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Lung cancer, standing as the world's second most fatal ailment, inflicts profound and 

irreversible damage on human life. Histopathology, the microscopic examination of tissues, 

is pivotal for the accurate diagnosis and effective treatment of this malignancy. Yet, the 

burgeoning volume of lung cancer pathological images and their inherent complexity 

present formidable challenges within the diagnostic landscape. In response, we introduce a 

novel hybrid methodology, Mixup Masked Autoencoders (MixMAE), marrying the Masked 

Autoencoder (MAE) with the image Mixup technique, rooted in prior pathological insights, 

to discern lung cancer pathological images with heightened acuity. Leveraging self-

supervised learning (SSL) models, MixMAE enhances the precision of lung cancer 

treatment by infusing Mixup designs into MAE's upstream tasks. This process involves 

feeding Mixup lung cancer images into MAE, enabling the model to capture an enriched 

tapestry of lung cancer image features within the constrained visibility afforded by a high 

mask rate, thus elevating learning efficiency. To corroborate the logic and efficacy of our 

model, we curated a dataset of 7,062 lung cancer pathological images for experimentation. 

Incorporating the Mixup algorithm into MAE significantly uplifted the diagnostic accuracy 

to 95.64%, surpassing the original MAE model in classification efficacy. Moreover, 

acknowledging clinical imperatives, we assessed our model's generalization capacity against 

the LC25000 public dataset, a compendium of vastly differing data volumes and categories. 

These experiments affirm MixMAE's adeptness not only in identifying lung cancer 

pathological images but also in distinguishing other cancer types with superior accuracy 

relative to other complexly engineered networks. 
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1. INTRODUCTION

Lung cancer remains the leading cause of cancer-related 

morbidity and mortality worldwide [1]. Key challenges in 

addressing this issue include the inadequate detection of 

cancer, the scarcity of effective treatments, and suboptimal 

treatment outcomes. However, early intervention significantly 

enhances survival rates. Histopathological examination is the 

clinical gold standard for lung cancer screening, providing 

detailed insights into tissue morphology and tumor subtypes 

through the analysis of biopsy and resection samples [2]. 

Despite the clarity and detail offered by histopathological 

images, their interpretation by pathologists is time-consuming 

and subject to variability. 

The advent of computer-aided pathological image detection 

technology, propelled by early machine learning and 

subsequently by advanced deep learning techniques, has 

marked a significant leap forward [3]. Traditional models like 

Support Vector Machines (SVM) and Random Forests (RF) 

[4-9] have given way to deep learning networks, particularly 

Convolutional Neural Networks (CNNs) [10] and, more 

recently, Vision Transformers (ViTs), which have 

demonstrated superior performance in pathology image 

analysis [11]. 

Deep learning methods, however, rely heavily on extensive 

labeled datasets, which are costly and labor-intensive to 

compile, especially for histopathology. SSL is a machine 

learning method that bridges the gap between supervised and 

unsupervised learning. Instead of relying on labeled data in the 

traditional sense, SSL generates supervised signals from the 

input data itself to train the model. This approach allows the 

model to learn a useful representation of the data without 

explicit labeling, thus leveraging the large amount of 

unlabeled data to improve learning efficiency and performance. 

SSL [12, 13] emerges as a promising alternative, leveraging 

unlabeled data to learn meaningful representations and 

showing success in various medical imaging tasks, including 

classification [14], detection [15], and segmentation [16]. 

Despite progress, SSL methods face challenges in 

histopathology, struggling to distinguish subtle nuances and 

extract higher-level semantic information. Addressing this gap, 

we introduce MixMAE [17], a novel SSL approach for 

classifying Hematoxylin and Eosin-stained histopathology 

images. MixMAE innovatively combines Mixup image 

augmentation with MAE learning, facilitating the extraction of 

complex features from limited labeled data. The specific 

structure is shown in Figure 1. The proposed MixMAE 

extends MAE, and performs pixel-level image Mixup before 
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the mask step in the pre-training stage, so that the model can 

learn more image information in limited visible blocks. 

Our contributions are threefold: MixMAE integrates the 

strengths of MAE and Mixup, enhancing feature learning for 

downstream tasks; it excels in analyzing challenging datasets, 

outperforming existing methods; and in a lung cancer dataset, 

it effectively differentiates between infiltration types, 

showcasing its clinical applicability. Despite the thoroughness 

of our study, the manuscript requires language simplification 

for improved readability, without altering the core premises. 

The structure of this paper is as follows: Section 1 

introduces the research background and significance, Section 

2 reviews the status of related work in the past few years, 

Section 3 introduces the method of this paper in detail, Section 

4 introduces the experimental data, and Section 5 introduces 

the experimental setup and evaluation indicators are described. 

Section 6 introduces the reasons for the analysis of the 

experimental results and concludes the paper with a brief 

conclusion. 

 

 
 

Figure 1. Illustration of the proposed MixMAE method 

 

 

2. RELATED WORK 

 

The advent of SSL represents a significant evolution within 

the deep learning domain, enabling models to be effectively 

trained on unlabeled data. This advancement facilitates the 

straightforward extraction of visual representations from such 

models. This section provides an overview of existing 

techniques for classifying lung cancer through 

histopathological images, followed by an examination of 

research into pathology data augmentation and SSL 

approaches in medical imaging. 

 

2.1 Lung cancer pathological images classification  

 

Deep learning technologies have found significant 

applications in the pathological analysis of lung cancer, 

particularly in the realms of early tumor screening and the 

differentiation of benign and malignant neoplasms. Zhang et 

al. [18] pioneered the "Early Computer Diagnosis System for 

Lung Cancer," enabling the detection of diverse lung cancer 

types through pathological section analysis. Yang et al. [19] 

introduced a novel six-class classifier leveraging the 

EfficientNet-B5 model, achieving an intricate multi-class 

tissue classification that mirrors the complexities of real-world 

histopathological environments. Utilizing transfer learning 

and weakly supervised approaches, Kanavati et al. [20] 

employed a Convolutional Neural Network (CNN) based on 

the EfficientNet-B3 architecture, trained on a dataset of 3554 

whole slide images (WSIs), to discern lung cancer from non-

cancerous tissues with notable precision. Furthermore, Chen 

et al. [21] devised a detection model for lung cancer cells 

employing both CNN and Swin Transformer, demonstrating 

not only a reduction in computational demand but also 

surpassing the performance of the classical CNN model, 

ResNet50. 

These studies underscore the nascent yet evolving state of 

lung cancer cell detection technologies, which currently suffer 

from suboptimal accuracy. Traditional CNNs are constrained 

to extracting localized features via convolutional kernels; in 

contrast, SSL models, through their utilization of attention 

mechanisms, are capable of assimilating features from entire 

images, offering a more nuanced analysis. This comparison 

indicates a potential paradigm shift towards SSL models for 

enhanced image analysis in lung cancer detection, embodying 

a leap towards precision diagnostics. 

 

2.2 Pathological data augmentation  

 

As we all know, pathological images contain higher-level 

information than ordinary images, and the enhancement 

quality of pathological images directly determines the next 

step of clinical diagnosis. In order to provide doctors with 

clearer and more accurate medical images, and provide good 

support for subsequent high-level processing such as medical 

image processing and analysis, image enhancement has been 

extensively studied in the field of computer pathology. The 

most commonly used data augmentation methods include 

mirroring, flipping up and down, scaling and rotation [22, 23], 

which can improve the robustness of the model and improve 

the recognition efficiency of the model.  

In addition, for the problem of data imbalance, generative 

models such as Generate Adversarial Networks (GAN) are 

usually used to enhance data [24] to make up for the difference 

in the number of data types. However, these enhancement 

methods improve the efficiency of model training by 

increasing the number of samples, and do not consider the 

color differences in histopathological images. This article 

takes another approach, using the mixed data method to help 

the model learn high-level semantic features in pathological 
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images by generating a pretext task, so this article is also a new 

attempt in the field of pathological data enhancement. 

 

2.3 SSL for medical image 

 

Due to the particularity of medical image data and the fact 

that it is much easier to collect large-scale unlabeled medical 

image datasets than hand-labeled small datasets, there are 

mainly three types of SSL methods: predictive SSL, generative 

SSL and comparative study.  

For predictive SSL, Lu et al. [25] used contrastive predictive 

coding and multi-instance learning to classify breast cancer 

histological images, where contrastive predictive coding was 

used to learn rich representations from breast cancer 

histopathological images; Generative SSL, Hervella et al. [26] 

propose a new alternative that allows the application of 

transfer learning from unlabeled data in the same domain, 

including using multimodal reconstruction tasks. 

Experimental results show that the Self-Supervised transfer 

learning strategy achieves state-of-the-art (SOTA) 

performance in all research tasks; for contrastive learning, 

Yang et al. [27] employed two proxy tasks for SSL, namely 

generative cross-coloring prediction and discriminative 

contrastive learning. They both leverage domain-specific 

knowledge well and do not require side information. Yan et al. 

[28] present a robust and label-efficient self-supervised FL 

framework for medical image analysis. Experimental results 

show that masked image modeling with Transformers 

significantly improves the robustness of models against 

various degrees of data heterogeneity. Taleb et al. [29] propose 

the ContIG, a self-supervised method that can learn from large 

datasets of unlabeled medical images and genetic data. The 

results show that including genetic information in the pre-

training process can significantly improve performance. 

 

 

3. METHODOLOGY AND MATERIAL 

 

3.1 MAE  

 

Histopathological imagery, distinct from natural scenes, 

encapsulates hierarchical information across various 

magnification levels, embodying specific structures and 

features at both macroscopic and cellular dimensions. These 

images harbor an elevated tier of information, predominantly 

concerning pathologies and anomalies. 

The MAE facilitates the reconstruction of such images 

through strategic pixel omission, compelling the neural 

architecture to assimilate a deeper understanding of the 

image's essence. The deployment of masks is pivotal, steering 

the focus of reconstruction. A sparing use of masks hones in 

on the restoration of intricate details, akin to super-resolution 

endeavors, whereas a generous application of masks aims to 

unearth global semantic insights. 

In the context of refurbishing pathological images with 

MAE, it's imperative to opt for a more substantial mask ratio. 

This approach nudges the encoder towards recognizing and 

internalizing high-level semantic content, a crucial advantage 

for subsequent analytical and diagnostic procedures. 

 

3.2 Strategies before the mask 

 

As delineated in Figure 2, our investigation harnesses H&E-

stained histopathological images of lung cancer sourced from 

a plethora of medical institutions and specimens. Nonetheless, 

divergences in tissue sectioning techniques and imaging 

modalities may engender disparate color representations 

across these images. Furthermore, the digital conversion 

process of these specimens accentuates color variances, 

attributable to a multitude of factors including sample 

illumination, magnification levels, image capturing nuances, 

compression algorithms, storage conditions, and display 

technologies. 

To mitigate the pronounced disparities in the visual 

presentation of digital pathological slices, we employ the 

Mixup technique to diminish the color differentiation's 

influence on the model, thereby bolstering its resilience. 

Mixup is a data augmentation technique that creates synthetic 

images by combining pairs of original images through 

weighted blending of their pixel values. This method not only 

increases the diversity of the training data but also enables the 

network to better handle the complex and varying colors in the 

dataset. 

Additionally, the synthetic generation of pathological tissue 

images via Mixup empowers the network to proficiently 

extract high-level semantic information from the data's 

complexity. This strategy fosters the model's ability to 

assimilate knowledge from a broader and more heterogeneous 

collection of pathologies, potentially augmenting its efficacy 

in identifying lung cancer. 

 

 
 

Figure 2. Differences in the appearance of digital pathology 

slides: (a) Pathological picture of infiltration lung cancer; (b) 

Pathological picture of micro infiltration lung cancer; (c) 

Normal lung samples 

 

Employing the Mixup methodology, we perform a pixel-

level weighted amalgamation of randomly selected 

pathological images, incorporating these augmented, mixed-

sample data as virtual samples for model training. For two 

training sample images and randomly selected from the 

training set and we have: 

 

(1 )' i jx λx λ x+ −=  (1) 

 

where, 𝜆 ∈ [0,1]  represents the weight of the sample. x' 

represents the result of a blend operation of two training 

731



 

sample images. The inter-sample region performed by the 

linear weighting process by Mixup enables the model to learn 

additional samples besides the training samples, thus reducing 

the inadaptability of data prediction targets beyond the training 

samples and providing smoother uncertainty estimates. As 

shown in Figure 3, although it constructs a virtual pathological 

image that partly does not exist in reality, it is observed from 

the mixed image that it can indeed mix different features in the 

pathological image by weight.  

 

 
 

Figure 3. Schematic diagram of pathological image Mixup 

 

Compared with traditional strategies such as MAE masking 

and Mixup without mixing objectives, the MixMAE method 

can learn more features. Furthermore, compared to models 

trained without data augmentation or with different 

augmentation, models trained with Mixup show higher 

stability, which can be used to address overfitting in medical 

pathology images. 

 

3.3 Overview of MixMAE 

 

Traditional supervised learning requires large amounts of 

labeled data, which in many cases is expensive and time-

consuming to obtain. The performance of a model is highly 

dependent on the quality of the labeled data. If the data is 

inaccurately or inconsistently labeled, the performance of the 

model may be severely affected. The model may overfit the 

training data, resulting in a reduced ability to generalize over 

unseen data. For a SSL model, on the other hand, the ability to 

learn from unlabeled data means that it can utilize a large 

amount of existing data without spending a lot of time and 

resources on data labeling. SSL models typically have better 

generalization capabilities because they are trained on a wider 

distribution of data rather than being limited to specific labeled 

datasets. In addition, with SSL, models can learn deep features 

and structures of the data that are useful for subsequent tasks 

(e.g., classification, detection, etc.). Therefore, we built a SSL 

model for performing a downstream lung cancer pathology 

image classification task. 

MixMAE introduces a cutting-edge hybrid Self-Supervised 

visual representation learning framework, illustrated in Figure 

1. This framework unfolds across two critical stages: an initial 

Self-Supervised pre-training phase targeting upstream tasks, 

followed by a supervised fine-tuning phase for downstream 

tasks. To enhance the network's generalization and robustness, 

it begins by blending original H&E stained histopathological 

images with two distinct pathological images for data 

augmentation. In the first stage, this augmented dataset is 

partially masked, and the MAE is tasked with a novel 

generative proxy task: reconstructing the obscured pixels, 

thereby predicting histopathological images. The encoder 

within MAE utilizes a Transformer architecture to efficiently 

learn latent features from the histopathological images. 

Progressing to the second stage, the approach is inspired by 

the ViT, repurposing the encoder refined during pre-training 

alongside a MLP tailored for the classification task. This phase 

involves fine-tuning the model with a limited set of labeled 

data, striking a balance between SSL's broad applicative scope 

and supervised learning's precision. The core equation of the 

MixMAE model is as follows: 

1. Data enhancement phase: The original images (xi) and (xj) 

are mixed by Mixup technique to generate the enhanced image 

(x') from the Eq. (1). 

2. Self-supervised pre-training phase: Randomize the mask 

on the enhanced image (x') to generate a masked image (o). 

MAE uses the Transformer encoder (E) to learn the latent 

feature representation (z) from the masked image (o): 

 

z=E(o) (2) 

 

3. Supervisory fine-tuning phase of downstream missions: 

In the subsequent downstream task of classifying different 

types of lung cancer pathology images, the labeled data were 

fine-tuned using the pre-trained encoder (E) and MLP 

classifier (C) to obtain the predicted labels (Y): 

 

Y=C(E(x)) (3) 

 

The ViT is regarded as the encoder backbone structure. The 

network consists of a self-attention mechanism and a Multi-

Layer Perceptron (MLP), which can properly model the global 

relations. The input of the pathological image is 𝑥 ∈ ℝ𝐶×𝐻×𝑊, 

where C represents the Channel of the input image, and H and 

W represent the length and width of the image, respectively. 

The image of H×W pixels is divided into 
𝐻×𝑊

𝑃2
 regular non-

overlapping patches by Embedding Patches, where P 

represents the size of the patch. Then through uniform random 

sampling to cover some patches, the image features of the 

visible part are embedded by linear projection, and the 

embedded features and position information (WQ, WK, WV) are 

converted into Queries (Q=WQ×x) and Keys (K=WK×x) and 

Values (V=WV×x), then Q, K, and V are fed into the 

Transformer block. Self-attention is the core of the 

Transformer block, and the expression is as follows: 

 

Attention( , , ) Softmax
T

k

QK
Q K V V

d

 
=  

 
 

 (4) 

 

Firstly, the Query-Key pair is used by self-attention to 

measure the attention matrix of the visible patch, and the 

attention weight is obtained through Softmax. Finally, the 

value is weighted and summed according to the weight 

coefficient to calculate the self-attention of the image to 

extract the potential representation of the visible part. 

During pre-training, the MAE decoder is tasked with image 

reconstruction, while the encoder focuses on generating image 

representations for recognition tasks. This allows for a flexible 

decoder design, independent of the encoder's architecture. Our 

experiments reveal a smaller, less complex decoder is effective, 

being narrower and shallower than the encoder. 

In the pre-training phase, the model engages with images 

altered by Mixup, blending pixels from different images. This 

approach enables the model to extract more information from 
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the visible segments of these blended images. The pixel-mixed 

images possess RGB values distinctly different from the 

original, diminishing color-related discrepancies and 

facilitating the model's performance in downstream 

classification tasks. This method enhances the model's ability 

to learn from limited data while reducing color bias, ensuring 

robustness and accuracy in classification. 

 

3.4 Data augmentation 

 

In order to be able to flexibly cope with the complexity of 

clinical processing, we used data augmentation techniques to 

enhance the heterogeneity of the relevant images in the lung 

cancer pathology training set. Data enhancement can increase 

the number and diversity of pathology samples in the training 

set, improve the stability of model performance under noisy 

data, and improve the generalization ability of neural networks. 

Data augmentation diversifies the training dataset through 

techniques such as random horizontal and vertical flips, 

rotations, and noise addition. Each augmented image 

undergoes meticulous inspection to confirm the presence of 

regions pertinent to lung cancer pathology. 

This strategy of integrating random variations fortifies the 

model against noisy data, fostering improved generalization 

and performance. To enrich the dataset's diversity and volume, 

images undergo five distinct augmentations, broadening the 

model's exposure to various pathological features. For 

consistency, all enhanced samples are resized to 224×224, 

optimizing the training process. 

 

3.5 LC25000 

 

The public dataset of histopathological images of lung and 

colon cancer (LC25000) contains 25000 color images, which 

are divided into five categories, namely colon adenocarcinoma, 

benign colon tissue, lung adenocarcinoma, lung squamous cell 

carcinoma, and benign lung tissue, 5000 images per class [30]. 

All images are 768×768 pixels in size. Figure 4 shows the 

representative histopathological images of the three categories 

respectively, and Table 1 shows the images of each category 

are divided into training set and test set according to the ratio 

of 4:1. A total of 25000 histopathological images, 20000 for 

training and 5000 for testing. 

 

 
 

Figure 4. LC25000 public dataset: (a) Lung Adenocarcinoma (Lung_aca); (b) Lung Benign Lung (Lung_n); (c) Lung Squamous 

Cell Carcinoma (Lung_scc); (d) Colon Adenocarcinoma (Colon_aca); (e) Colon Benign Tissue (Colon_n) 

 

Table 1. Data distribution of five types of samples in 

LC25000 

 
Image Type Train Test Sum 

Lung_aca 4000 1000 5000 

Lung_n 4000 1000 5000 

Lung_scc 4000 1000 5000 

Colon_aca 4000 1000 5000 

Colon_n 4000 1000 5000 

 

3.6 Lung 

 

The Bethune First Hospital of Jilin University contributed 

lung cancer pathological digital slide image data from 760 

cases over 2021-2022. This dataset was meticulously curated 

and annotated over five months by three experts, each boasting 

over five years of professional experience, ensuring the 

clinical nuances of each sample were pronounced. Digital 

pathological scanning equipment transformed the selected 

pathological specimens into digital images, which were then 

segmented into slices at 20× magnification, each measuring 

2048×1500 pixels. During data preprocessing, slices 

exhibiting blurring, overstaining, or undesirable slide 

backgrounds were systematically excluded through manual 

inspection. 

Furthermore, the dataset was enriched through data 

augmentation techniques, including random rotations, flips, 

and selective occlusion, to enhance the diversity of the training 

set. Consequently, as delineated in Table 2, a total of 7,932 

lung cancer pathological slice images met the criteria for 

inclusion in this study, stratified into 2,644 infiltration cases, 

2,644 micro-infiltration diagnoses, and 2,644 instances 

classified as normal tissue. From this corpus, 870 images 

(comprising 290 from each category) were randomly selected 

to constitute the test set. 

 

Table 2. Data distribution of five types of samples in lung 

 
Image Type Train Test Sum 

Infiltration 2354 290 2644 

Micro Infiltration 2354 290 2644 

Normal 2354 290 2644 

 

 
 

Figure 5. Private data of lung adenocarcinoma: (a) 

Infiltration Lung Adenocarcinoma; (b) Micro Infiltration 

Lung Adenocarcinoma; (c) Normal Lung Tissue; (d) Random 

sample rotation; (e) Random flip; (f) Random area occlusion 
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Figure 5 illustrates the distinct tumor growth patterns 

characteristic of infiltration and micro-infiltration, where the 

former adheres and expands beyond a 0.5 cm diameter, 

displaying acinar, papillary, micropapillary, or solid structures. 

Conversely, micro-infiltration lesions remain confined within 

a 0.5 cm diameter. The term 'normal' is used to denote benign 

regions within lung tissue, underscoring the dataset's 

comprehensive scope in capturing the spectrum of lung cancer 

pathology. 

 

 

4. RESULT 

 

4.1 Experiment settings 

 

To evaluate the performance and effectiveness of the 

MixMAE model on lung cancer pathological images, we 

conducted a series of experiments. The experimental 

environment and hyperparameters were appropriately 

configured. For the hyperparameters in both the upstream pre-

training tasks and downstream model fine-tuning tasks, we 

used the AdamW optimizer to adjust the network parameters. 

The batch size was set to 512, and the initial learning rate was 

set to 0.0001 (decaying 10 times every 20 steps). Additionally, 

the upstream pre-training task was completed within 600 

epochs, and the downstream model fine-tuning task was 

completed within 200 epochs. 

Both models were developed within the PyTorch 1.8.0 

framework, leveraging NVIDIA CUDA v8.0 and cuDNN 

v10.1 libraries for acceleration, and coded in Python 3.7. 

These experiments were conducted on a Windows 10 platform, 

powered by an Intel Core i9-10875H CPU at 2.30 GHz, an 

NVIDIA RTX 3090 GPU, and 32 GB of RAM, ensuring 

optimal computational efficiency and reliability in processing. 

 

4.2 Evaluation index 

 

To evaluate the diagnostic performance of the model for 

cancer pathology, we used the overall Accuracy, Precision, 

Sensitivity, and Specificity as the evaluation metrics and 

compared the results of the proposed method with those of the 

state-of-the-art model. The overall accuracy indicates the 

proportion of samples correctly predicted by the model to the 

total number of samples, the precision indicates the proportion 

of samples correctly predicted by the model to the total 

number of positive samples, the sensitivity indicates the 

proportion of samples correctly predicted by the model to the 

total number of positive samples, and the specificity indicates 

the proportion of samples correctly predicted by the model to 

the total number of negative samples: 

 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (5) 

 

TP
Precision

TP FP
=

+
 (6) 

 

TP
Sensitivity

TP FN
=

+
 (7) 

 

TN
Specificity

TN FP
=

+
 (8) 

 

Among them, TP (True Positive) indicates that an instance 

is a positive sample and is also predicted as a positive sample; 

FN (False Negative) indicates that an instance was originally 

a positive sample but was predicted as a negative sample; FP 

(False Positive) indicates that an instance was originally a 

negative sample, but it is judged as a positive sample; TN 

(True Negative) indicates that an instance is a negative sample 

and is also judged as a negative sample. 

 

4.3 Experimental results on private datasets 

 

In addressing the classification of lung cancer pathological 

images, we evaluated our MixMAE model alongside BEiT 

[30], MoCov3 [31], and MAE, with the latter three serving as 

archetypes of SSL models. MixMAE, also grounded in SSL, 

was compared within the same framework, which bifurcates 

into upstream and downstream tasks. The upstream task 

involves feature extraction from the unlabeled pathological 

image dataset, partitioning images into blocks for batch 

processing over numerous iterations, enabling the model to 

identify pivotal features. The downstream task leverages these 

acquired features to categorize test set images, fulfilling the 

classification objective. Uniform training hyperparameters 

were applied across all models, with comparative outcomes 

presented in Table 3. These data showed that the MixMAE 

model performed best on all four assessment metrics, 

especially on Specificity, which reached the highest 97.33%. 

In contrast, the BEiT model performed relatively low on these 

four metrics, with Accuracy, Precision, Sensitivity, and 

Specificity of 90.81%, 91.10%, 90.80%, and 95.40%, 

respectively. This indicates that the MixMAE model has high 

accuracy in distinguishing negative samples in lung 

adenocarcinoma pathology images. 

 

Table 3. Test results of four self-supervised networks on 

private datasets 

 

Network Accuracy Precision Sensitivity Specificity 

BEiT [31] 90.81 91.10 90.80 95.40 

MoCov3 [32] 92.60 92.52 93.04 96.15 

MAE [12] 94.52 94.23 93.31 96.88 

MixMAE 95.64 94.73 93.88 97.33 

 

It can be found through Figure 6 that the accuracy of both 

MAE and MixMAE starts to stabilize around 170epoch. 

Compared with the original MAE, MixMAE enriches the 

image information and improves the accuracy from 94.52 to 

95.64, precision from 94.23 to 94.73, sensitivity by 0.57, and 

specificity by 0.45. In addition, without increasing the number 

of parameters, MixMAE can obtain better results than MAE. 

Compared with BEiT and MoCov3, MixMAE is more 

effective and the improvement is more obvious. 

The experimental results can be further analyzed through 

the related model confusions. As can be seen in Figure 7, the 

errors in the classification process of the four models are 

mainly concentrated in the confusion between immersion and 

micro-immersion. The amount of data for which the four 

models, BEiT, MoCov3, MAE, and MixMAE, make incorrect 

predictions for immersion and micro-immersion data are 48, 

38, 33, and 28, respectively. The small difference between the 

two types of samples leads to the fact that the models provide 

an incorrect judgments, which intuitively is consistent with our 

observed error characteristics, and the training accuracy of the 

normal sample model is very high. Conversely, it can also be 

seen from the figure that MixMAE discriminates infiltration 
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and microinfiltration to a higher degree than the other models, 

with fewer erroneous judgments in the infiltration and 

microinfiltration categories, due to the fact that MixMAE itself 

learns better than the other models in the upstream task. Its 

learning ability is stronger than other models, and thus it has 

the highest accuracy in the downstream task. Therefore, the 

different pathological features of infiltration and 

microinfiltration can be better recognized using MixMAE. 

 

 

 
 

Figure 6. Comparison of the accuracy and loss rate of MAE 

and MixMAE in the downstream 200 rounds of testing 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7. The confusion matrix obtained by the model on a 

private dataset: (a) BEiT; (b) MoCov3; (c) MAE; (d) 

MixMAE 

 

4.4 Ablation experiment 

 

The above results show that MixMAE can better diagnose 

invasive and microinvasive lung cancer due to its good feature 

learning ability. Therefore, we conduct ablation experiments 

by changing the size of the mask rate to observe the effect of 

the mask rate on the model. All experiments were performed 
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with 600 epochs of upstream training and 200 epochs of 

downstream testing. While keeping the experimental 

parameters uniform, only the masking ratios were changed to 

0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. The evaluation indicators are 

accuracy, upstream loss rate (Lmse) and downstream loss rate 

(Lcls). The comparison results are shown in Table 4. 

 

Table 4. MixMAE ablation experiments with mask rates 

ranging from 0.4 to 0.9. 

 

Mask Ratio Accuracy Lmse Lcls 

0.4 95.18 0.831 0.150 

0.5 95.52 0.821 0.134 

0.6 95.41 0.819 0.142 

0.7 95.64 0.815 0.137 

0.8 95.59 0.818 0.142 

0.9 94.97 0.826 0.153 

 

The outcomes of our ablation studies illuminate that the 

model attains peak accuracy and learning efficiency when the 

mask rate oscillates between 0.7 and 0.8. This observation 

underscores the principle that veiling a more significant 

portion of the input images engenders a more profound 

learning impact. Conversely, should the mask rate eclipse 0.8, 

a decline in model performance becomes evident. Similarly, a 

mask rate beneath 0.4 also precipitates suboptimal outcomes, 

attributed to the insufficiency of masks available for the 

model's learning process. 

This pattern holds true for the upstream loss rate, mirroring 

the trends observed in accuracy. The most favorable upstream 

loss rate coincides with a mask rate nestled within the 0.7 to 

0.8 range, signifying this interval as the most conducive for 

model training. Deviations beyond or below this range are 

synonymous with heightened loss rates. 

Notably, a mask rate of 0.5 emerged as the dark horse, 

revealing the lowest training loss and an augmented accuracy 

for downstream tasks. This suggests that a mask rate of 0.5, 

balancing between excessive and inadequate masking, may 

better serve image reconstruction endeavors, bolstering the 

model's proficiency in regenerating the obscured segments of 

the images. 

Conclusively, these insights collectively advocate for a 

mask rate corridor of 0.7 to 0.8 as the zenith for optimizing the 

MixMAE model in the task of classifying lung cancer 

pathological images, marking a fine line between too much 

and too little, where the model's learning and predictive 

capabilities are maximally harnessed. 

 

4.5 Extended experiment 

 

To validate the MixMAE model's training impartiality 

beyond lung cancer pathological images, its generalization 

prowess was assessed using the LC25000 dataset, 

encompassing both lung and colon cancer pathological images 

across five classifications: conventional lung digital pathology 

images (Lung_n), lung adenocarcinoma (Lung_aca), lung 

squamous adenocarcinoma (Lung_scc), colon 

adenocarcinoma (Colon_aca), and normal colon cells 

(Colon_n). Each category boasts 5,000 samples, cumulating in 

a comprehensive tally of 25,000 samples, underpinning the 

experimental findings' reliability. 

Echoing the methodology applied to the proprietary lung 

cancer dataset, the LC25000 was partitioned into training and 

testing subsets, consisting of 4,000 and 1,000 images per 

category, respectively. Each sample within the LC25000 

dataset was meticulously annotated. To ensure experimental 

equity, the model underwent training on this public dataset 

under identical parameters as those utilized for the private 

dataset. 

The confusion matrix shown in Figure 8 illustrates the 

results achieved by MixMAE in the classification task on the 

public dataset LC25000. It can be seen that MixMAE performs 

very well with an accuracy close to 100%. Only 2 pathology 

images out of 5000 data for three lung pathology images and 

two colon pathology images were incorrectly predicted. This 

shows that the MixMAE model has a strong recognition ability 

for both lung and colon cancers, verifies that the MixMAE 

model has a good generalization ability, and lays the 

foundation for MixMAE to be applied in the diagnostic task of 

other cancer pathology images. 

 

 
 

Figure 8. Extended experiment of MixMAE on public 

dataset LC25000 

 

 

5. DISCUSSION 

 

The cornerstone of this research lies in the innovative fusion 

of Mixup and MAE—two potent techniques for data 

augmentation and feature extraction—culminating in the 

pioneering SSL framework, MixMAE, tailored for lung cancer 

pathology image analysis. This framework stands out from 

prior approaches with several distinct advantages: 

1. Mixup Method: By employing the Mixup method to 

blend diverse pathological images, this study enriches the 

dataset’s diversity, mitigates the influence of color variations, 

and bolsters the model’s stability and resistance to interference. 

In contrast, conventional studies often rely on single-image 

inputs, neglecting the wealth of latent data information, which 

can lead to overfitting and compromised generalization 

capabilities. 

2. MAE Method: The MAE method’s strategic pixel 

masking compels the model to reconstruct occluded segments 

based on visible regions, thereby enhancing its grasp of both 

global and local image attributes and bolstering its expressive 

and reconstructive prowess. Traditional studies typically 

harness convolutional neural networks for feature extraction, 

failing to fully exploit the structural and semantic nuances of 

images, which can result in deficient expressive and 

reconstructive faculties. 

3. ViT Backbone: Integrating the Vision Transformer (ViT) 
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as the backbone within the MAE encoder leverages the self-

attention mechanism and multilayer perceptron to adeptly 

capture long-range image dependencies and extract profound 

image features. ViT’s computational efficiency and reduced 

parameter count, compared to traditional convolutional 

networks, allow for greater adaptability to varying image sizes 

and resolutions, thus enhancing the model’s flexibility. 

Previous studies often fixate on static image sizes and 

resolutions, overlooking the potential of scaling and detail, 

which can impede the model’s adaptability. 

Despite these advancements, the study acknowledges 

certain limitations that pave the way for future enhancements. 

The pixel-level mixing of the Mixup method might obscure 

fine details, impacting the model’s reconstruction fidelity and 

recognition accuracy. Subsequent research could delve into 

feature-level or semantic-level mixing to preserve more salient 

information, thereby refining the model’s expressiveness and 

interpretability. Additionally, the random masking inherent in 

the MAE method might overlook critical regions or features, 

affecting the learning outcomes and generalization. Future 

endeavors might investigate attention-driven or saliency-

based masking to direct the model’s focus toward more 

significant elements, thus improving learning efficiency and 

generalization. 

Extending MixMAE to other cancer pathologies, such as 

breast, liver, or stomach cancer, could validate its universal 

applicability and adaptability across various contexts, offering 

a comprehensive framework for cancer pathology image 

analysis. Moreover, integrating MixMAE with other SSL 

paradigms—like contrastive, clustering, or generative 

learning—could broaden the horizons of SSL objectives and 

loss functions, further advancing the model’s self-learning and 

representational capabilities. 

 

 

6. CONCLUSIONS 

 

In this study, we present MixMAE, an innovative SSL 

framework that synergistically integrates Mixup image 

augmentation with MAE. This approach is particularly adept 

at harnessing the limited labeled data available in pathological 

image analysis, extracting advanced semantic information 

through a novel pretext task. The salient contributions of our 

work are: 

1. Innovative Framework: MixMAE stands as a pioneering 

algorithm within the realm of SSL, merging the strengths of 

MAE’s feature extraction with Mixup’s data augmentation. 

This fusion facilitates the learning of a richer feature set, 

enhancing the model’s performance in subsequent 

classification tasks. 

2. Enhanced Feature Complexity: The features discerned by 

MixMAE surpass those identified by MAE in both quantity 

and complexity. This enables MixMAE to adeptly handle 

intricate images and excel in challenging datasets. 

3. Clinical Relevance: Utilizing a curated dataset of lung 

cancer infiltration and micro-infiltration, MixMAE has 

demonstrated its prowess in accurately distinguishing between 

these nuanced features, underscoring its potential utility in 

real-world clinical scenarios. 

To encapsulate, MixMAE embodies a significant leap 

forward in SSL for pathological image analysis. It not only 

elevates the model’s efficiency without additional 

computational burdens but also achieves superior accuracy 

and diagnostic metrics. Our extensive validation on diverse 

datasets, coupled with rigorous ablation studies, confirms 

MixMAE’s superiority over existing methods. Its adeptness at 

differentiating critical cancer features heralds a new horizon 

for clinical diagnostics, paving the way for its deployment in 

practical healthcare settings and inspiring future research 

directions in medical image analysis. 
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