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This study explores the feasibility and application value of the Faster R-CNN algorithm, a 

deep learning technology, in identifying signal abnormalities and locating injury areas in 

MRI images of the spinal cord. Method: Initially, Magnetic Resonance Imaging (MRI) 

images from 1,000 spinal cord injury (SCI) patients and 500 healthy individuals collected 

over five years were included in the dataset, divided into signal change and normal groups. 

The dataset was then preprocessed, and the lesion areas were annotated by experienced spine 

surgeons for later experimental verification of the algorithm's effectiveness; no markings 

were necessary for the normal group. Subsequently, the Faster R-CNN algorithm, combined 

with the VGG-16 and Resnet50 network models from the convolutional neural network 

(CNN) framework, was used for recognizing and locating SCI in MRI images. Finally, a 

horizontal comparison of different network structure models was conducted, with the 

model's mean Average Precision (mAP) and visual results serving as evaluation metrics to 

determine the best network structure model. The deep learning model constructed in this 

paper can use real-time medical imaging of SCI patients as input for the spinal cord analysis 

neural network. The trained network can automatically identify and label the location of 

SCI, achieving a model mAP of 88.6% and an image test speed of 0.22s per image. 
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1. INTRODUCTION

SCI is caused by various reasons leading to structural and 

functional damage to the spinal cord, resulting in partial or 

complete loss of motor, sensory, and autonomic nervous 

functions below the level of injury, primarily due to trauma [1-

3]. There are nearly 40 million SCI patients worldwide, with 

over a million in China alone. The annual incidence rate is 37 

per million, increasing by 120,000 each year [4, 5]. SCI not 

only causes structural and functional damage to the body but 

also leads to many complications. About 80% of patients 

suffer from neurogenic bladder and neurogenic bowel 

dysfunction [6, 7], have a significantly higher risk of venous 

thrombosis embolism (VTE) [8] and pressure injury (PI) [9] 

than the general population, and severe respiratory 

dysfunction has become the leading cause of death in the acute 

and chronic recovery phases [10]. Therefore, the high 

disability rate, mortality rate, complication rate, long 

rehabilitation time, and poor outcome of SCI severely affect 

the physical and mental health and quality of life of patients 

[11]. Since there is currently no effective cure for SCI, how to 

diagnose and differentiate the injury site for SCI patients as 

soon as possible, quickly clarify and implement treatment 

plans, reduce the incidence and disability rate of complications, 

restore bodily functions, and improve the survival quality of 

patients has always been the focus of SCI research. 

MRI of the spine is one of the important means for 

diagnosing spinal diseases clinically. MRI is highly valuable 

in observing the shape of the spinal cord, signal intensity, 

vertebral bone quality, and changes in intervertebral discs [12], 

and provides clear indications of spinal cord edema and 

hemorrhage. It not only helps determine the cause and extent 

of neurological impairment, the possible mechanism of injury, 

and spinal instability but also provides important auxiliary 

reference for the diagnosis and differentiation of SCI. In recent 

years, deep learning technology has achieved good results in 

the field of medical image recognition, especially in disease 

detection and identification. For instance, Anantharajan et al. 

[13] used deep learning and machine learning methods

combined with brain MRI images for brain tumor detection,

Bousis et al. [14] conducted a survey of deep learning

detection of skin cancer research results, organizing the most

common deep learning models and datasets used for skin

cancer classification, and Lundervold and Lundervold [15]

studied the application of deep learning technology from MRI

image acquisition to image retrieval, segmentation, and

disease prediction. In recent years, more and more clinical

departments have combined MRI image datasets with machine

learning for the diagnosis and treatment of spinal cord diseases.

For example, de Paiva et al. [16] reviewed the most common

and noteworthy intramedullary and extramedullary spinal

tumors, as well as other tumor mimetics, with a focus on their
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MRI morphological features. Zhang et al. [17] proposed that 

machine learning and PPI analysis can help screen and 

diagnose the basic PRG (pyroptosis related genes) for SCI. 

Kim et al. [18] developed an advanced predictive model for 

pressure ulcer occurrence in SCI patients using machine 

learning (ML) technology. Jazayeri et al. [19] uses machine 

learning algorithms to develop a region based prediction 

model for the incidence rate of traumatic spinal cord injury. 

However, due to the wide variability in the shape, length, and 

range of lesions of the spinal cord, and issues with image 

changes in size, resolution, orientation, contrast, and artifacts, 

their research application in large clinical studies of multi-part 

images has been limited. Currently, the application of deep 

learning technology in common spinal diseases on MRI 

images is relatively scarce. We attempt to use deep learning 

technology to preliminarily explore the location identification 

and detection of SCI on MRI images, which could further 

provide a possibility for its clinical application. With the 

continuous deepening of clinical research on SCI, there has 

been significant progress in the mechanisms and medications 

of SCI, but clinical research still remains at the primitive 

manual level, with diagnosis of SCI still based on experience 

and visual estimation, without quantification of the specific 

size of SCI or specific degree division of the same layer SCI 

signals. To address the problems in the existing technology, 

this paper collects MRI imaging data of SCI patients, gathers 

a dataset, and uses the deep learning technology—Faster R-

CNN to recognize, detect, and locate lesions in SCI MRI 

images, and evaluates deep learning network models, 

comparing the prediction effects and detection speeds of 

different network architecture models, verifying the 

effectiveness of the big data + artificial intelligence model in 

the identification and detection of SCI diseases, laying a 

foundation for more extensive research in the field of spinal 

and spinal cord imaging in the future. 

 

 

2. MRI MANIFESTATIONS OF SCI 

 

Typically, when spinal injuries involve the spinal cord, they 

can manifest as various degrees of signal changes. MRI can 

not only observe the morphological changes of acute SCI but 

can also precisely determine the degree of SCI based on 

changes in the spinal cord signal. Moreover, it can detect 

occult fractures and spinal cord edema, which significantly 

guides the formulation of treatment plans and the 

determination of prognosis. The MRI manifestations of SCI 

vary according to different lesion presentations. We consulted 

relevant literature on the MRI of SCI [20-22] and sought 

advice from professional spinal surgeons regarding its 

classification, finding two main types: one is based on the 

cause of injury, using cervical SCI as an example, which can 

be divided into Types I-IV, as shown in Figure 1 and Table 1; 

another classification method is based on the pathological 

changes in the spinal cord tissue, mainly divided into 

hemorrhage, edema, mixed type, etc., as shown in Table 2. 

From a medical professional perspective, the cause of injury 

in the first classification ultimately leads to pathological 

changes in the spinal cord that follow. For instance, cystic 

changes and glial scar formation, such types of pathological 

changes, usually occur during the recovery period, with early 

manifestations primarily being hemorrhage, edema, and mixed 

type. Therefore, this paper mainly uses the second 

classification method to detect the types of signal 

abnormalities in MRI and summarizes the characteristics of 

signal changes in SCI on MRI as shown in Table 2. 

 

 
 

Figure 1. Imaging classification of acute cervical SCI (based on cause of injury) 

 

Table 1. Imaging classification of acute cervical SCI (based on cause of injury) 

 
Number Category Compression Factors Type of Injury 

A 

Type I 

Spinal cord under significant 

compression, mainly due to 

pathological changes in the cervical 

spine 

Congenital cervical spinal canal stenosis 

B Ossification of the posterior longitudinal ligament 

C 
Degenerative changes such as disc herniation, osteophyte formation at the 

vertebral edge, and ligamentum flavum hypertrophy 

D 

Type II 

Spinal cord under significant 

compression, mainly due to traumatic 

disc herniation or epidural hematoma 

Traumatic disc herniation 

E Epidural hematoma 

F Type III No significant spinal cord 

compression 

Presence of definitive signs of injury to the disc-ligament complex (DLC) 

G Type IV Absent or only suspicious signs of DLC injury 

 

Table 2. Types of MRI manifestations and signal changes in SCI (based on pathological changes in spinal cord tissue) 

 
Number Type of Lesion MRI Signal Changes 

1 Hemorrhagic 
Slightly higher signal on T1WI, high signal on T2WI. If there is a large central low signal area on the spinal 

cord's T1-weighted image, it indicates gray matter hemorrhage. 

2 Edematous Low or iso signal on T1WI, high signal on T2WI. 

3 Mixed Presents mixed high and low uneven signals within the spinal cord. 
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3. DATA COLLECTION AND PREPROCESSING  

 

3.1 Data collection  

 

(1) Dataset acquisition: The dataset consists of spinal cord 

MRI examination results of patients treated for SCI at our 

hospital from January 2018 to January 2023; a total of 1,000 

patients, including 592 males and 418 females. The patient's 

age ranges from 13 to 70 years old, with an average of 41.8 

years old. Traumatic spinal cord injury is the main cause, 

including car accidents, heavy object injuries, high-altitude 

falls, falls, and other injuries. Additionally, MRI scans from 

500 healthy individuals (i.e., MRIs not diagnosed with SCI) 

were collected, totaling 1,500 individuals for the MRI image 

dataset.  

(2) Data grouping: The collected radiological dataset was 

divided into two groups, the "normal group" and the 

"abnormal group," with 500 and 1,000 cases, respectively. Of 

these, 800 (about 80%) from the abnormal group were used as 

the training set, and the remaining 200 (about 20%) as the 

validation set. The inclusion criteria for the normal group are 

based on the doctor's diagnosis that MRI images do not show 

spinal cord injury, while the inclusion criteria for the abnormal 

group are based on the doctor's diagnosis that MRI images 

show varying degrees of spinal cord injury, including spinal 

cord gray matter hemorrhage, spinal cord edema with high 

signal intensity, cervical fracture and dislocation, combined 

with varying degrees of intervertebral disc herniation, 

combined with extraspinal hematoma and paravertebral soft 

tissue injury. 

(3) Data security: Before collecting data, the research team 

obtained informed consent from all patients, informing them 

of the research purpose. To protect participants' privacy, the 

team anonymized the collected image data. Access to the data 

was restricted to team members involved in the research for 

processing and analysis purposes only. 

 

3.2 Sample labeling and retrieval  

 

Before conducting the experiment, the collected dataset 

needed to be preprocessed. First, two experienced spinal 

surgeons used LabelMe Toolbox-master software to annotate 

the lesion areas in the abnormal group for the training and 

validation sets to later verify the algorithm's effectiveness; the 

normal group was not marked. The annotation process used 

the LabelMe Toolbox-master tool for standard naming, 

framing the sample's name, size, location, etc., with bounding 

boxes and annotating image prompt information. The 

markings and annotations were saved in XML file format. As 

shown in Table 3, this indicates the annotated location of the 

lesion area for edematous SCI signal changes. 

 

Table 3. Labeling of lesion areas for edematous SCI 

 
Number Original Image Spinal Cord Abnormal Signal Label Annotation  

1 

  

L4/5 significant disc herniation with free 

compression of the spinal cord, noticeable 

edema and high signal above the nucleus 

pressing on the spinal cord. 

 

2 

  

Cervical spondylotic myelopathy, multi-

segmental spinal canal stenosis, long-term 

compression of the spinal cord, MRI 

indicates local edema with high signal, 

significant behind the C5 vertebra. 

 

3 

  

Cervical conus canal stenosis, C4/5, C5/6 

disc herniation, high signal edema behind 

the 4th cervical vertebra in the spinal cord. 
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3.3 Image preprocessing 
 

To prevent overfitting in the learning process of visual tasks 

due to a small amount of data and to further improve the 

performance of the neural network model, reduce the model's 

sensitivity to images, and avoid sample imbalance [23], it is 

necessary to perform data augmentation on image data. First, 

batch processing is applied to the original MRI images to 

standardize all images to a size of 600*800, and label 

extraction is conducted to form an MRI image database. The 

normalization process uses formula (1) to adjust the image 

grayscale to the range of 0-255. 
 

1 0 0

0 0

( , ) ( ( , ) min( ))

255 0

max( ) min( )

G x y G x y G

G G

= −

−


−

 (1) 

 

Among them, G0(x,y) is the grayscale value of the original 

MRI image at (x, y) pixels, and G1(x,y) is the grayscale value 

of the digitized MRI image at (x, y) pixels after grayscale 

normalization. All subsequent operations are performed on 

grayscale normalized images G1(x,y). 

Then, data augmentation, including angle rotation, 

horizontal flipping, vertical flipping, and random scaling, 

expands the data to 10 times its original size, with image 

specifications of 600*800 (length*width*RGB). The 

ImageDataGenerator module of Python's keras library [24] has 

several parameters for transforming images in different ways. 

This study mainly expanded the training set sample data 

through four methods, as shown in Table 4: 
 

Table 4. Data augmentation methods and parameters 
 

Parameter 

Name 

Parameter 

Setting 
Meaning 

rotation_range 30 
Images are randomly rotated 

between 0 and 30 degrees 

zoom_range 0.2 
Images are randomly scaled by 

0.2, [lower, upper] = [0.8, 1.2] 

horizontal_flip true 
Images are randomly flipped 

horizontally 

vertical_flip true 
Images are randomly flipped 

vertically 

 

 

4. DETECTION STEPS AND TASKS  

 

4.1 Detection steps  

 

(1) Create an experimental dataset using MRI medical 

images containing SCI;  

(2) Preprocess the experimental dataset and adjust 

parameters of the spinal cord analysis neural network to be 

trained;  

(3) Input the preprocessed dataset into the to-be-trained 

spinal cord analysis neural network for model training, to 

obtain a trained spinal cord analysis neural network;  

(4) Use real-time medical imaging of SCI patients as input 

to the trained spinal cord analysis neural network, to 

automatically detect and identify the SCI lesion area, and the 

coordinates and size of the SCI in the image.  

 

4.2 Detection task  

 

Our experimental task involves image recognition and 

target localization detection. First, input an MRI image, 

identify the target image with signal abnormalities in the 

image and output the category of signal abnormalities as 

shown in Table 2, and also mark the target object with a frame. 

Coordinate localization includes the upper left corner (x,y) 

coordinates of the "frame" as well as width and height, 

represented as (x,y,w,h), framing as shown in Figure 2. 

 

 
 

Figure 2. Coordinate localization of signal abnormal areas 

 

 
(a)                                          (b) 

 
(c)                                           (d) 

 

Figure 3. Overlap or ratio score between hypothetical and 

actual frames 

 

The specific principles and steps of target localization are: 

1) Set "frames" of different sizes; 2) Distribute these frames 

around the target image location, calculate the score for each 

frame; 3) Based on the scores, select the frame with the highest 

score. As shown in Figure 3, for a given image, frames of 

different sizes capture the image, and the captured frames with 

images are used as input for training and learning. After 

learning, the classification score of each frame and the 

corresponding regression position (x,y,w,h) are calculated and 

output. Then, the detection evaluation function used is the 
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intersection-over-union (IOU) to select the best target frame, 

comparing the located frame with the actual position. The IOU 

is the result calculated by dividing the part of the intersection 

that overlaps between two regions by the union set part of the 

two regions, i.e., IOU=(prediction ∩ 

reality)/(predictionreality). IOU can be used to measure the 

task of outputting a predicted range (bounding boxes), and it 

measures the correlation between prediction and reality. The 

higher the correlation, the higher the ratio. In Figure 3, the red 

frame is the actual frame, and the green frame is the 

hypothetical frame. We expect a green frame to completely 

overlap with the red frame, but this is difficult to achieve in 

reality, leading to some overlap between various hypothetical 

frames and the actual frame, represented by IOU: (a) the green 

frame in the upper left corner scores 0.6; (b) the green frame 

in the upper right corner scores 0.8; (c) the green frame in the 

lower left corner scores 0.5; (d) the green frame in the lower 

right corner scores 0.75. When using IOU for object detection, 

the following steps are generally required: 1) Manually mark 

the target range of the object to be detected (ground-truth 

bounding boxes) in the training set images; 2) Obtain the 

predicted result range through the training algorithm. 

 

 

5. NEURAL NETWORK INITIALIZATION AND 

MODEL TRAINING  

 

5.1 Choice of feature extraction network  

 

 
 

Figure 4. VGG-16 network structure 

 

 
 

Figure 5. ResNet50 network structure and intermediate dimension transformation 
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Figure 6. Faster R-CNN network structure 

 

In recent years, CNNs have become representative of deep 

neural network models, with a network structure that shares 

weights, making it more biomimetic and thus reducing the 

complexity of the network model. This advantage is even more 

apparent when the network input is multi-dimensional images, 

to the extent that images can bypass the feature extraction and 

data reshaping processes of traditional algorithms and be 

directly used as network input. Based on the characteristics of 

the MRI dataset in this paper, the neural network experiment 

chooses VGG-16 [25] and Resnet50 [26] as the main 

frameworks for feature extraction. The VGG-16 network, 

which was trained on a database of a million images, has 16 

layers deep. Its computational feature is the repeated stacking 

of small 3*3 convolutional kernels and 2*2 max pooling layers, 

with performance improvement achieved by deepening the 

network structure continuously. VGGNet has good scalability 

and extensibility, and its generalization on other image data 

applications is excellent. Below, Figure 4 shows the VGG-16 

network structure. 

The Residual Network (ResNet), proposed in 2015, won 

first place in the ImageNet competition classification task. Its 

main advantage lies in its simplicity and practicality. For 

example, ResNet models are used in areas such as image 

detection, segmentation, and recognition. Papers [27, 28] and 

other research results have confirmed the practicality and 

effectiveness of ResNet. Therefore, another CNN model we 

use in our experiment is ResNet50. The characteristic of the 

ResNet50 network structure is that it introduces Batch 

Normalization (BN) layers and abandons Dropout to solve the 

problems of gradient disappearance and explosion. At the 

same time, it introduces residuals to solve the problem of 

network degradation. The network structure of ResNet50 and 

the intermediate dimension transformation are shown in 

Figure 5. 

 

5.2 Object detection and localization algorithm selection 

 

In recent years, various object detection technologies have 

rapidly evolved. Fast R-CNN, building on the foundation of 

R-CNN, adopted the SPP Net method for improvements that 

significantly enhanced computational performance. The Faster 

RCNN algorithm [29] introduced the Region Proposal 

Network (RPN) candidate box generation algorithm on top of 

Fast R-CNN, integrating feature extraction, proposal 

extraction, bounding box regression (rectrefine), and 

classification into one network, thus significantly improving 

overall performance, particularly in terms of detection speed. 

As shown in Figure 6 below, Faster R-CNN consists of the 

following parts: (1) Dataset, image input; (2) Convolutional 

layer CNN and other base networks, to extract features and 

obtain a feature map; (3) RPN layer, which uses a 3*3 slide 

window on the feature map extracted by the convolutional 

layer to traverse the entire feature map. In this process, each 

window center generates 9 anchors at different rates and scales 

(1:2, 1:1, 2:1). Then, it uses a fully connected layer to perform 

binary classification (foreground or background) for each 

anchor and preliminary b-box regression, finally outputting 

approximately 300 precise ROIs. (4) The feature map from the 

convolutional layer is fixed to the input dimension of the fully 

connected layer using ROI pooling. (5) The ROIs outputted by 

the RPN are then mapped onto the feature map in ROI pooling 

to perform b-box regression and classification. 

 

5.3 Network initialization and tuning  

 

Our experiment employs the Faster R-CNN algorithm, 

based on the VGG16 and ResNet50 CNNs, for detecting disc 

herniation, lesions, or signal abnormalities in spinal MRI. 

Before model training, the network is initialized and tuned as 

follows: (a) Algorithm adoption strategy: The target detection 

framework uses the Faster R-CNN framework. CNNs or their 

derivative networks often serve as the basic backbone for other 

complex networks. This experiment used the VGG-16 and 

ResNet-50 network models, which have also been initialized 

for training to achieve better training effects. (b) Perform end-

to-end training of RPN, where the network uses the ImageNet 

pre-trained model for initialization. (c) Use the proposal 

regions generated by RPN in step two to train Fast R-CNN, 

also using the ImageNet pre-trained model for model 

initialization. (d) Use the parameters from the previous step's 

Fast R-CNN to initialize RPN, fix the convolutional base layer, 

and only fine-tune the layers unique to RPN (the convolutional 

layers are shared at this step). (e) Fix the convolutional base 

layer and only fine-tune the layers unique to Fast R-CNN. 
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5.4 Model training  

 

5.4.1 Training parameter settings  

Initially, the network's parameters use the initial values 

trained on the ImageNet for the network model (VGG16 or 

ResNet50). The rationale is that parameters in network models 

trained on the ImageNet dataset already contain a vast array of 

useful convolutional filters, which can save a significant 

amount of training time and help improve the classifier's 

performance. The solver configuration file specifies a total of 

500 epochs, with an initial learning rate set at 0.01, a learning 

rate decay factor of 0.1 every 100 epochs, and optimization 

using the SGD method. The anchor ratio is set to 1:1 and 1:3 

for both RPN and Fast R-CNN. The training parameter 

settings are shown in Table 5 below. The software 

programming language is Python 3.11.5, with the deep 

learning framework using PyTorch 2.1 version, incorporating 

some library functions from the open-source deep learning 

project Detectron. 

 

Table 5. Training parameter settings 

 
Name Value Description 

img-size 600*800 
Input the width and height of the 

image 

batch-size 32 Batch size 

epochs 500 Training Iterative Algebra 

Learning_rate 0.01 Initial learning rate 

momentum  0.9 Momentum parameters of SGD 

weight_decay   true 
Weight attenuation is used to 

prevent overfitting 

step_size  30 
Step size for learning rate 

adjustment 

gamma  0.1 
Reduction rate of learning rate 

adjustment 

num_workers  2 
Number of sub processes used to 

load data 

 

5.4.2 Training process of Resnet50 faster R-CNN 

As introduced in Section 5.2, Faster R-CNN primarily 

consists of two modules: the RPN and Fast R-CNN. We utilize 

the Faster R-CNN algorithm model with a ResNet50 CNN 

backbone for the detection of SCI, defining this model as 

Resnet50 Faster R-CNN. The entire model structure includes 

modules and their functions as follows: 

(1) ResNet50: Represents the ResNet model with 50 layers 

depth, using residual blocks to address the gradient vanishing 

problem during training, responsible for extracting features 

from the original image. 

(2) RPN: Its main purpose is to generate candidate boxes 

(Regions of Interest, ROIs) for the downstream Fast R-CNN. 

This is the first stage of the object detection task, where the 

RPN uses a sliding window to generate multiple candidate 

boxes, producing bounding boxes on anchor points of different 

scales and aspect ratios. 

(3) Fast R-CNN: This module receives the candidate boxes 

generated by the RPN, uses ROI Align to extract features from 

feature pyramid maps of different scales, and then employs 

fully connected layers for classification and bounding box 

regression. Fast R-CNN outputs the detected object categories 

and their bounding box locations. 

Object detection process: Feature extraction (ResNet50) -> 

RPN -> ROI -> Fast R-CNN. Initially, ResNet50 extracts 

features from the original image and passes these features to 

the RPN. Then, the RPN generates a series of candidate boxes, 

and the output ROIs are input into Fast R-CNN. After 

extracting features from the candidate boxes using ROI, the 

results are classified and bounding box regression is 

performed. 

Assuming we use this model for detecting SCI based on 

MRI images, it can detect types of spinal cord signal 

abnormalities and predict the probabilities of these types. 

When preprocessed MRI images are input into ResNet50, it 

extracts useful features for subsequent object detection. Next, 

the RPN generates region proposals (candidate boxes) from 

these feature maps, which include potential areas of interest 

(hemorrhagic, edematous, mixed, etc.). Finally, Fast R-CNN 

extracts features of the candidate boxes from feature maps of 

different scales using ROI. After processing through fully 

connected layers for classification and bounding box 

regression, the final detection results are outputted. After 

preprocessing data such as cropping, the MRI images go 

through the ResNet-50 model for feature extraction. These 

feature maps are then passed on to the RPN network and 

subsequent Fast R-CNN network for learning and training, as 

illustrated in the flowchart shown in Figure 7. 

 

 
 

Figure 7. Recognition and localization process of the Resnet 50 faster R-CNN model 
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Figure 8. Workflow of the VGG16 backbone model 

 

The training process is as follows: 

(1) Feature Map Extraction: Labeled original images go 

through the Conv+ReLU+Pooling layers of ResNet50, 

extracting the Input image's Feature maps. These Feature maps 

are used for subsequent RPN layers and layers beyond. 

(2) RPN: Primarily utilizes a sliding window to connect to 

the Feature map output by the last convolutional layer of the 

CNN network, taking the feature map as the input to the output 

layer. After generating a set of Anchor boxes, a Softmax 

determines if these Anchors are foreground or background. 

Signal changes are considered foreground, and the rest as non-

foreground, akin to a binary classification problem; during the 

R-CNN process, the generated proposals undergo IOU 

evaluation, with those over 0.7 considered foreground, 

identifying possible lesion locations. Additionally, another 

branch of the network regresses these Anchor boxes for 

proposal refinement, aiming for precision. 

(3) ROI Pooling: Receives the Feature map from the last 

layer of the CNN ResNet50 and the refined proposals 

generated by RPN. After ROI Pooling, a fixed-size proposal 

feature map is obtained, which is then fed into the subsequent 

network for target recognition and localization operations 

using full connections. 

(4) Model Tail: Consists of a Softmax classifier and a 

bounding box regressor (b-box regressor). The fixed-size 

Feature map formed by the ROI Pooling layer undergoes a full 

connection operation (compared to R-CNN, SPP Net in 

classification). Faster R-CNN has two network output layers, 

integrating the separately operated b-box regression into a 

unified network in a formal sense and simultaneously 

constructing a loss function that optimizes both output layers. 

The network architecture includes four loss functions 

(rpn_cls_loss, rpn_box_loss, rcnn_cls_loss, rcnn_box_loss), 

with RPN and Fast R-CNN each having their own classifiers 

and regressors. 

 

5.4.3 VGG16 faster R-CNN training process  

The Faster R-CNN network based on VGG16, compared to 

the ResNet network, has slight differences in feature extraction 

by the convolutional layers. The subsequent processes, shown 

in Figure 8, including the RPN layer, Pooling layer, and full 

connections for classification and target localization, are 

essentially the same: 

(1) Images are input into a VGG-16 network for feature 

extraction; resulting in a set of Feature maps, similar to 

ResNet50, with Feature map=38*50; 

(2) Potential lesion locations are determined through the 

RPN network; 

(3) These location information is located on the Feature map 

through the ROI Pooling layer; 

(4) Finally, the region information obtained through the 

VGG-16 classifier and IOU are evaluated for overlap degree, 

integrated into a function and backpropagated, completing a 

training round. 

 

 

6. EXPERIMENTAL RESULTS 

 

In order to verify the efficiency of different deep learning 

models, this paper simultaneously compared the differences in 

detection methods and image detection speed of RCNN, Fast-

RCNN, and Fast-RCNN, as shown in Table 6. 

 

Table 6. Comparison of three network detection methods and 

their speeds 

 

Project R-CNN 
Fast-

RCNN 

Faster-

RCNN 

Extract candidate 

box 
Selective Search 

Selective 

Search 

RPN 

network 

Feature 

Extraction 

Convolutional 

Neural Network 

(CNN) 
Convolutional Neural 

Network+ ROI Pooling 
Feature 

classification 
SVM 

Image detection 

time (proposals 

collected) 

50S 2S 0.2S 

Acceleration 1X 25X 250X 

 

This study utilizes Faster R-CNN from deep learning and 

CNNs such as VGG-16 and Resnet50 to identify and predict 

areas of SCI in MRI images. After model validation with a 

validation set and optimization through iterative updates of the 

best parameters, the trained models were tested with a test set 

to determine their predictive accuracy. In clinical practice, 

evaluating the prediction effectiveness of a disease solely 

based on recall or accuracy rates is not meaningful. Therefore, 

in terms of model efficiency evaluation, we mainly chose mAP 

for assessment. During the prediction phase, 500 images were 

selected as a test set to verify and compare the effectiveness of 

network models based on VGG-16 and Resnet50. 

In this experiment's network data, the overall mAP results 

obtained after processing the prediction set through the two 

models (VGG-16 and Resnet50) were 72.3% and 88.6%, 

respectively. Another metric for measuring model 

computational efficiency is the detection speed. In terms of 

detection speed, when the test set images were processed using 

VGG-16 and Resnet50 models, the testing speeds were 

0.24s/image and 0.22s/image, respectively. A comparison of 

the overall network effects of the two models is shown in 

Table 7, with main evaluation metrics including detection 

mAP and overall detection time. 
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After processing 500 images from the test set through the 

trained network models, the models sequentially predict and 

output visualization images, as shown in Figure 9, which 

includes some visualization results of edematous and lumbar 

disc herniation. Each image contains bounding boxes around 

the target area, along with the corresponding classification 

name and predicted probability value. These appropriately 

sized bounding boxes and predicted probabilities directly 

reflect the credibility of the disease. In Figure 9 below, 

representing a subset of the prediction set results, the 

credibility of SCI signals and the corresponding bounding 

boxes can be clearly seen, showing the location of the SCI 

signals within the bounding boxes and their corresponding 

credibility. This presentation of visualization results allows for 

direct observation of the predictive effectiveness of the images. 

 

Table 7. Comparison of recognition results between different 

network models 

 

Algorithm 
Network 

Model 

mAP 

(%) 

Detection Speed 

(sec/image) 

Faster R-

CNN 
Resnet50 88.6 0.22 

Faster R-

CNN 
VGG-16 72.3 0.24 

 

 
 

Figure 9. Example of visualization results 

 

 

7. CONCLUSION  

 

This paper presents a method based on deep learning for 

SCI analysis, aimed at accurately detecting, identifying, and 

marking the presence of SCI within MRI images, including 

their location, size, and prediction probability. This method 

represents a shift from qualitative to quantitative analysis of 

SCI, effectively narrowing the diagnostic gap due to varying 

levels of clinical experience and improving diagnostic 

accuracy, reducing workload, and overcoming the limitations, 

randomness, and uncontrollability of SCI diagnosis and 

treatment. This paper demonstrated that the application of the 

Faster R-CNN algorithm with neural network models based on 

VGG-16 and ResNet50 can recognize and detect common 

diseases such as spinal disc herniation and changes in spinal 

cord signals. Using standardized datasets, selecting 

appropriate models, and evaluation criteria can lead to 

satisfactory experimental results. However, the network 

architecture model based on ResNet50 outperforms the one 

based on VGG-16 in terms of predictive effect and detection 

speed, indirectly proving that deeper network structures help 

improve prediction effects. It also confirms the theoretical 

effectiveness of the big data + artificial intelligence model. 

The innovative content of this article is as follows: (1) Using 

the current hot topic of deep learning technology in artificial 

intelligence - Faster R-CNN, to explore whether it can 

recognize and detect common cervical spine diseases in 

magnetic resonance imaging, in order to verify the feasibility 

and effectiveness of deep learning technology for diseases in 

this field. (2) This paper adopts the method of object 

recognition detection in deep learning to locate and predict 

common cervical spine diseases, and compares experiments 

with different network structures. It is found that the deeper 

the neural network, the better the training effect. (3) The 

successful recognition and detection of common diseases in 

the cervical spine using deep learning technology has laid the 

theoretical foundation for clinical application of cervical spine 

disease MRI+deep learning mode. Of course, there are still 

certain challenges from theoretical foundations to model 

integration and practical clinical workflows, such as accuracy, 

transparency, and interpretability, as well as concerns about 

data privacy and security. In terms of accuracy, the training 

data of deep learning models for spinal cord injury detection 

is relatively scarce due to the involvement of privacy, and the 

accuracy needs to be improved. During the training process of 

the large model, it is necessary to strengthen data validation, 

increase uncertainty indicators, optimize medical accuracy, 

and self improve through error correction algorithms and other 

methods. In terms of transparency and interpretability, it is not 

yet clear how the model generates answers (black box 

questions) from input queries and data structures, nor is it clear 

which parts of the training dataset are used in the result 

response. To solve this problem, it is necessary to reference 

the data section that contributes to the answer in the model 

output, and conduct in-depth research and development of 

interpretable AI. The application of large models in the 

medical field faces multiple technical challenges and 

limitations, such as insufficient knowledge, limited 

interpretability and accuracy, coherence intersections, and 

model hallucinations. Overcoming these issues requires 

interdisciplinary collaboration, strengthening data 

management and protection, researching interpretable AI 

methods, and continuously improving the performance and 

security of models to ensure their reliability and effectiveness 

in medical practice. 
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Certainly, this paper has some limitations, such as in data 

collection, where there may be issues like insufficient 

structural quality of data, small data volume, incomplete 

indication data, and difficulty in sharing. The completeness 

and accuracy of data can affect the performance of the neural 

network model; the deep learning model is still not perfect, and 

there is room for improvement in detection accuracy. Future 

research directions should continue to investigate the causes 

of misdiagnosis and missed diagnosis, consider designing a 

correction module, and use correction algorithms to correct the 

automatic detection results of the trained spinal cord analysis 

neural network. After image detection is complete, a 

comparison of the signal differences recognized by T2WI and 

T2 fat suppression should be conducted, followed by a 

comparison at the same level and dimension. After the 

comparison, match analysis weight to correct instances where 

some interferences are mistakenly identified as SCI. 
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