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Melanoma, recognized as the most life-threatening form of skin cancer, poses a significant 

threat to life expectancy. The timely identification of melanoma plays a crucial role in 

mitigating the morbidity and mortality associated with skin cancer. Dermoscopic images, 

acquired through advanced dermoscopic tools, serve as vital resources for the early detection 

of skin cancer. Hence, there is an urgent need to develop a reliable and accurate Computer-

Aided Diagnosis (CAD) system capable of autonomously discerning skin cancer. This study 

focuses on the meticulous construction of diverse skin cancer classification models, 

specifically employing various Convolutional Neural Network (CNN) architectures 

configured across four distinct layer arrangements. Additionally, a transfer learning 

approach is explored, leveraging robust pre-trained deep CNN models extensively trained 

on the comprehensive ISIC dermoscopic image dataset, known for its diversity in skin 

lesions. Utilizing the ISIC dataset as the foundation of our analysis, the CNN model's 

performance is systematically evaluated with varying numbers of layers—ranging from 15 

to 27. Results indicate that the CNN model comprising 15 layers achieves an accuracy of 

89.55%, while the model with 27 layers exhibits the highest performance, attaining an 

accuracy of 90.85%. In the realm of transfer learning, ten baseline CNN models pre-trained 

on ImageNet are employed. All baseline models demonstrate accuracies surpassing 80%, 

with SqueezeNet recording the lowest accuracy at 80.89%. In contrast, the ResNet-50 model 

consistently outperforms other models in transfer learning, achieving an accuracy of 

92.98%. These findings underscore the efficacy of the proposed models in melanoma 

classification and highlight the superior performance of the ResNet-50 model in the context 

of transfer learning. 
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1. INTRODUCTION

Skin cancer results from modifications in normal skin cells, 

initiating their conversion into malignant cells that undergo 

uncontrolled proliferation, assuming distorted shapes due to 

DNA damage. Histologically, skin cancer presents as an 

irregular structure characterized by chromatin, nuclei, and 

various stages of cell differentiation within the cytoplasm [1]. 

Recent studies emphasize an annual increase in skin cancer 

diagnoses, surpassing incidences of other cancer types [2]. 

There are two primary categories of skin cancer—Non-

Melanoma Skin Cancer (NMSC) and Melanoma Skin Cancer 

(MSC), as illustrated in Figure 1. Within the realm of 

Melanoma Skin Cancer (MSC), multiple subtypes exist, 

including lentigo maligna, acral lentiginous, and nodular 

melanoma [3]. NMSC is primarily associated with heightened 

exposure to UV radiation and ozone depletion, influenced by 

factors such as sun-seeking behaviors, cumulative UV 

exposure, and extended lifespans [4]. NMSC further divides 

into three main categories: Basal Cell Carcinoma (BCC), the 

most prevalent type of NMSC (constituting 75%), followed by 

Squamous Cell Carcinoma (SCC) (24%), with rarer variants 

making up a minor fraction (1%), such as Sebaceous Gland 

Carcinoma (SGC) [5]. BCC, SGC, and SCC originate in the 

intermediate and upper layers of the epidermis, displaying a 

lower tendency for metastasis compared to melanoma. 

Generally, non-melanoma cancers carry a more favorable 

prognosis than melanoma cancers [6]. 

Melanoma skin cancer, though constituting only 1% of total 

cases, is associated with a higher mortality rate, as reported by 

the American Cancer Society [6]. Primarily affecting 

melanocytes, the cells comprising the skin's surface [7], 

melanoma can manifest in various hues, ranging from 

colorless to shades like rose pink, royal purple, or azure [8]. 

Its heightened fatality and aggressiveness are attributed to 

rapid metastasis [9]. Melanoma originates when normal 

melanocytes undergo uncontrolled proliferation, leading to the 

formation of malignant tumors. While it can affect any part of 

the body, it predominantly appears in sun-exposed areas such 

as the hands, face, neck, lips, and other exposed regions. 

Timely detection of skin cancer is crucial in mitigating 

associated risk factors; otherwise, the condition may 
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metastasize to other body sites, leading to considerable distress 

and potentially fatal outcomes [10]. Physicians typically resort 

to a biopsy procedure to diagnose skin cancer, involving the 

extraction of a tissue sample from a suspicious skin lesion for 

subsequent examination. While indispensable, this procedure 

is often complex, time-consuming, and protracted. Thus, early 

identification and classification of skin cancer are vital for 

improving survival rates [8, 9]. 

In the contemporary medical landscape, the use of CAD 

systems is imperative for diagnosing and evaluating medical 

images. These systems offer a convenient, cost-effective, and 

expedient means of diagnosing skin cancer symptoms. Several 

non-invasive methodologies have been proposed for 

investigating skin cancer symptoms and differentiating 

between melanoma and non-melanoma. These methods 

encompass image acquisition, preprocessing, post-acquisition 

image segmentation, feature extraction, and classification as 

fundamental steps in skin cancer detection [11]. 

The literature presents various hand-crafted feature-based 

methods for the classification of malignant melanoma and 

benign skin lesions, including the ABCD rule-based method 

[8]. More recently, diverse deep learning-based approaches 

have emerged for skin cancer detection, as evidenced by 

references [5, 12]. 

In this study, we introduce a suite of highly efficient skin 

cancer classification models specifically crafted for detecting 

melanoma skin cancer in dermoscopic images of skin lesions. 

At the core of our methodology lies the utilization of CNNs 

and leveraging transfer learning techniques, consistently 

proven in their efficacy in image analysis tasks. Our approach 

encompasses a range of CNN models with different network 

depths—15, 19, 23, and 27 layers. Furthermore, we employ 

transfer learning, utilizing ten robust pre-trained CNN 

architectures: SqueezeNet, GoogLeNet, AlexNet, ResNet-18, 

ResNet-50, MobileNet-v2, ShuffleNet, NASNet-Mobile, 

EfficientNetB0, and VGG-19. The selection of these models 

is based on their adeptness in extracting intricate image 

features, aligning with our goal of enhancing the precision and 

reliability of melanoma detection. 

The primary aim of this study is to create efficient models 

for detecting melanoma skin cancer. These classification 

models are designed to achieve high accuracy while 

maintaining lower complexity and reduced computational cost. 

These characteristics make them suitable for resource-

constrained devices and environments with limited 

computational resources. Moreover, these attributes 

significantly contribute to early diagnosis, thereby enhancing 

patient outcomes in the healthcare domain. 

The subsequent sections of this paper are organized as 

follows: Section 2 offers a brief discussion of related works in 

the existing literature. Section 3 comprehensively explains the 

proposed methods for skin cancer classification. Section 4 

presents the performance evaluation metrics used throughout 

this study. In Section 5, we not only present our research 

results but also conduct an in-depth analysis of skin cancer 

detection techniques, comparing them with relevant prior 

studies. Finally, in Section 6, we draw conclusions, 

emphasizing the significant implications derived from our 

study's findings, and outline potential directions for future 

research. 

 

 
 

Figure 1. Skin cancer types 

 

 

2. RELATED WORKS 
 

This section endeavors to provide a comprehensive 

overview and analysis of prior research pertaining to the 

classification of skin cancer, with a specific focus on 

melanoma within images. Our examination encompasses a 

spectrum of studies, incorporating approaches utilizing 

handcrafted features as well as those leveraging advanced 

deep learning methodologies. 

 

2.1 Classification of melanoma using handcrafted features 

 

The process of diagnosing malignant skin cancer often 

commences with extracting various handcrafted features from 

lesion images, including shape, size, color, and texture. These 

extracted features are subsequently refined through feature 

ranking and optimization algorithms before undergoing 

classification. 

In the realm of detecting melanoma skin cancer in 

dermoscopic images, literature has extensively employed a 

range of handcrafted features and diverse machine learning 

techniques. Below, we present some related studies, 

categorized by the employed machine learning technique, 

features, or dataset: 

• Genetic Algorithm and Support Vector Machine 

(SVM) Approach: Tan et al. [13] enhanced classification 
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accuracy to 88% on the Dermofit dataset by utilizing a 

genetic algorithm coupled with an SVM classifier. 

• Feature Ranking Methods: Mukherjee et al. [14] 

utilized feature ranking methods to isolate the top-

performing 163 features. 

• Color and Texture Features with K-Nearest Neighbor 

(KNN) Algorithm: Ballerini et al. [15] achieved 93% 

accuracy using color and texture features in conjunction 

with a KNN classifier on the Dermofit dataset. 

• Multilayer Perceptron (MLP) Classifier and Dermofit: 

Mukherjee et al. [16] attained an 83.33% classification 

accuracy by employing the top 10 conventional features 

and MLP on the Dermofit dataset. 

• Combining Dermofit and MEDNODE: Mukherjee et al. 

[17] reported a 91.02% accuracy using 1886 features from 

both Dermofit and MEDNODE datasets. 

Although handcrafted features have demonstrated their 

utility in preliminary endeavors to classify melanoma, they are 

constrained in their capacity to encapsulate the nuanced and 

diverse characteristics inherent in melanoma skin lesions. As 

a result, deep learning methodologies, particularly CNNs, 

have arisen as a promising alternative. These methodologies 

showcase the capacity to autonomously learn discriminative 

features from data and dynamically adapt to the intricate 

complexities associated with melanoma classification. 

 

2.2 Classification of melanoma using deep CNNs 

 

Advancements in deep CNNs have demonstrated notable 

efficacy in object recognition tasks, prompting their 

exploration in medical image processing, specifically in the 

categorization of melanoma. Table 1 provides a 

comprehensive summary of various deep learning-based 

methods, delineating the strengths and limitations of deep 

CNN networks for classifying melanoma in dermoscopic 

images [18]. Researchers commonly rely on well-established 

datasets such as ISIC and PH2, underscoring the pivotal role 

of benchmark datasets in this specialized domain. To address 

challenges related to dataset size and diversity, the adoption of 

data augmentation techniques has become a prevalent trend. 

In addressing the unique intricacies of melanoma 

classification, researchers often employ customized CNN 

architectures or modifications of established models. This 

tailored approach is crucial for adapting solutions to the 

specific nuances inherent in melanoma detection. While there 

is variability in achieved classification accuracy across studies, 

collective findings consistently underscore the promising 

potential of CNN-based methodologies in melanoma detection, 

with several studies reporting accuracy rates surpassing 80%, 

indicative of the robust capabilities of CNNs in this medical 

imaging domain. 

The prevailing trajectory in the field leans towards 

exploring increasingly complex CNN architectures and 

incorporating advanced techniques, all aimed at further 

enhancing the accuracy of melanoma classification. This 

inclination reflects the ongoing commitment of researchers to 

push the boundaries of innovation, ultimately contributing to 

the refinement of diagnostic tools in the critical domain of 

melanoma detection. 

The studies outlined in Table 1 highlight the potential of 

deep CNNs in melanoma classification. These investigations 

employ diverse methodologies to effectively address 

challenges associated with dataset limitations. Researchers 

experiment with various data augmentation techniques and 

leverage a spectrum of CNN architectures to attain 

competitive results. The selection of a particular method often 

depends on factors such as dataset size, available 

computational resources, and the specific research objectives. 

This nuanced decision-making process reflects the dynamic 

landscape of melanoma classification research, where tailored 

approaches are crafted to align with the unique demands of 

each study's context and goals. 

 

Table 1. A summary of some deep learning based methods for classifying melanoma in dermoscopic images 

 
Ref. Methods and Datasets Strengths Limitations 

[19] A CNN on the MEDNODE dataset with data 

augmentation. 

Data augmentation to increase dataset size, 

use of color images. 

Limited dataset (170 images), 

relatively simple CNN 

architecture. 

[20] Deep CNNs and augmented images from DermIS 

and DermQuest datasets. 

Extensive data augmentation, high 

classification accuracy. 

Data augmentation can be 

computationally expensive and 

may not always generalize well. 

[21] Data augmentation with a CNN on the ISIC 

dataset. 

Exploration of data augmentation impact, 

use of the ISIC dataset. 

Moderate classification accuracy 

without augmentation. 

[22] Different CNN architectures and achieved 

accuracies of 81.2%, 75.5%, and 80.7% for VGG-

19, ResNet-50, and VGG-19-SVM, respectively. 

Comparative analysis of multiple CNN 

architectures, various augmentation 

techniques. 

Imbalanced dataset, moderate to 

good accuracy. 

[23] VGG-19 CNN on the PH2 dataset. High classification accuracy (92.5%) on the 

PH2 dataset. 

Limited dataset size (200 

images). 

[24] Deep CNN based on the VGG-16 architecture 

with the ISBI 2016 challenge dataset. 

Use of a well-established VGG-16 

architecture, ISBI 2016 challenge dataset. 

Moderate classification accuracy 

(81.33%). 

[25] A modified LightNet architecture on the ISBI 

2016 challenge dataset 

A modified architecture, achieving a 

competitive classification accuracy. 

Limited dataset, moderate 

accuracy. 

 

 

3. METHODS 

 

3.1 Convolutional Neural Network (CNN) 

 

The CNN stands out as an innovative paradigm within the 

realm of multilayer perceptrons (MLP), meticulously designed 

for the processing of two-dimensional data. CNNs have 

garnered substantial attention owing to their widespread 

application and inherent capability to accommodate high-

depth networks, making them particularly adept at analyzing 

image data [26]. The architectural framework of CNNs shares 

similarities with general neural networks, featuring neurons 

equipped with weights, biases, and activation functions. A 

typical CNN structure encompasses a convolution layer 
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employing Rectified Linear Unit (ReLU) activation, 

succeeded by a pooling layer that serves as the feature 

extraction stage, culminating in a fully connected layer 

employing softmax activation for classification purposes. 

 

3.1.1 Convolution Layer 

At the core of CNNs lies the fundamental operation of 

convolution, primarily executed within the convolution layer. 

Operating as the initial processing layer for input images, this 

layer utilizes a convolutional filter, typically with dimensions 

such as 3 × 3, 5 × 5, or 7 × 7, to convolve the image. This 

convolution process generates multiple feature maps, often 

referred to as the feature map set [27], as depicted in Eq. (1). 

 

𝐹𝑗
𝑙+1 = ∑ 𝑤𝑖𝑗

𝑙  𝐹𝑖
𝑙 

𝑖 + 𝑏𝑗
𝑙  (1) 

 

Here: 

• F represents the j-th feature map of the l-th layer. 

• w signifies the convolutional kernel filter. 

• b represents the bias. 

In the training phase of CNNs employing the 

Backpropagation technique, convolutional kernel filters (w), 

responsible for extracting features from input images, undergo 

initialization with small random values before the 

commencement of training. Throughout the forward pass of 

the backpropagation process, these filters are applied to input 

dermoscopic images, resulting in the generation of feature 

maps. Each feature map captures unique image patterns. The 

optimization technique of gradient descent is then deployed to 

adjust the filter weights, with gradients supplying crucial 

information on how the filters should be updated to minimize 

the loss function. The learning rate, recognized as a 

hyperparameter, dictates the step size during this process. 

Filters undergo iterative updates across epochs by subtracting 

a fraction of the gradient from their current values. This 

iterative process enables the neural network to progressively 

learn and refine features tailored specifically for the task at 

hand, which, in this study, is melanoma classification. 

Similarly, biases (b) also commence with small random 

values and are incorporated into convolutional outputs and 

layer activations during the forward pass. Loss gradients 

associated with biases are computed, and gradient descent is 

utilized to update biases, aiming to minimize the loss. 

 

3.1.2 Batch normalization layer 

The primary goal of batch normalization is to alleviate 

issues related to data saturation, enabling neural networks to 

achieve faster convergence rates and greater resilience against 

problems associated with parameter initialization [27]. By 

integrating batch normalization layers between convolutional 

layers and nonlinearities, such as ReLU layers, the network 

training process is accelerated, and overall stability is 

enhanced. 

 

3.1.3 Rectified Linear Units (ReLUs) 

Rectified Linear Units (ReLUs) function as activation 

layers within CNNs, expediting the neural network training 

phase while minimizing errors. In instances where a pixel's 

value (x) within an image falls below zero, the ReLU 

activation promptly sets all pixel values to zero [28], as 

illustrated in Eq. (2). 

 

𝑓(𝑥) = { 0 𝑖𝑓 𝑥≤0
 𝑥 𝑖𝑓 𝑥>0

 

 
 (2) 

The pivotal characteristic of Rectified Linear Units (ReLUs) 

lies in their ability to introduce non-linearity into deep neural 

networks, a crucial aspect enabling the network to recognize 

and comprehend complex patterns and relationships within the 

input data. This non-linearity is vital for CNNs, as it enables 

the modeling and learning of intricate features within input 

images. Additionally, ReLUs play a role in mitigating the 

vanishing gradient problem, a significant issue often 

encountered in deep neural networks [28].  

 

3.1.4 Polling layer 

The pooling layer provides several advantages, including 

controlling the size of the output volume on the feature map to 

prevent overfitting. Commonly positioned after multiple 

convolution layers within the CNN architecture, this layer 

performs data reduction through mean- or max-pooling. 

Mean-pooling calculates the average value, while max-

pooling selects the highest value among elements within a 

small neighborhood. 

 

3.1.5 Fully Connected (FC) layer 

In the + data through a flattening process [29]. Following 

this process, the logistic regression technique can be utilized 

with softmax activation for the classification of more than two 

groups. 

 

3.1.6 Optimizer 

Hyperparameters play a crucial role in model performance 

as they require adjustment during model training. In this study, 

we utilize the Stochastic Gradient Descent (SGD) optimizer to 

fine-tune the CNN networks. This optimization technique 

leverages each training sample as a parameter to improve the 

model's performance by utilizing advanced mathematical 

functions such as derivatives or subderivatives [30]. The SGD 

update equation can expressed as follows: 

 

θ(i + 1) =θi -α ▽L(θi) + γ(θi-θ(i-1)) (3) 

 

Here: 

• θ(i + 1) represents the updated parameter vector. 

• θi denotes the current parameter vector. 

• α'signifies the learning rate. 

• ∇L(θi) is the gradient of the loss function with respect to 

the current parameters θi. 

• γ controls the momentum and influences how the previous 

gradient step contributes to the current iteration. 

• θ(i-1) represents the parameter vector from the previous 

iteration. 

 

3.1.7 The proposed CNN network for classifying melanoma in 

dermoscopic images 

Figure 2 illustrates the structure and configuration of the 

proposed network, consisting of 27 layers. Operating on skin 

images with a resolution of 128 × 128 pixels, the network 

incorporates three hidden layers. The number of output 

channels in each hidden layer is derived by convolving the 

image using 3 × 3 filters, resulting in respective values of 8, 

16, 32, 64, 128, and 256. At each layer, the activation process 

involves the application of ReLU activation and Max pooling, 

which serves to downsize the image. 

The output of the fully connected layer undergoes 

normalization through the softmax activation function. This 

function generates positive values that sum up to one, 
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providing classification probabilities used by the classification 

layer for categorizing inputs into Melanoma and nevi, and for 

calculating loss. 

 

 
 

Figure 2. The architecture of the proposed CNN network for 

classifying melanoma in dermoscopic images. It should be 

noted that this CNN network includes 27 layers 

 

The CNN network proposed in this study is trained using 

melanoma images obtained from the SIC 2019 and ISIC 2020 

challenge datasets. Detailed information about the training and 

testing images will be expounded upon in Section 5.1. 

The training process of the network is facilitated by utilizing 

the SGD optimizer with momentum, where a predefined 

number of epochs is set at 50. To improve training 

effectiveness, the learning rate undergoes reduction by a factor 

of 0.2 after every 5 epochs. It's important to note that all 

experiments conducted for this research have been performed 

using MATLAB.  

 

3.2 Deep transfer learning-based approach 

 

In this study, we utilize transfer learning based on robust 

pre-trained CNNs to classify melanoma in dermoscopic 

images. Our approach involves employing ten pre-trained 

CNN architectures, each renowned for its specific 

characteristics and advantages: SqueezeNet, GoogLeNet, 

AlexNet, ResNet-18, ResNet-50, MobileNet-v2, ShuffleNet, 

NASNet-Mobile, EfficientNetB0, and VGG-19. 

The selection of these ten pretrained CNN models in this 

study was made after careful consideration of their individual 

strengths and weaknesses, aligning them with the goals of 

classifying skin cancer in dermoscopic images. Each of these 

pretrained models has been widely employed in various 

applications. Models such as MobileNet and EfficientNet are 

recognized for their highly efficient use of computational 

resources. On the other hand, models like ResNet and 

NASNet-Mobile excel in capturing deep features, potentially 

improving melanoma classification accuracy. 

However, some of the pretrained models mentioned above 

come with limitations. For instance, VGGNet, GoogleNet, and 

ResNet demand substantial computational resources, limiting 

their applicability in resource-constrained environments. 

Additionally, pretrained models like GoogleNet and ResNet 

possess complex architectures that can lead to longer training 

times and convergence challenges. 

In the subsequent section, we delve into the rationale behind 

the selection of these models and provide a more detailed 

analysis of their strengths and weaknesses for the specific task 

of melanoma classification in dermoscopic images. 

 

3.2.1 SqueezeNet 

SqueezeNet, a formidable architecture, comprises fifteen 

layers, which include two convolution layers, three max-

pooling layers, eight fire layers, one global average pooling 

layer, and a final output layer with softmax activation [31]. 

Operating with an input size of 227 × 227 RGB channels, 

SqueezeNet incorporates max-pooling after convolution to 

generalize input images. Its convolution layers employ 3 × 3 

kernels, employing an element-wise activation function that 

sets all values less than zero to zero [28]. SqueezeNet further 

leverages fire layers, each encompassing squeeze and 

expansion stages, maintaining consistent input and output 

tensor scales. 

The inclusion of SqueezeNet in this study stems from its 

lightweight architecture, rendering it suitable for resource-

constrained environments. Its efficient parameter usage and 

ability to sustain high accuracy are significant strengths. 

Nonetheless, one limitation is its potential to be less effective 

in capturing complex features compared to deeper networks. 

 

3.2.2 AlexNet 

AlexNet, a widely recognized model for classification and 

pattern recognition, consists of eight layers, including five 

convolutional and three fully connected layers. In our 

adaptation, we align input images with the specifications of 

AlexNet to ensure compatibility with our data, where the 

number of classes matches the number of inputs in the original 

model. The model integrates max-pooling layers positioned 

between the first two convolutional layers, aiding in the 

reduction of feature map sizes. 

Throughout the training process, a low learning rate has 

been applied, contributing to smaller weight updates [32]. 

Unlike some of its counterparts, AlexNet is less 

computationally intensive, making it an appealing choice. As 

a pioneering model in the field of deep learning, it was selected 

for its robustness and established performance. Its relatively 

simpler architecture and fewer layers contribute to its 

computational efficiency. However, its architecture might be 

considered shallow compared to more recent and deeper 

models, potentially constraining its capacity for feature 

extraction. 

 

3.2.3 VGGNet 

The VGGNet, developed by researchers at Oxford 

University, is recognized for its pyramidal structure [33]. It 

comprises a series of convolutional layers followed by pooling 

layers, contributing to its distinctive architecture. VGGNet is 
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known for its adaptability and suitability for benchmarking 

across various tasks. Its pre-trained models are commonly 

utilized in diverse applications. However, it's important to note 

that VGGNet can be computationally demanding, particularly 

when initiated from scratch. 

The pyramidal structure and simplicity of VGGNet render 

it an excellent choice for benchmarking purposes. It excels in 

feature extraction and finds widespread application. 

Nonetheless, its computational intensity becomes apparent, 

especially when dealing with large datasets and in resource-

constrained environments. 

 

3.2.4 GoogleNet 

GoogleNet, also recognized as the inception architecture, is 

focused on efficiently estimating and distributing dense 

components within the sparse structure of a convolutional 

network. It specifically addresses the redundancy issue within 

deep network activations, emphasizing that not all connections 

between input and output channels need to be present in the 

network's design. GoogleNet utilizes convolutions of different 

sizes (5 × 5, 3 × 3, 1 × 1) to capture data and features at varying 

scales. It also introduces bottleneck convolutional layers (1 × 

1), which play a pivotal role in its design [34]. 

The inception architecture of GoogleNet is structured to 

capture features at different scales, offering a comprehensive 

understanding of images. It adeptly employs various kernel 

sizes for convolution. However, its complexity can pose 

challenges to training convergence and demand significant 

computational resources. 

 

3.2.5 ResNet 

ResNet, which stands for residual network, is distinguished 

by its use of residual modules as the fundamental building 

blocks. These residual modules are organized in a stacked 

manner to constitute a complete end-to-end network. One of 

the unique aspects of the ResNet architecture is its 

incorporation of tens of thousands of residual layers, 

enhancing its performance and efficacy in network training. In 

comparison to AlexNet and VGG, ResNet is notably deeper, 

being 20 and 8 times deeper, respectively [35]. 

The deep architecture of ResNet allows it to effectively 

capture intricate patterns and features in images. Its residual 

modules play a crucial role in mitigating the vanishing 

gradient problem, enabling the training of exceptionally deep 

networks. However, a notable drawback is the increased 

computational cost associated with its depth. 

 

3.2.6 MobileNet 

MobileNet is distinctive for its efficiency, making it well-

suited for deployment on devices with limited computational 

resources, such as mobile devices and low-powered computers. 

Its architecture is characterized by a minimalistic design, 

which has proven effective for various tasks, including 

Palmprint Recognition [36]. It employs various convolutional 

layers and abstraction layers that utilize depthwise 

convolutions. MobileNet integrates ReLU activation 

components and residual layers with specific stride values, 

contributing to its unique design [37]. 

This model is ideal for resource-constrained devices due to 

its low computational requirements. It maintains good 

performance while minimizing memory and power 

consumption. However, due to its compact architecture, it may 

not capture fine-grained details as effectively as larger and 

more complex models. 

3.2.7 ShuffleNet 

ShuffleNet introduces a novel ShuffleNet unit aimed at 

optimizing small networks by integrating the channel shuffle 

function. It commences with a bottleneck unit, utilizing a 3 × 

3 depthwise convolution in the residual branch, followed by 

pointwise group convolution. The goal of this approach is to 

align the channel dimension between the residual and shortcut 

paths. The architecture integrates mixed-grouped convolution, 

point-grouped convolution, and profoundly separable 

convolution, maintaining accuracy while significantly 

reducing computational expenses [38]. 

The distinctive channel shuffle function of ShuffleNet 

makes it well-suited for small networks. It effectively balances 

accuracy and computational efficiency. However, it may not 

perform as strongly as larger models on more complex tasks. 

 

3.2.8 NASNet-Mobile 

The Neural Architecture Search (NASNet) is a 

contemporary CNN architecture developed by GoogleBrain. It 

utilizes a reinforcement learning search strategy to discover an 

efficient building block on a small dataset, which is 

subsequently transferred to a larger dataset, resulting in state-

of-the-art performance with a smaller model size and 

complexity. In contrast to traditional CNN designs, NASNet 

explores cells that can form a high-performance block, with 

the internal structure of these cells determined by a Recurrent 

Neural Network. This approach involves constructing Normal 

and Reduction cells and iteratively repeating the building 

block, with the value of 'n' being automatically calculated. 

NASNet's automated architecture search generates efficient 

models tailored to specific datasets, effectively balancing 

performance and model size, rendering it suitable for various 

applications. However, it may require significant 

computational resources during the search process. 

 

3.2.9 EfficientNet 

EfficientNet diverges from traditional CNN design 

approaches by focusing on augmenting network depth, width, 

and input resolution in the baseline network. It employs a 

multi-objective neural architecture search to maximize both 

accuracy and constrained computational resources. The 

baseline network, EfficientNetB0, is crafted through this 

process by utilizing a slightly larger version of the mobile 

inverted bottleneck convolution (MBConv) and scaling it to 

create the EfficientNet family of models. This innovative 

methodology facilitates improved accuracy without 

significantly inflating computational demands [39]. 

EfficientNet's strategy for scaling network depth, width, and 

resolution strikes an optimal balance between accuracy and 

computational efficiency. It excels in both feature extraction 

and model size. However, fine-tuning may be necessary to 

tailor it to specific tasks or datasets. 

 

3.3 Deep transfer learning-based approach for melanoma 

classification  

 

Training a deep CNN model demands access to a vast image 

repository [40]. Regrettably, datasets comprising a substantial 

collection of labeled skin lesion images remain limited. 

Leveraging the capabilities of deep CNNs often necessitates 

training on expansive datasets like ImageNet, a process 

fraught with significant challenges. However, we overcame 

this challenge by employing transfer learning with robust pre-

trained CNN models, including SqueezeNet, AlexNet, VGG-
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16, GoogleNet, ResNet, MobileNet, ShuffleNet, NASNet-

Mobile, and EfficientNet, for the task of melanoma 

classification. 

Notably, our approach introduces a two-classification 

model specifically tailored to differentiate between malignant 

and benign skin lesions, contrary to CNN models trained on 

ImageNet, which are designed for distinguishing among 1000 

classes. Thus, three critical stages are involved in achieving 

effective transfer learning for melanoma classification in 

dermoscopic images: 

1. The initial stage involves selecting a pre-trained model, 

such as SqueezeNet, AlexNet, VGG-16, GoogleNet, 

ResNet, MobileNet, ShuffleNet, NASNet-Mobile, 

EfficientNet. A summary of the strengths and limitations 

of each model is provided in Section 3.2. 

2. In the second stage, we replace the model's classification 

layer with a SoftMax layer, which involves adjusting 

weights to substitute class-specific attributes with new 

layers. This step also encompasses the relocation and 

replacement of feature maps in convolutional layers with 

class-specific counterparts. 

3. The final stage involves deploying fine-tuned layers that 

are reused and adjusted to suit the requirements of the 

melanoma classification task. 

 

 

4. PERFORMANCE EVALUATION 

 

To evaluate the performance of the proposed methods in 

classifying melanoma and benign skin lesions, we calculate 

the confusion matrix presented in Figure 3. We then compute 

various metrics, including accuracy, recall, precision, F1 score, 

and the area under the curve (AUC). Eqs. (4)-(7) detail the 

formulation of these metrics [1]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃+𝐹𝑁 
  (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (6) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (7) 

 

In this context, True Positive (TP) signifies accurate 

positive predictions, while True Negative (TN) represents 

cases where negatives were correctly predicted. False Positive 

(FP) indicates instances where negatives were erroneously 

identified as positives, and False Negative (FN) pertains to 

positive data mistakenly considered negative. A favorable 

outcome is characterized by a high true negative rate and low 

false-positive rates, positioning most points in the left section 

of the receiver operating characteristic (ROC) curve [41]. 

 

 
 

Figure 3. An illustration for the confusion matrix 

calculations 

5. RESULT AND DISCUSSION 

 

5.1 Dataset 

 

The dataset was procured from the Kaggle platform, 

primarily sourced from the International Skin Imaging 

Collaboration (ISIC), a global initiative dedicated to 

advancing melanoma diagnosis and hosting the most extensive 

publicly accessible repository of high-quality dermoscopic 

images of skin lesions within the ISIC Archive. The acquired 

dataset comprises images of melanoma (malignant) and nevus 

(benign) from the ISIC 2019 and ISIC 2020 Challenge 

Datasets. Notably, the ISIC 2020 dataset associates each 

image with a unique patient identity. In total, our dataset 

comprises 11,449 dermoscopic images encompassing 5,106 

melanoma cases and 6,343 nevus cases. 

These images are in the ".jpg" color format and exhibit 

variations in pixel sizes, as depicted in Figure 4. Figure 4(a) 

provides an example of melanoma images, while Figure 4(b) 

displays a nevus skin lesion. 

 

  
(a) Melanoma (b) Nevus 

 

Figure 4. Examples of melanoma and nevus skin lesions 

from the ISIC dataset 

 

In our experiments, we divided the dataset into 75% for 

training and 25% for testing. The dataset exhibits a semi-

balanced distribution, with 3,830 melanoma images and 4,757 

nevus images allocated for training, and 1,276 melanoma 

images and 1,586 nevus images designated for testing. 

The decision to utilize a semi-balanced dataset in our 

experiments is motivated by the need to strike a harmonious 

balance between mitigating class imbalance issues and 

optimizing the overall performance of the model. In the 

context of melanoma classification, there typically exists a 

substantial class imbalance between malignant (melanoma) 

and benign (nevus) skin lesion cases. In real-world scenarios, 

the occurrence of melanoma cases is significantly less frequent 

compared to benign cases. Consequently, training a model on 

a severely imbalanced dataset may result in suboptimal 

performance, as the model might develop a bias towards the 

majority class (nevus) and encounter challenges in effectively 

learning patterns associated with the minority class 

(melanoma). 

By adopting a semi-balanced dataset, our goal is to address 

this class imbalance challenge while still maintaining a 

representation of real-world conditions. This approach 

involves stratified sampling to ensure that both melanoma and 

nevus cases are adequately represented in both the training and 

validation sets. By doing so, we provide the model with a more 

balanced exposure to both classes during training, fostering 

better generalization and improved performance in identifying 

melanoma cases. 
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5.2 Results of the proposed CNN model 

 

In this investigation, we systematically trained four distinct 

configurations of the proposed CNN model, each 

distinguished by varying numbers of layers: 15, 19, 23, and 27. 

The primary objective was to ascertain the optimal 

configuration that would maximize classification accuracy. As 

detailed in Section 3.1.7, we introduced the comprehensive 

CNN model for melanoma classification (Configuration 1), 

comprising 27 layers, as illustrated in Figure 2. For the 

remaining three configurations (Configuration 2, 

Configuration 3, and Configuration 4), we progressively 

removed Convolution, ReLU, Batch Normalization (BN), and 

Max-Pooling layers from the complete 27-layer CNN network. 

Specifically, for Configuration 2 (23 layers), we eliminated 

layers 18-21 (four layers) from the complete network, as 

depicted in Figure 2. In the case of Configuration 3 (19 layers), 

we pruned eight layers from the complete network (layers 14-

21). Finally, for Configuration 4, we pruned 12 layers from the 

complete network (layers 10-21). 

The performance of these four CNN configurations was 

meticulously evaluated, and the results are presented in Table 

2. Each configuration underwent assessment using 

fundamental metrics, including accuracy, AUC, recall, 

precision, and F1-score, to gauge their suitability for the task 

of skin cancer classification. 

Significantly, Configuration 1 emerged as the top performer, 

showcasing an impressive accuracy rate of 90.85%. Following 

closely, Configuration 2 achieved an accuracy of 90.74%. 

While Configurations 3 and 4 exhibited slightly lower 

accuracies of 90.32% and 89.55%, respectively, it is 

noteworthy that even the least performing Configuration 4 

demonstrated commendable levels of accuracy. Regarding the 

Area Under the Curve (AUC), both Configuration 1 and 

Configuration 2 took the lead, registering an AUC of 0.907. 

This implies that these configurations adeptly discriminated 

between malignant and benign skin lesions. 

Interestingly, Configuration 4, boasting the fewest layers, 

secured the highest recall rate at 94.83%, indicating its 

effectiveness in capturing malignant lesions. However, this 

heightened sensitivity came at the cost of lower precision. 

Conversely, Configuration 1 achieved a balanced recall rate of 

91.80%, while Configurations 2 and 3 achieved recall rates of 

91.17% and 89.72%, respectively. Precision, a metric 

reflecting the ability to correctly classify instances as positive, 

revealed that Configuration 2 exhibited the highest precision 

at 92.58%, closely followed by Configuration 3 at 92.04%. 

 

Table 2. The performance of the four configurations of the 

proposed CNN model, in terms of accuracy (Acc.), AUC, 

Recall (Re.), Precision (Pre.) and F1-score (F1) 

 
Configuration Acc. AUC Re. Pre. F1 

C1: 27 layers  90.85  0.907 91.80  91.69  91.75 

C2: 23 layers  90.74  0.907 91.17  92.04  91.61 

C3: 19 layers  90.32  0.904 89.72  92.58  91.13 

C4: 15 layers  89.55  0.889 94.83  87.39  90.96 

 

Figure 5 further illustrates the confusion matrix of these four 

CNN configurations. Notably, Configuration 4 produced the 

highest false-positive rate, incorrectly classifying 217 nevus 

images as melanoma. Conversely, Configuration 3 

demonstrated the highest false-negative rate, with 136 

melanoma cases misclassified as nevus. 

These results underscore Configuration 1, comprising 27 

layers, as the most balanced performer, excelling in accuracy 

and maintaining a harmonious balance between precision and 

recall. Configuration 2, featuring 23 layers, closely follows 

Configuration 1 in performance and offers the advantage of 

reduced complexity. Configuration 3, with 19 layers, 

emphasizes precision, while Configuration 4, with 15 layers, 

prioritizes recall. The choice of configuration should be guided 

by specific application requirements, such as the importance 

of minimizing false positives or maximizing sensitivity. 

Nevertheless, all configurations underscore the remarkable 

potential of the proposed CNN model in skin lesion 

classification, demonstrating its effectiveness for this critical 

medical task. 

 

 
 

(a) CNN Configuration 1 (b) CNN Configuration 2 

  
(c) CNN Configuration 3 (d) CNN Configuration 4 

 

Figure 5. The confusion matrix of the four CNN configurations: (a) Configuration 1 (C1) with 27 layers, (b) Configuration 2 

(C2) with 23 layers, (c) Configuration 3 (C3) with 19 layers, and (d) Configuration 4 (C4) with 15 layers 
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5.3 Results of deep transfer learning-based approach  
 

Table 3. The performance of the transfer learning approach 

for melanoma classification utilizing the SqueezeNet, 

GoogLeNet, AlexNet, ResNet-18, ResNet-50, MobileNet-v2, 

ShuffleNet, NASNet-Mobile, EfficientNetB0, and VGG-19 

pretrained CNN models, in terms of accuracy (Acc.), AUC, 

Recall (Re.), Precision (Pre.) and F1-score (F1) 

 
Method Acc. AUC Re. Pre. F1 

SqueezeNet 80.89 0.787 98.36 74.96 85.08 

GoogLeNet 80.96 0.789 97.16 75.50 84.97 

AlexNet 92.56 0.923 94.77 92.04 93.38 

ResNet-18 91.89 0.916 93.82 91.74 92.77 

ResNet-50 92.98 0.927 95.08 92.46 93.75 

MobileNet-v2 90.43 0.904 90.61 92.00 91.30 

ShuffleNet 89.73 0.900 87.39 93.65 90.41 

NASNet 91.26 0.908 94.83 89.95 92.33 

EfficientNet 91.20 0.908 94.20 90.33 92.22 

VGG-19 91.79 0.911 97.54 88.76 92.94 

 

Table 3 provides a comprehensive overview of the 

outcomes derived from the deep transfer learning approach 

employed for melanoma classification in dermoscopic images. 

The experimentation involved leveraging ten pretrained CNN 

models, all of which had undergone training on ImageNet. 

These models encompassed SqueezeNet, GoogLeNet, 

AlexNet, ResNet-18, ResNet-50, MobileNet-v2, ShuffleNet, 

NASNet-Mobile, EfficientNetB0, and VGG-19. The 

foundation for transfer learning was laid using the 

dermoscopic image dataset outlined in Section 5.1, 

thoughtfully partitioned into a 75% training set and a 25% 

testing set. All images underwent resizing to dimensions of 

227×227×3. 

As evidenced by Table 3, ResNet-50 emerges as the leading 

performer among the models, showcasing a remarkable 

classification accuracy of 92.98%, an AUC of 0.927, and an 

F1-score of 93.75%. Following closely, AlexNet secures the 

second-best results with a classification accuracy of 92.56%. 

Concurrently, NASNet and EfficientNetB0 achieve F1-scores 

that are approximately one point lower than ResNet-50. 

It is noteworthy that models such as SqueezeNet and 

GoogLeNet exhibit relatively lower classification 

performance, with accuracy rates falling below 81% and AUC 

values dropping below 0.79. The architectural designs and 

depth of ResNet-50 and AlexNet play a significant role in their 

superior performance in melanoma classification. These 

models demonstrate proficiency in capturing both low-level 

and high-level features crucial for this intricate task. 

Conversely, the intricacy of models like GoogleNet and 

SqueezeNet, coupled with their emphasis on parameter 

efficiency, may not ideally align with the characteristics of the 

dataset, resulting in comparatively lower performance.  

Moreover, Figure 6 provides a graphical representation of 

the confusion matrix for each pretrained CNN model. Notably, 

SqueezeNet demonstrates the lowest false negative (FN) rate, 

misclassifying only 26 melanoma images as nevus cases. In 

contrast, ShuffleNet produces the highest FN rate, 

misclassifying 200 melanoma images as nevus cases. Both 

SqueezeNet and GoogLeNet exhibit the highest false positive 

(FP) rates, inaccurately categorizing over 500 nevus images as 

melanoma. Among the top-performing models, ResNet-50 and 

AlexNet display FP rates of 123 and 130, respectively. 

 

 
   

(a) SqueezeNet (b) AlexNet (c) VGG-19 (d) GoogleNet 

    
(e) ResNet-18 (f) ResNet-50 (g) MobileNet-v2 (h) ShuffleNet 

  

(i) NASNet-Mobile (j) EfficientNetB0 

 

Figure 6. The confusion matrix of each pretrained CNN model: (a) SqueezeNet, (b) AlexNet, (c) VGG-19, (d) GoogleNet, (e) 

ResNet-18, (f) ResNet-50, (g) MobileNet-v2, (h) ShuffleNet, (i) NASNet-Mobile, and (j) EfficientNetB0 
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Significantly, ShuffleNet achieves the lowest FP rate, 

erroneously classifying 94 nevus images as melanoma. It's 

crucial to highlight that the relatively high FN rate of 

ShuffleNet impacts its overall performance. ShuffleNet's 

architectural choices may not optimally align with the 

characteristics of the dataset used. Dermoscopic images 

exhibit significant variation in texture, color, and lesion size. 

A conservative model like ShuffleNet might struggle to 

generalize effectively across this diversity, leading to 

misclassifications. 

In summary, ResNet-50 and AlexNet emerge as the top-

performing CNN models for melanoma classification. Both 

models excel in accuracy, AUC, recall, precision, and F1-

score, demonstrating their effectiveness. The architectural 

designs and depth of these models significantly contribute to 

their superior performance, enabling them to capture both low-

level and high-level features crucial for melanoma detection. 

On the other hand, SqueezeNet and GoogLeNet, while 

achieving high recall rates, exhibit lower precision and, 

consequently, lower F1-scores. This implies that SqueezeNet 

and GoogLeNet produce a higher rate of false positives, a 

critical consideration in diagnosing melanoma, where 

minimizing false positives is essential. The choice of CNN 

architecture proves pivotal in obtaining precise and reliable 

melanoma classification results, with ResNet-50 and AlexNet 

exhibiting strong suitability for the melanoma classification 

task. 

 

5.4 Comparisons 

 

In Table 4, we present a thorough comparison between our 

optimized CNN model's best configuration and the deep 

transfer learning approach utilizing ResNet-50 pretrained on 

ImageNet. This comparative analysis illuminates the strengths 

and trade-offs inherent in each approach. 

 

Table 4. Comparing the proposed CNN model with the deep 

transfer learning approach based on ResNet-50, in terms of 

accuracy (Acc.), AUC, Recall (Re.), Precision (Pre.) and F1-

score (F1) 

 
No. of Layers Acc. AUC Re. Pre. F1 

Proposed CNN  90.85 0.907  91.80  91.69  91.75 

ResNet-50  92.98 0.927  95.08  92.46  93.75 

 

ResNet-50 achieves an impressive accuracy of 92.98%, 

underscoring its robust classification capabilities. This 

accuracy is approximately 2 percentage points higher than that 

of our proposed CNN model, which attains 90.85%. It is 

noteworthy that although there exists a discrepancy in 

accuracy, the margin is not substantially large, especially 

considering the significant contrast in complexity between the 

two models. 

Importantly, in terms of the recall rate, ResNet-50 exhibits 

superior performance compared to our CNN model, indicating 

its enhanced ability to correctly identify melanoma cases. 

However, both methods exhibit similar precision rates, 

emphasizing their capability to accurately classify melanoma 

cases while minimizing false positives. 

This comparative analysis establishes that our proposed 

CNN model yields result on par with the transfer learning 

approach employing ResNet-50. What distinguishes our CNN 

model is its notably lower complexity and lighter 

computational cost. These attributes render it particularly 

well-suited for resource-limited devices or environments 

where computational resources are constrained. Consequently, 

the choice between the two approaches should hinge on the 

specific requirements of the application at hand.  

Additionally, we conducted a thorough comparison to 

assess the accuracy of our proposed deep transfer learning-

based method against the findings from a previous study. In 

Table 5, we juxtapose the accuracies achieved by our deep 

transfer learning approach, utilizing ten pretrained CNN 

models, with the results obtained by Fraiwan and Faouri [12]. 

This comparative analysis provides valuable insights into the 

effectiveness of our approach in relation to existing research. 

Notably, Fraiwan and Faouri [12] reported their best 

accuracy scores with ResNet-18 and ShuffleNet, both 

achieving an accuracy of 79%. In contrast, our study attains 

the highest classification accuracy with ResNet-50, reaching 

an impressive accuracy rate of 92.98%. It's important to 

highlight that out of the ten pretrained CNN models utilized in 

our research, three models—AlexNet, NASNet, and VGG-

19—were not employed in study of Fraiwan and Faouri [12]. 

The accuracy rates of all melanoma classification models 

developed in our study using these ten pretrained CNN models 

are notably higher, ranging from 5 to 17 percentage points 

above the results reported by Fraiwan and Faouri [12]. This 

substantial performance gap underscores the efficacy of the 

proposed method in enhancing melanoma classification. 

 

Table 5. A comparative analysis of the accuracies achieved 

by our deep transfer learning approach utilizing ten 

pretrained CNN models and the accuracies reported by 

Fraiwan and Faouri [12] 

 

Model 
Our 

Accuracy 

Accuracy by Fraiwan and 

Faouri [12] 

SqueezeNet 80.89 75.00 

GoogLeNet 80.96 73.40 

AlexNet 92.56 Not Used 

ResNet-18 91.89 79.00 

ResNet-50 92.98 77.80 

MobileNet-

v2 
90.43 74.90 

ShuffleNet 89.73 79.00 

NASNet 91.26 Not Used 

EfficientNet 91.20 76.70 

VGG-19 91.79 Not Used 

 

 

6. CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

 

In this comprehensive investigation of melanoma 

classification in dermoscopic images, several noteworthy 

findings have surfaced. The study employed both custom CNN 

models and pretrained CNN models with transfer learning, 

enabling a thorough performance evaluation. The proposed 

CNN model demonstrated a noteworthy accuracy of 90.85%, 

effectively distinguishing between malignant and benign skin 

lesions. Conversely, ResNet-50, a deep transfer learning-

based model pretrained on ImageNet, achieved a slightly 

higher accuracy of 92.98%, surpassing the proposed CNN 

model by approximately 2 percentage points. This discrepancy, 

although significant, remains modest when considering the 

substantial difference in model complexity. Furthermore, 

ResNet-50 exhibited a superior recall rate compared to the 
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proposed CNN model, while both models displayed 

comparable precision rates. 

The study's outcomes underscore the potential of deep 

transfer learning methods, particularly with models such as 

ResNet-50 and AlexNet, to enhance melanoma classification 

accuracy in dermoscopic images. Noteworthy is the proposed 

CNN model, which, while delivering competitive results, 

distinguishes itself through its lighter and less complex 

architecture, rendering it suitable for resource-limited devices. 

In a comparative analysis, our results were juxtaposed with a 

study by Fraiwan et al. [12], where ResNet-18 and ShuffleNet 

achieved the highest accuracy at 79%. In contrast, our study 

outperformed ResNet-50, achieving an exceptional accuracy 

rate of 92.98%. These considerable performance 

improvements underscore the ongoing significance of research 

efforts in leveraging deep learning for melanoma diagnosis 

and skin cancer in general. This research has the potential to 

enhance early detection, thereby improving patient outcomes. 

The implications of this study in the healthcare and 

dermatology fields are substantial. These implications 

encompass: 1) Advancements in skin cancer diagnosis, 2) The 

adaptability of the proposed CNN model's lighter architecture 

for deployment on resource-limited devices, including 

smartphones, 3) A potential reduction in biopsy rates, and 4) 

Progress in telemedicine applications. These findings hold the 

promise to revolutionize dermatology by enhancing skin 

cancer diagnosis, particularly in cases of potentially life-

threatening melanoma. Furthermore, the deployment of 

accurate and resource-efficient deep learning models, such as 

the proposed CNN model, could lead to improved patient care, 

reduced healthcare costs, and increased accessibility to skin 

lesion assessments. Ultimately, this would benefit both 

patients and healthcare providers. 

 

6.2 Future work 

 

The future endeavors stemming from this study will 

concentrate on several key aspects:  

1. Extending Classification to Various Skin Diseases: The 

deep learning models elucidated in this study will be 

harnessed for the classification of diverse skin conditions, 

encompassing basal cell carcinoma, squamous cell 

carcinoma, and a spectrum of dermatological ailments 

such as psoriasis and eczema. Recognizing the unique 

challenges presented by each skin disease in dermoscopic 

images, our focus will be on acquiring more extensive and 

varied datasets. This expansion aims to ensure accurate 

classification across a spectrum of skin diseases. 

2. Architectural Refinement and Hyperparameter 

Optimization: The architecture of the CNN models, 

alongside critical hyperparameters such as learning rates, 

will be subject to meticulous tuning and optimization. 

This refinement process seeks to enhance the efficacy of 

melanoma classification results, pushing the boundaries 

of model performance. 

3. Enhancing Model Interpretability: Strategies for 

enhancing the interpretability of the developed models in 

melanoma classification will be explored. This involves 

employing diverse methods to make the decision-making 

process of CNN models more transparent. One such 

approach includes generating heatmaps to highlight 

regions of interest within skin lesion images. Additionally, 

textual explanations for the decisions made by each CNN 

model will be explored, contributing to a more 

comprehensive understanding of the model's 

classification rationale. 
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