imagery has become an important tool for Earth 

observation and environmental monitoring [1-3]. However, 

cloud cover often severely affects the quality and utility of 

satellite images, limiting their effectiveness in fields such as 

meteorological analysis, resource surveys, and environmental 

protection [4-7]. Therefore, developing effective cloud 

detection and removal techniques is crucial for enhancing the 

usability and accuracy of satellite data. 

Currently, deep learning-based techniques have 

demonstrated outstanding performance in the field of image 

processing, especially in image segmentation and feature 

recognition [8-10]. Applying these techniques to cloud 

detection and removal in satellite imagery can significantly 

improve processing precision and efficiency [11, 12]. 

Moreover, research on cloud detection and removal not only 

enhances the practicality of satellite imagery in real-world 

applications but may also promote the development of 

automatic processing and analysis technologies for remote 

sensing images. 

Despite existing research providing various methods for 

cloud detection and removal, such as threshold-based 

detection and spectral feature analysis, these methods often 

rely on strict environmental assumptions or have high error 

rates [13-16]. Additionally, traditional methods frequently 

face issues of insufficient accuracy and low efficiency when 

dealing with complex or changing cloud structures [17-20]. 

Therefore, a more precise and adaptive technology is required 

to cope with the variable effects of cloud cover. 

This paper primarily studies two aspects. First, it employs a 

satellite image automatic cloud boundary-sensitive superpixel 

segmentation technique based on local adaptive distance. This 

technique, by analyzing the complex relationships between 

pixels, adaptively determines the cloud boundaries, thereby 

improving the accuracy of cloud detection. Second, it develops 

an automatic cloud removal algorithm for satellite images 

based on GAN, utilizing the powerful generative capabilities 

of GAN to restore surface information in cloud-covered areas. 

The combination of these two technologies not only brings 

new research perspectives to the field of cloud detection and 

removal but also greatly enhances the value and reliability of 

satellite images in various practical applications. 

2. SUPERPIXEL SEGMENTATION FOR AUTOMATIC

CLOUD BOUNDARY DETECTION IN SATELLITE

IMAGERY BASED ON LOCAL ADAPTIVE DISTANCE

In satellite image analysis, the detection and removal of 

clouds is a crucial yet challenging task, especially when 

dealing with scenes where cloud boundaries are blurred or 

contrast with the terrain is low. Traditional superpixel 

segmentation methods often perform poorly in these weak 

boundary areas, leading to superpixels that cross over both 

cloud and non-cloud areas, thus reducing the accuracy and 

efficiency of subsequent processing. To address this issue, this 

study proposes a method of superpixel segmentation for 

automatic cloud boundary detection in satellite imagery based 
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on local adaptive distance. This method specifically targets the 

challenge of identifying cloud boundaries in satellite imagery 

by dynamically adjusting segmentation strategies to adapt to 

subtle changes between clouds and the terrain, optimizing the 

generation of superpixels to ensure they strictly conform to 

cloud boundaries, significantly reducing semantic errors due 

to under-segmentation of weak boundaries. 

 

2.1 Definition of local adaptive distance metric  

 

In the context of automatic cloud detection and removal in 

satellite imagery, precise segmentation of cloud boundaries is 

one of the core tasks, especially in areas where contrast 

between clouds and the ground is low. Traditional superpixel 

algorithms, which use a globally consistent distance metric, 

often fail to effectively identify subtle boundaries in low 

contrast areas. The method proposed in this study for 

superpixel segmentation sensitive to cloud boundaries based 

on local adaptive distance emphasizes sensitivity and 

discriminative ability for weak boundaries. This method 

adaptively amplifies the feature differences that are less 

contrasted between cloud and non-cloud areas, thereby 

enhancing detection capability for weak boundaries. Figure 1 

shows the advantage of local adaptive distance measurement 

over non-local distance measurement. 

In the definition of the local adaptive distance metric, the 

representation space of the image U is defined as a multi-

dimensional feature space, which includes original image 

features such as color and brightness, as well as other features 

that may be extracted based on satellite image characteristics 

(e.g., infrared and multispectral data). Given the digital image 

U, with a total number of pixels V, the result of superpixel 

segmentation is denoted as A={Aj}J
j=1, where J is the 

predetermined number of superpixels. The feature space of 

image U is defined as U={{Zk}n
k=1,{Za,Zb}}, where n is the 

dimension of the feature space, Zk represents the k-th feature 

channel, while Za and Zb represent spatial location coordinates. 

Each pixel u in this space is represented as a vector 

ou=[z1,u,...,zn,u,za,u,zb,u]. 

 

 
 

Figure 1. Comparison of local adaptive distance 

measurement to non-local distance measurement 

Considering the feature differences and spatial connectivity 

between cloud and non-cloud areas, to quantify the distance 

more precisely between pixels and superpixels, this study 

proposes the following distance function. This distance 

function combines feature dissimilarity and spatial distance. 

The function introduces a balancing factor to adjust the weight 

between the feature homogeneity term and the regularity 

constraint term to adapt to the characteristics of different areas. 

Particularly in weak contrast areas at cloud boundaries, by 

increasing the weight of feature dissimilarity in the distance 

measurement, more effective identification and maintenance 

of these subtle boundaries can be achieved, while ensuring the 

spatial connectivity and shape regularity of superpixels. 

Specifically, the feature homogeneity term is represented by 

Fz(ou,Aj), the regularity constraint term by Ft(ou,Aj), the 

number of feature dimensions of the input image by n, and the 

balancing factor between the feature homogeneity term and 

the regularity constraint term by η. Given pixel ou and 

superpixel Aj, their distance can be calculated as follows: 

 

( ) ( ) ( )2 2, , ,MX u j z u j t u jF o A F o A n F o A= +    (1) 

 

In the method of superpixel segmentation for automatic 

cloud boundary detection in satellite imagery, the feature 

homogeneity term is crucial for ensuring the consistency of 

pixels within a superpixel and their precise alignment with 

actual cloud boundaries. The proposed method uses a feature 

homogeneity term based on local adaptive distance, 

emphasizing the consistency of features such as grayscale, 

color, or infrared data within superpixels and ensuring that the 

boundaries of the superpixels tightly adhere to the natural 

edges of cloud layers. From a mathematical perspective, by 

performing Z-score normalization of the image within local 

regions, the contrast in low-contrast areas can be effectively 

increased, easing the difficulty of boundary segmentation. 

This normalization not only ensures the uniformity of features 

but also eliminates the impact of different feature scales on 

distance calculations, allowing the algorithm to handle 

different feature representations more flexibly in satellite 

imagery, thus enhancing the accuracy and efficiency of cloud 

boundary detection. Assuming that the mean and standard 

deviation of all pixels in superpixel Aj on feature channel Zk 

are represented by ωk,j and δk,j respectively, ωk,j and δk,j are 

defined as ωk,j=|Aj|-1∑u ∈ Ajzk,j,δk,j=√|Aj|-1∑u ∈ Aj(zk,j-ωk,j)2. The 

following equation defines the feature homogeneity term: 
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( ) , ,,k u j k u k jf o A z = −  (3) 
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−

=  (4) 

 

In the process of superpixel segmentation sensitive to 

automatic cloud boundaries in satellite imagery, applying a 

global constraint to the feature homogeneity term is a key step 

in ensuring segmentation quality. The purpose of this 

constraint is to reduce the jittering of superpixel boundaries in 

flat areas caused by minor feature perturbations, which is 

particularly noticeable when the feature standard deviation 

approaches zero, and has no substantive meaning for actual 
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image segmentation. Therefore, this study adopts an adaptive 

global constraint method by setting a minimum limit on the 

feature standard deviation of superpixels, avoiding unstable 

boundaries caused by overly sensitive feature weights. 

Specifically, this global constraint uses the cube root of the 

third moment of the feature standard deviation of superpixels 

as a threshold. This threshold not only considers the 

complexity of the image content but also achieves a balance in 

the sensitivity to features in different areas of the image 

through the control parameter l. Assuming the initial standard 

deviation of features within the superpixel division is 

represented by δ0, the calculation formula is: 

 

( )( )
3

3
0 ,

1

1 J

k k j
j

Sg l
J


=

=    (5) 

 

After imposing a minimum threshold limit on the standard 

deviation of each feature channel of the satellite image 

superpixels, the local adaptive weights can be set as follows: 

 

( ) ( )( )
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=  (6) 

 

Assuming that the mean spatial coordinates a and b of all 

pixels within superpixel Aj are represented by ωa,j and ωb,j, and 

the normalization factor by X. Further, set the spatial distance 

metric Ft: 
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The final distance consists of two parts, Ft and Fz, balanced 

by η0. Since F2
z increases with the increase in feature 

dimensions, η0 is set as the product of the feature dimension n 

and the adjustable parameter η. The final distance between 

pixel ou and superpixel Aj can be defined as follows: 
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2.2 Automatic cloud boundary superpixel generation in 

satellite imagery  

 

To improve the feature homogeneity of superpixels, this 

paper proposes a satellite imagery automatic cloud boundary 

superpixel segmentation model based on morphological 

contour evolution. Below, the basic principles of the 

segmentation model are detailed. Figure 2 shows the process 

flow for the generation of automatic cloud boundary 

superpixels in satellite imagery. 

The model initializes using a regular grid method, similar to 

the USEAQ and SCAC algorithms, where the initial side 

length of the superpixels is set to T=VN/J, calculated based on 

the total number of pixels V and the predetermined number of 

superpixels J. Further, global constraint calculations are 

carried out, which involve setting initial rounds of superpixel 

segmentation and then performing a global analysis of features 

and spatial constraints across the entire image to ensure that 

the superpixels are not only homogeneous in features but also 

regular in shape and size. By calculating the standard deviation 

of features within each superpixel region and applying the 

previously mentioned minimum value constraints, 

segmentation errors caused by overly sensitive features can be 

effectively avoided. Additionally, the global constraints 

consider the spatial relationships between superpixels, using 

normalized spatial distances to maintain the shape regularity 

of superpixels. Figure 3 illustrates the constraint calculation 

process. 

 

 
 

Figure 2. Process flow for automatic cloud boundary 

superpixel generation in satellite imagery 

 

 
 

Figure 3. Constraint calculation process 

 

The iterative superpixel generation step is the core 

component of the model, crucial for effectively expanding and 

optimizing the shape of superpixels to map and distinguish 

between cloud and non-cloud areas more accurately. This step 

starts from the initialized regular superpixel grid, using binary 

morphological dilation operations to define the evolution 

search area for each superpixel. Morphological dilation 

extends the current boundaries of the superpixels using a 

defined structural element, achieving uniform expansion of the 

boundaries, which not only maintains balanced distances but 

also adapts to irregular and elongated boundary shapes. The 

evolution operation for each superpixel is confined within a 

predefined maximum range, typically several multiples of the 
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initial side length (M×T), which ensures the controllability of 

operations and avoids the inaccuracies brought by excessive 

dilation. Figure 4 demonstrates the iterative optimization 

process for superpixel cloud boundary generation. 

 

 
 

Figure 4. Iterative optimization process for superpixel cloud 

boundary generation 

 

In each iteration, by comparing the local adaptive distance 

between pixels within neighboring areas and the current 

superpixel, pixels that are feature-similar and closer in 

distance are selectively incorporated into the superpixel. This 

method is particularly suitable for handling cloud boundary-

sensitive areas in satellite imagery, as it allows superpixels to 

adaptively respond to subtle changes between clouds and non-

clouds, thereby improving the accuracy of cloud boundary 

detection. Experimental results show that selecting an 

appropriate M value can strike a good balance between 

segmentation precision and algorithm efficiency, effectively 

supporting the fine-tuning needs of superpixels in cloud 

detection and removal tasks. This iterative generation process 

not only enhances the feature homogeneity of the superpixels 

but also optimizes the shape and functionality of the 

superpixels through precise control of the evolution process, 

ensuring the efficiency and accuracy of satellite imagery 

segmentation. 

Finally, post-processing is conducted, mainly aimed at 

enhancing the connectivity and consistency of the superpixel 

segmentation results, especially addressing connectivity issues 

that may arise during the processing of larger-sized 

superpixels. Through post-processing, the model focuses on 

correcting those connected areas that are too small and may 

have become isolated due to improper segmentation. Specific 

operations include merging these small areas with larger 

superpixels that are nearest in the feature space, thus ensuring 

greater homogeneity of features within each superpixel and 

maintaining the spatial connectivity of the superpixels. 

 

 

3. AUTOMATIC CLOUD REMOVAL IN SATELLITE 

IMAGERY BASED ON GAN 

 

Figure 5 shows the traditional schematic diagram of a GAN 

structure. Further, this paper proposes an automatic cloud 

removal model for satellite imagery based on GAN. The entire 

network framework is designed to include three key sub-

networks: the cloud removal image generation network Hi, the 

transmission mapping network Hs, and the exposure 

estimation network R. The cloud removal image generation 

network Hi is responsible for receiving the style-transformed 

synthetic image output by the style conversion network Hi, 

which simulates the presence of clouds in satellite imagery, 

and outputs the image Ui after cloud removal through network 

processing. The task of the transmission mapping network Hs 

is to estimate the transmission map Ul from cloud-covered 

images to cloud-free images, reflecting the transmission 

characteristics between cloud-covered and non-cloud areas in 

the image. The exposure estimation network R is used to assess 

the differences in exposure between cloud and non-cloud areas, 

simulating the occlusion effects caused by clouds. This GAN-

based model, through these three collaboratively working 

networks, can not only effectively remove clouds from 

satellite imagery but also restore the surface details of the areas 

covered by clouds, greatly improving the quality and utility of 

the images after cloud removal, supporting more accurate 

ground observation and analysis. The following equation gives 

the automatic cloud area expression in satellite imagery:  

 

( )1t l z l rU U U U U=  + −   (9) 

 

After training all the generator networks, the trained 

automatic cloud removal images for satellite imagery are 

obtained, and the following formula is used to construct the 

automatic cloud removal image for satellite imagery:  

 

( )1t r l

OUT

l

U U U
U

U

− −
=  (10) 

 

 
 

Figure 5. Schematic diagram of GAN structure 

 

In the automatic cloud removal model for satellite imagery 

based on GAN, the main objective of the cloud-free image 

generation network is to generate pseudo-real images without 

cloud coverage. These images need to accurately reflect the 

distribution of illumination on the ground, while maintaining 

the style and color attributes of objects within the scene. To 

ensure the stability of the Hi network and prevent overfitting, 

this study adopts the FFA-Net architecture, which effectively 

preserves the edges, contours, and geometric structures of 

images using channel and pixel attention mechanisms. 

Compared to other style transformation networks, FFA-Net 

avoids overfitting more effectively during training, thus 

producing more ideal image effects. This method is 

particularly suitable for the task of cloud removal in satellite 

imagery, as it needs to accurately restore the information 

beneath the clouds while maintaining the overall consistency 

and realism of the image. For Hi, the L1 norm is used as the 

loss function: 

 

( ) ( ) ( ) ( )~ , ~ 1DA DALI i iz O Z l O I
M H R H z i = − 

 (11) 

 

In the model, the transmission mapping generator Hs is a 

crucial component whose primary function is to generate a 
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transmission map from the input cloud-covered satellite 

imagery. This map illustrates the transition from cloud-

covered to cloud-removed states. Hs adopts an encoder-

decoder end-to-end network structure and is trained in a 

supervised learning manner, aiming to produce a transmission 

map closely resembling the true cloud-removed image. The 

network is based on the CycleGAN architecture with the 

addition of 10 residual blocks to enhance learning capability 

and network stability. During training, each input of a cloud-

covered image, through the collaborative work of Hi and Hs, 

generates the cloud-removed image Lv and its corresponding 

transmission map. The loss function of Hs mainly consists of 

an L1 loss, which calculates pixel consistency, while the edge 

loss is used to reinforce the continuity and smooth transition 

of image edges and contours, ensuring that the generated 

transmission map is visually more natural and the edges are 

smoother, helping to improve the accuracy and visual quality 

of cloud removal. The process can be represented as: 

 

( )( )v l i vL H H T=  (12) 

 

Assuming the Sobel operator is represented by R and the 

discriminator trained using adversarial loss is represented by 

Fl, the loss function of Hs is expressed as:  

 

( ) ( ) ( ) ( )~ , ~ 1DA DALI l li O I l O L
M H R H i l = − 

 (13) 
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 (14) 

 

( ) ( )

( ) ( )
1

2

,

                , ,

l l LI l

ED l AD l l

M H F M H

M H M H F L





=

+ +
 (15) 

 

In the model, the exposure estimation network R plays a 

critical role, mainly functioning to estimate the lighting 

conditions under cloud-covered areas. This network takes the 

input cloud-covered satellite imagery and outputs a predicted 

three-channel light map r={re,rh,ry} by analyzing each channel 

in the RGB space, similar to traditional overexposure image 

estimation methods. Unlike conventional full-image 

processing methods, to be compatible with the transmission 

mapping generator and considering processing efficiency and 

flexibility, the R network is trained and applied on 32×32 

image blocks. This design enables R to effectively estimate 

lighting across different resolution image blocks, beneficial 

for the overall flexibility and accuracy of the model. 

Inspired by the U-Net architecture, R's network design 

includes four downsampling and upsampling blocks to 

accommodate the processing needs of small image blocks. The 

convolution blocks used within the network have their kernel 

sizes and strides adjusted to 2×2 and 2, respectively, to suit 

small patch sizes, and the original pooling layers of U-Net 

have been removed. As an estimation regression type of 

network, R structurally adopts two fully connected layers in 

place of traditional blocks. Additionally, R is trained using an 

L1 loss function to optimize its estimation accuracy of lighting 

conditions under cloud effects in satellite imagery. The 

expression for this is: 

 

( )    
1

1
, , , ,

V

LI e h y e h y

u

M R r r r r r r
V =

 
  = − 

 
  (16) 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

According to the data shown in Figure 6, we can observe 

the accuracy performance of the automatic cloud boundary 

sensitive superpixel segmentation in satellite imagery under 

different settings of the number of superpixels J and the 

balance factor η for feature homogeneity and regularity 

constraints. The data shows that when η is 0, meaning the 

balance factor of feature homogeneity and regularity 

constraints is not considered, the accuracy increases from 

0.933 to 0.977 as the number of superpixels J increases from 

300 to 2100, indicating that increasing the number of 

superpixels enhances the accuracy of superpixel segmentation. 

However, as the value of η increases from 0 to 10, there is a 

general trend of slight decline in segmentation accuracy. For 

example, at J=1500, when η increases from 0 to 10, the 

accuracy decreases from 0.973 to 0.9695. This trend is evident 

across all superpixel number settings, suggesting that a higher 

value of η might have a slightly negative impact on 

segmentation accuracy during the superpixel segmentation 

process. Analysis indicates that the data in the figure reflects 

that appropriately increasing the number of superpixels can 

significantly improve segmentation accuracy in the 

application of automatic cloud boundary sensitive superpixel 

segmentation, mainly because more superpixels help to 

delineate the complex features of cloud boundaries more 

finely. Additionally, although increasing the value of η is 

intended to enhance the precision of segmentation by 

strengthening the constraints on feature homogeneity and 

regularity, experimental data shows that too high a value of η 

might lead to a slight decrease in segmentation performance 

due to over-smoothing of boundaries. 

 

 
 

Figure 6. The impact of the value of parameter η on the 

accuracy of automatic cloud boundary sensitive superpixel 

segmentation in satellite imagery 

 

According to the data in Figure 7, we can observe the impact 

of the control parameter l on the accuracy of automatic cloud 

boundary sensitive superpixel segmentation in satellite 

imagery across different numbers of superpixels J. From l = 0 

to l = 1, there is a significant improvement in segmentation 

accuracy across all superpixel settings. For example, at J = 

1500, accuracy increases from 0.944 to 0.974, showing that as 
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the value of l increases, there is a notable improvement in 

segmentation performance. However, when the value of l 

exceeds 1, the increase in accuracy becomes more gradual, and 

at J = 2100, there is a slight decline from 0.977 at l = 1 to 0.975 

at l = 4, indicating that continuing to increase l beyond a 

certain threshold might have a minor negative impact or no 

significant improvement on segmentation performance. These 

results suggest that appropriately increasing the control 

parameter l can significantly enhance the accuracy of 

superpixel segmentation of cloud boundaries in satellite 

imagery, especially under medium to high superpixel number 

settings. This improvement is mainly due to the increase in l 

value, making superpixel segmentation more focused on the 

adaptive features of local areas, effectively enhancing the 

recognition accuracy of cloud boundary regions. 

 

 
 

Figure 7. The impact of the value of parameter l on the 

accuracy of automatic cloud boundary sensitive superpixel 

segmentation in satellite imagery 

 

 
 

Figure 8. Impact of different methods on the accuracy of 

automatic cloud boundary sensitive superpixel segmentation 

in satellite imagery 

 

According to the data shown in Figure 8, we can analyze 

and compare the performance of different superpixel 

segmentation methods on the accuracy of automatic cloud 

boundary sensitive superpixel segmentation in satellite 

imagery. From the figure, it is evident that the accuracy of 

baseline models SLJC and LSC improves with an increase in 

the number of superpixels, indicating that more detailed 

superpixel segmentation helps better recognize cloud 

boundaries. However, the accuracy of both the SLJC and LSC 

models significantly increases after introducing the local 

adaptive distance measure. For example, at a superpixel count 

of 500, SLJC increased from 0.899 to 0.915, and LSC from 

0.91 to 0.92. Moreover, the methods proposed in this study, 

"Ours (SLJC)" and "Ours (LSC)," display higher accuracy 

across all superpixel counts, particularly at 600 superpixels, 

where Ours (SLJC) and Ours (LSC) reached accuracies of 0.94 

and 0.955 respectively. These results clearly demonstrate the 

effectiveness of the superpixel segmentation technique based 

on local adaptive distance in improving the accuracy of cloud 

boundary recognition in satellite imagery. Compared to 

traditional SLJC and LSC methods, the introduction of local 

adaptive distance measurement significantly enhances 

segmentation accuracy, mainly due to the technique's ability 

to handle complex local features and variations more precisely 

in the imagery, thus better adapting to the different 

characteristics of cloud and non-cloud areas. Ultimately, the 

improved models proposed in this study further enhance 

segmentation results, showing the potential and practicality of 

this technology, providing an effective tool for future satellite 

image processing. 

 

 
 

Figure 9. Impact of different methods on the accuracy of 

automatic cloud boundary sensitive superpixel segmentation 

in satellite imagery 

 

Figure 9 displays the performance of various superpixel 

segmentation algorithms in the task of automatic cloud 

boundary sensitive superpixel segmentation in satellite 

imagery. From the figure, it can be observed that the 

segmentation accuracy of all algorithms generally increases 

with the number of superpixels. Among these, our method 

shows higher accuracy across all superpixel settings, gradually 

increasing from the lowest at 0.88 with 150 superpixels to 

0.975 with 1500 superpixels. In comparison, other traditional 

algorithms like SLIC, LSC, SEEDS, ERS, and SNIC, although 

also improving in accuracy with an increase in superpixel 

numbers, perform less effectively at equivalent superpixel 

counts than our method. For example, at 1500 superpixels, our 

method's accuracy is 0.975, while the closest algorithm, SNIC, 
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has an accuracy of 0.966, and other methods like SLIC and 

LSC are even lower. These results clearly indicate the 

significant advantages of the superpixel segmentation 

technique based on local adaptive distance measurement 

developed in this study for the task of automatic cloud 

boundary sensitive segmentation in satellite imagery. By 

meticulously analyzing the complex relationships between 

pixels and adaptively determining cloud boundaries, our 

method not only enhances the precision of cloud detection but 

also achieves more accurate boundary delineation at higher 

superpixel counts. 

 

Table 1. RMSE Results for automatic cloud removal in 

satellite imagery using different methods 

 

Methods 
Training 

Set 

Test 

Set 

K-Means 

Clustering 

Light Cloud 

Coverage Images 
12.362 15.234 

Moderate Cloud 

Coverage Images 
6.895 9.562 

Heavy Cloud 

Coverage Images 
8.562 11.254 

FCN 

Light Cloud 

Coverage Images 
15.241 17.895 

Moderate Cloud 

Coverage Images 
6.124 9.562 

Heavy Cloud 

Coverage Images 
7.652 10.235 

Kernel PCA 

Light Cloud 

Coverage Images 
10.234 12.321 

Moderate Cloud 

Coverage Images 
7.215 10.248 

Heavy Cloud 

Coverage Images 
7.854 10.258 

One-Class 

SVM 

Light Cloud 

Coverage Images 
6.592 9.568 

Moderate Cloud 

Coverage Images 
3.785 6.658 

Heavy Cloud 

Coverage Images 
4.125 7.581 

Deep Forest 

Light Cloud 

Coverage Images 
7.889 10.234 

Moderate Cloud 

Coverage Images 
3.142 6.358 

Heavy Cloud 

Coverage Images 
3.899 6.598 

Ours 

Light Cloud 

Coverage Images 
6.012 9.458 

Moderate Cloud 

Coverage Images 
3.124 6.654 

Heavy Cloud 

Coverage Images 
3.879 6.623 

 

Table 1 displays the performance of various methods in the 

task of automatic cloud removal from satellite imagery, using 

Root Mean Square Error (RMSE) as the evaluation criterion. 

The data show that the effectiveness of each method varies 

under different cloud cover conditions (light, moderate, heavy). 

Specifically, One-Class SVM and Deep Forest exhibit 

excellent performance across all types of cloud cover, 

particularly in moderate and heavy cloud-covered images, 

where the RMSE values are relatively low, indicating 

significant effectiveness in handling images with medium to 

heavy cloud coverage. In contrast, FCN and K-means 

Clustering show higher RMSE in light cloud coverage images, 

indicating less than ideal performance. Particularly, the FCN 

method has the highest test set RMSE reaching 17.895 in light 

cloud coverage images, possibly due to these methods being 

insufficiently sensitive in handling low cloud cover densities. 

The proposed method demonstrates stable performance across 

all categories of cloud coverage, especially in heavy cloud 

coverage images, where its RMSE results are close to those of 

One-Class SVM and Deep Forest, showing good performance. 

These results underscore the effectiveness and practicality of 

the automatic cloud removal method for satellite imagery 

based on GAN proposed in this study. By integrating local 

adaptive distance measurement within the GAN framework, 

this approach is not only theoretically innovative but also 

demonstrates excellent practical outcomes in restoring surface 

information in cloud-covered areas, particularly achieving 

lower errors in handling heavy cloud-covered images, 

ensuring the naturalness and accuracy of the cloud removal 

results. 

 

Table 2. Performance metrics describing super-resolution 

performance at a magnification factor of ×2 on the test set 

 

Methods 

Light Cloud 

Coverage 

Images 

Moderate 

Cloud 

Coverage 

Images 

Heavy Cloud 

Coverage 

Images 

All 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

K-Means 

Clustering 
19.265 0.7785 20.154 0.7895 20.125 0.7894 20.562 0.7985 

FCN 19.985 0.7895 21.369 0.7954 21.125 0.7959 21.124 0.7963 

Kernel 

PCA 
20.124 0.7985 21.598 0.7985 21.365 0.8152 21.895 0.8124 

One-Class 

SVM 
20.568 0.7962 21.895 0.7845 22.398 0.7985 21.963 0.8136 

Deep 

Forest 
20.689 0.8125 22.314 0.8156 22.569 0.8236 22.658 0.8265 

Ours: 24.54128235 

 

Table 2 provides the performance metrics for image super-

resolution processing on the test set using different methods, 

specifically for a magnification factor of ×2, covering Peak 

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 

(SSIM) across satellite images with light, moderate, and heavy 

cloud coverage. The table shows that the performance of each 

method varies with the degree of cloud coverage, but generally, 

both PSNR and SSIM are slightly higher in heavily cloud-

covered images compared to light and moderate cloud 

coverage. Particularly, the Deep Forest method performs 

excellently under all cloud coverage conditions, with PSNR at 

22.569 and SSIM at 0.8236 for heavy cloud coverage images. 

However, the method proposed in this study shows a 

significant improvement in super-resolution performance, 

with an overall PSNR value of 24.541. This result indicates a 

significant advantage in terms of image quality improvement 

and detail restoration. The analysis clearly demonstrates that 

the super-resolution method developed based on GAN 

exhibits outstanding performance in satellite image processing. 

By integrating local adaptive distance measurement, this 

method not only enhances the visual quality of images but also 

achieves higher standards in detail restoration, particularly 

showing exceptional capabilities in image magnification and 

clarity enhancement. 

Table 3 details the performance of different methods for 

automatic cloud removal from satellite imagery at a 

magnification factor of ×2, using RMSE as the metric. The 

table shows variations in performance across different degrees 

of cloud coverage, but overall, Deep Forest and One-Class 

SVM perform notably well, especially in moderate cloud 
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coverage images where the RMSE values are lower. Notably, 

the proposed method exhibits exceptional removal effects 

across all cloud coverage conditions, particularly in moderate 

cloud coverage images with an RMSE of only 12.8987, 

significantly lower than other methods, demonstrating its 

effective cloud removal capabilities. Moreover, in light and 

heavy cloud coverage images, the RMSE values for our 

method are 26.4256 and 16.3256 respectively, also showing 

superior performance compared to other methods. These data 

results emphasize the effectiveness of the satellite imagery 

automatic cloud removal algorithm based on GAN technology. 

By integrating an advanced GAN framework and local 

adaptive distance measurement, our method not only excels in 

handling moderate cloud coverage images but also maintains 

low error rates under light and heavy cloud coverage 

conditions, showing good adaptability and robustness. 
 

Table 3. RMSE metrics describing automatic cloud removal 

performance at a magnification factor of ×2 on the test set 
 

Methods 

Light Cloud 

Coverage 

Images 

Moderate 

Cloud 

Coverage 

Images 

Heavy Cloud 

Coverage 

Images 

All 

K-Means 

Clustering 

52.132 51.2346 51.2365 51.2351 

25.368 22.3255 22.3658 21.235 

31.248 25.6986 25.6984 25.314 

FCN 

57.263 52.3142 52.1341 52.314 

22.361 18.6948 18.9642 18.6586 

26.598 22.3143 22.3588 22.1354 

Kernel PCA 

42.315 36.5681 37.1549 36.5987 

23.568 18.3258 18.6253 18.6257 

27.895 26.3289 24.2658 25.3159 

One-Class 

SVM 

39.258 34.2653 35.2686 36.1248 

22.314 17.2651 18.1458 16.5689 

25.362 21.2368 22.1351 22.3145 

Deep Forest 

41.258 36.2659 36.9851 36.9851 

21.268 16.9859 16.5695 16.5984 

25.369 22.3151 22.1458 22.1358 

Ours: 26.4256/12.8987/16.3256 

 

 

5. CONCLUSION  
 

This paper's research primarily revolves around two core 

technologies: superpixel segmentation of satellite imagery 

sensitive to cloud boundaries based on local adaptive distance 

and an automatic cloud removal algorithm for satellite 

imagery based on GAN. By deeply analyzing complex 

relationships between pixels, the first technology adaptively 

determines cloud boundaries, enhancing cloud detection 

accuracy; while the second part utilizes the generative 

capabilities of GAN to effectively restore surface information 

in cloud-covered areas, enhancing the application value of 

satellite imagery. 

Experimental results demonstrate that appropriate 

adjustments of the balance factor η for feature homogeneity 

and regularity constraints, as well as the control parameter l, 

significantly enhance the accuracy of superpixel segmentation. 

Moreover, compared to traditional methods, the technologies 

proposed in this paper show superior performance in both 

superpixel segmentation precision and cloud removal 

efficiency. Particularly in automatic cloud removal, whether 

in RMSE or super-resolution performance metrics, our method 

significantly outperforms other comparative methods, 

especially effective in handling images with moderate to 

heavy cloud coverage. 

Overall, this research not only provides innovative 

theoretical insights but also demonstrates significant practical 

benefits, particularly in geographic information systems and 

environmental monitoring fields, greatly enhancing the 

usability and accuracy of satellite data. However, the study's 

limitations mainly manifest in the potential over-reliance on 

experimental settings for parameter selection, which in 

different real-world application scenarios might require 

further adjustment and validation. 

Future research directions could include further optimizing 

the parameter self-adjustment mechanisms of the algorithm to 

improve its generalizability across various environments. 

Additionally, considering the diversity and dynamic changes 

in cloud coverage, future studies could explore integrating 

time-series data for cloud detection and removal techniques to 

adapt to more complex and variable real-world application 

needs. Ultimately, these studies will further advance remote 

sensing technology, providing stronger technical support for 

precise Earth observation. 
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