
Classifying Abnormal Arterial Pulse Patterns in Cardiovascular Diseases: A 

Photoplethysmography and Machine Learning Approach 

Meghraoui Mohamed Hamza1* , Benaired Noreddine1 , Benselama Zoubir Abdeslem2 , Yssaad Benyssaad1 , 

Benselama Sarah Ilham3  

1 Department of Electrical Engineering and Automation, GIDD Laboratory, University of Relizane, Relizane 48000, Algeria 
2 Department of Electronics, LATSI Laboratory, University of Blida1, Blida 09000, Algeria 
3 Service Cardiologie, CHU Frantz Fanon, Blida 09000, Algeria 

Corresponding Author Email: mohamedhamza.meghraoui@univ-relizane.dz 

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.410201 ABSTRACT 

Received: 13 June 2023 

Revised: 3 December 2023 

Accepted: 15 January 2024 

Available online: 30 April 2024 

In the realm of cardiovascular disease (CVD) diagnostics, the morphological changes in 

arterial blood pressure (ABP) attributable to various pathologies have long been recognized. 

This study explores the innovative intersection of photoplethysmography (PPG) signals and 

machine learning (ML) techniques, focusing on the classification of abnormal arterial pulse 

(AAP) patterns, a domain hitherto not extensively researched. The challenges of this 

endeavor, primarily the scarcity of clinically labeled AAP waveform datasets, are 

acknowledged. This scarcity stems from the difficulty in sourcing volunteers exhibiting 

diverse disease-related AAPs and the inherent risks associated with ABP measurement 

procedures. Furthermore, current guidelines do not sufficiently characterize AAP traits, 

limiting the application of PPG and ML in detecting ABP-related anomalies predominantly 

to hypertension and hypotension cases. Addressing these gaps, the present study introduces 

a PPG-based classification system employing k-nearest neighbors (KNN) and bagged trees 

(BT) algorithms. These were selected for their proficiency in modeling complex, nonlinear 

relationships while maintaining lower complexity levels compared to alternatives like Deep 

Neural Networks (DNN) or Support Vector Machines (SVM). Additionally, novel detectors 

have been developed for identifying key pulse wave features such as troughs and dicrotic 

notches, crucial for AAP pattern recognition and PPG feature extraction. The methodology 

encompasses a modeling process that references pathological cases known to manifest 

specific AAP patterns. An extensive evaluation involving 1,120 PPG and ABP signals 

yielded impressive accuracies of 90.9% and 91% for KNN and BT algorithms, respectively. 

Across 11 distinct classes, both algorithms exhibited robust performance, underscoring their 

potential as effective AAP detectors. These results signify an advancement over existing 

classifiers, particularly in generating multiple CVD-related classes with reduced complexity 

at both modular and instance levels. The system's capability to associate AAPs with CVDs 

positions it as a promising, non-invasive, and cost-effective tool for diverse applications 

including doctor-assisted diagnosis, remote post-surgery monitoring, nursing alerts, and 

personalized health management. This approach not only meets emerging healthcare needs 

but also mitigates the risks associated with current invasive diagnostic practices. 
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1. INTRODUCTION

CVDs remain the leading cause of fatalities globally [1], 

and their burden is projected to grow if left unaddressed. 

CVDs often present with mild, progressively worsening 

symptoms [2] and sometimes remain asymptomatic until 

sudden cardiac death [3]. Early and accurate detection is 

critical to encourage lifestyle changes and medical 

intervention if needed [4]. Clinically, CVD diagnosis faces 

challenges as symptoms are heterogeneous and non-specific 

[5], resulting in delays and poorer prognoses [5, 6]. 

Conventional diagnostic criteria have limitations in sensitivity 

and specificity for CVDs and may produce false positives [5]. 

Healthcare must leverage automated, intelligent systems to 

address CVD management concerns. PPG offers a convenient, 

noninvasive way to measure pulsatile blood volume changes, 

revealing cardiovascular insights [7]. PPG uses light-based 

sensing to capture signals from flexible locations like the wrist, 

finger, or earlobe [8]. With recent advances in ML, PPG has 

emerged as a favorable biosensing option for early CVD 

prediction [9]. 

Existing PPG-based CVD prediction systems tend to be 

more pathologically specific. Putra et al. [10] explored feature 

selection methods to optimize KNN performance for coronary 

heart disease (CHD) classification. Hackstein et al. [11] used 

naive Bayes (NB) and KNN classifiers with feature selection 

to predict aortic aneurysms. Hosseini et al. [12] used time-

domain PPG features to identify the risk of coronary artery 
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disease (CAD) using a KNN classifier. De Moraes et al. [13] 

investigated four classifiers to identify cardiopathies using 

temporal features. Other researchers leveraged PPG signals for 

CVD-risk classification [14, 15]. Prabhakar et al. [14] used 

artificial neural networks (ANN) and logistic regression (LR) 

to classify CVD risk from dimensionally optimized PPG data. 

Palanisamy and Rajaguru [9] used 12 classifiers to identify 

CVD-risk from dimensionally reduced PPG signals. 

While the aforementioned works showed promising results, 

enhancing healthcare infrastructure goes beyond classifiers 

performances. For these systems to meaningfully support 

medical services, two sets of questions need to be asked: 

(1) How might these systems potentially assist physicians 

in screening and risk profiling procedures? What limitations 

may exist?  

(2) Can physicians make clinical decisions for patients 

without awareness of the underlying reasoning [16]? How can 

trust be fostered? 

The former questions address the system’s predictive 

capacity. Systems focusing on single diseases in studies [10-

13] may confirm diagnoses or refine risk profiles but have 

limited utility for initial broad screening. A more versatile 

classifier capable of multiple outputs could provide a broader 

perspective and guidance on potential CVDs. On the other 

hand, systems targeting general cardiovascular risk in studies 

[9, 14, 15] provide limited etiological insights for clinical 

decision-making. These approaches rely on observable 

respiratory events like rebreathing, heart variability, and apnea 

[17]. Such diverse, non-specific symptoms can complicate the 

prognosis and delay diagnosis [6]. 

The latter questions address clinical decision-making 

transparency. Evidence-based medicine relies on 

understanding pathophysiology rather than direct outputs 

alone [16]. Regardless of whether a system predicts specific 

CVDs or general risk levels, a lack of insight into its 

underlying logic limits its real-world applicability. Gaining 

acceptance within the medical community requires providing 

more targeted insights into probable disease factors. However, 

existing research may overemphasize predictive performance 

at the expense of applicability and transparency. For instance, 

extracting features through complex optimization algorithms 

is clinically irrelevant; what is needed are physiologically 

meaningful features, not perfect dimensionally reduced 

features [9, 14]. 

Ultimately, an ideal system would support nuanced risk 

profiling and initial screening through multiple, evidence-

based outputs. An underexplored solution that may address 

these needs is targeting ABP morphologies. The 

pathophysiology of CVD is known to impact the ABP 

waveform, resulting in AAP patterns related to various CVDs 

[18-20]. For instance, the bisferiens pulse is seen in aortic 

regurgitation (AR), hypertrophic obstructive cardiomyopathy 

(HOCM), or mixed valvular heart diseases (VHDs) [19]. 

Patterns like tardus, parvus et tardus, and anacrotic indicate 

severe aortic stenosis (AS). The dicrotic pulse is associated 

with low cardiac output conditions [21, 22]. Deep pulses may 

signify low vascular resistance or sepsis [23, 24]. Bounding 

pulses involve arteriovenous fistulas, or AR, among others 

[19]. Water hammer pulses are typical of severe AR [25]. 

Importantly, clinical evidence could identify these 

abnormalities. Unfortunately, the use of PPG and ML in 

classifying ABP-related abnormalities is limited to 

hypertension [26] or hypotension [27]. 

One limitation is the lack of clinical datasets containing 

labeled AAP waveforms, likely due to the risks involved with 

measuring ABP [28]. Developing such datasets poses 

challenges, as it requires finding and monitoring volunteers 

exhibiting various disease-related AAPs. However, the 

MIMIC-III database offers a potential solution as it contains 

thousands of synchronous ABP-PPG recordings spanning 

hours from intensive care patients [29]. Interestingly, it 

incorporates diverse ABP morphologies, a valuable 

opportunity to address the lack of labeled AAP data. 

Nevertheless, challenges persist since no standards exist for 

identifying AAPs. 

The goal of this study was to create a PPG-based system 

that could sort already-known AAPs into groups, including 

bisferiens, anacrotic, tardus, parvus et tardus, dicrotic, deep, 

bounding, and water hammer. Two ML techniques were 

adopted, including KNN and BT classifiers. This research 

followed three main steps: 

(1) ABP and PPG recordings were continuously collected 

from two MIMIC databases to ensure AAP diversity. Signals 

underwent preprocessing to eliminate noise and baseline drift. 

Custom detectors were developed for pulse feature detection. 

Troughs were located using third-derivative analysis to 

partition signals into individual pulses. Dicrotic notches were 

detected via a multi-objective optimizer conducting an 

iterative search within a predefined parameter space. 

(2) Clinical literature was then referred to as model AAPs. 

Amplitude analysis identified patterns in widened (bounding) 

or narrowed (parvus et tardus) pulse pressure. Contour 

examination featured abnormalities such as double peaks 

(bisferiens, anacrotic), enlarged dicrotic waves (dicrotic pulse), 

or sharp waves (water hammer). Temporal analysis involved 

detecting delayed (tardus, parvus et tardus, slow-bounding) or 

shortened (water hammer) time to peak pressure. PPG pulse 

morphology was then analyzed using temporal and statistical 

metrics to extract features. Metrics like kurtosis, mean, slope, 

and duration of waves tied to cardiac events were quantified. 

(3) KNN and BT classifiers were chosen to balance 

modeling simplicity while imposing minimal assumptions on 

the nonlinear data. KNN utilizes proximity-based labeling, 

assuming similar instances are nearby [30]. BT averages 

predictions from decision trees (DTs), leveraging trees' 

simplicity while reducing overfitting [31, 32]. A comparative 

evaluation of several ML classifiers on a subset of the data 

validated their effectiveness. Hyperparameters were then 

optimized to maximize accuracy. The tuned KNN and BT 

models were then trained on the full dataset and cross-

validated via k-folding. 

This study addresses current limitations by enabling the 

non-invasive identification of various pressure-related 

abnormalities from PPG signals alone. Whereas previous work 

predominantly estimated ABP waveforms using ML 

techniques [33], this research introduces the detection of 

irregularities that may manifest within these waveforms. 

While PPG signals have been utilized to predict various 

cardiovascular, sleep, mental health, and metabolic conditions 

[34], their use in predicting ABP-related abnormalities is 

limited to hypertension and hypotension [26, 27]. Overall, the 

developed methodology presents a novel means of 

characterizing pathological hemodynamic phenotypes for 

improved CVD assessment. 

The paper is organized as follows: Section II introduces the 

proposed methodology, covering data acquisition, pulse wave 

feature detection, AAP modeling, feature engineering, and the 

proposed ML experiment. Section III presents the 
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experimental results, provides further insights into the ML 

modeling process, and discusses the results. Comparisons are 

drawn between the current approach and prior related methods. 

Clinical implications are also explored, including potential 

medical contributions, system integration opportunities, and 

challenges. Finally, Section IV concludes the paper by 

summarizing the main contributions, limitations, and outlining 

potential directions for future work. 

 

 

2. METHOD 

 

This section outlines our proposed methodology for 

classifying AAPs based on the steps illustrated in Figure 1. 

 

 
 

Figure 1. Methodology steps 

 

2.1 Data acquisition 

 

In this study, we obtained our dataset from two publicly 

accessible databases, namely MIMIC and MIMIC III 

(Multiparameter Intelligent Monitoring in Intensive Care) [29, 

35]. These databases provide a wide range of biomedical 

signals, particularly ABP and PPG signals, which were 

recorded simultaneously from patients in the intensive care 

unit (ICU). ABP signals were invasively measured through a 

catheter in the radial artery, while PPG signals were non-

invasively captured using a fingertip sensor. Both signals have 

a sampling frequency (Fs) of 125 Hz. 

 

2.2 Data selection 

 

To ensure diversity of AAPs and good signal quality, a 

manual selection process was conducted for ABP and PPG 

records from the MIMIC databases. While records were being 

kept, each ABP was looked at visually for possible AAP 

patterns, such as bisferiens, anacrotic, dicrotic, deep, bounding, 

and tardus pulses (Figure 2). In particular, two systolic peaks 

helped us tell the difference between bisferiens and anacrotic 

pulses. Anacrotic pulses were set apart by a lower first peak 

(Figure 2 (a), (b)). Dicrotic and deep pulses showed 

abnormally low dicrotic notches (Figure 2 (c), (d)), with 

dicrotic pulses having larger dicrotic waves (Figure 2(d)). 

Bounding pulses had abnormally high amplitudes (Figure 

2(e)). Tardus pulses appeared inclined to the right due to a 

delayed peak time (Figure 2 (f)). 

The process continued until a reasonable number of AAP 

examples were observed. Some records containing AAPs were 

excluded due to poor PPG signal quality, which is highly 

susceptible to motion artifacts [36]. The selection process was 

the most challenging and time-consuming part of the study. 

However, over a thousand records were collected, each lasting 

one minute and containing a diverse range of AAPs. 

 

 
 

Figure 2. Abnormal patterns in ABP signals 

 

2.3 Signal preprocessing 

 

There are a lot of bad effects on the signals that come from 

the MIMIC and MIMIC III databases. These include high-

frequency noise and baseline drift in PPG signals, as well as 

noisy changes in ABP signals. To address these effects, we 

employ two filtering techniques. First, we use a fourth-order 

Butterworth filter with a bandpass range of 0.5 Hz to 8 Hz to 

get rid of baseline drift and high-frequency noise in PPG 

signals [33]. Secondly, we used a moving average filter to 

remove noisy fluctuations from ABP signals. 

 

2.4 Segmentation 

 

To extract pulses from the records, we performed a 

segmentation process based on the signal’s third derivative. 

Our research showed that every signal trough is closely linked 

to a local maximum in the signal's third derivative (Figure 

3(a)). We call this the Local Maximum Third Derivative 

(LMTD). Interestingly, these LMTDs can still be seen in 

records where the troughs aren't (Figure 3(b)), which suggests 

that they could be used to get a rough idea of suppressed 

troughs. 

As depicted in Figure 3, to locate an LMTD, we must first 

detect the last local minimum that precedes the signal’s peak 

(in green). As a result, three key points must be located to 

detect the trough: the peak, the last minimum preceding it, and 

the LMTD. The following steps explain in detail the 

segmentation procedure. 
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(a) Detectable troughs from an ABP record 

 
(b) Suppressed troughs from a PPG record  

 

Figure 3. LMTD locations 

 

2.4.1 Normalization 

To ensure that our signal is on a consistent scale, we 

normalize it using the z-score method. This involves centering 

and scaling the signal by its mean (μ) and standard deviation 

(δ), respectively. The following vectors represent the original 

signal retrieved from the dataset (Eq. (1)) and the normalized 

signal (Eq. (2)). 

 

𝑋 = {𝑥1, 𝑥2, 𝑥𝑛 , …… 𝑥𝑁} (1) 

 

𝑋𝑛𝑜𝑟𝑚 = {
𝑥1 − 𝜇

𝛿
,
𝑥2 − 𝜇

𝛿
,
𝑥𝑛 − 𝜇

𝛿
,…… 

𝑥𝑁 − 𝜇

𝛿
} (2) 

 

where, x represents a single data point in the signal, n is the 

sample index and N is the length of the signal. 

 

2.4.2 Peak detection 

To locate the peaks of the signal, a threshold is initially 

established to isolate the prominent waves from the rest of the 

normalized signal, as indicated in Eq. (3). This method, known 

as clipping, is commonly employed by researchers for peak 

detection [37]. 

 

𝑇𝐻 =
1

𝑁
∑|𝑋𝑛𝑜𝑟𝑚|

𝑁

𝑛=1

 (3) 

 

Next, we eliminate any part of the signal that falls below the 

threshold, as explained in Eq. (4). 

 

{
𝑆 = 𝑋𝑛𝑜𝑟𝑚   𝑖𝑓   𝑋𝑛𝑜𝑟𝑚 > 𝑇𝐻
𝑆 = 𝑇𝐻        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 (4) 

 

where, S represents the isolated signal. 

Finally, we compare each sample to the threshold to identify 

the peak values. To prevent the identification of consecutive 

peaks within the same pulse, we set a minimum distance of 40 

samples between any two identified peaks. By enforcing this 

condition, we can ensure that each peak corresponds to a 

distinct pulse within the signal. 

 

2.4.3 LMTD detection 

To detect the LMTDs, we first divide the signal’s third 

derivative into discrete windows (Eq. (5)). The limits of each 

window are set to the peak values of the original signal. 

 

𝑋𝑛𝑜𝑟𝑚
′′′ = {𝑑1, 𝑑2, 𝑑𝑛, … 𝑑𝑙 , …… 𝑑𝐿} (5) 

 

where, 𝑋𝑛𝑜𝑟𝑚
′′′  represents the normalized signal’s third 

derivative, with each sample value denoted as d, the window’s 

limit as l, and the last limit as L. 

Next, we locate the local minima that precede the windows’ 

limits. We then update these limits by shifting them backward 

until they reach the local minima values, this results in a new 

set of limits as denoted in Eq. (6). 

 

𝑋𝑛𝑜𝑟𝑚
′′′ = {𝑑1, 𝑑2, 𝑑𝑛, … 𝑑𝑙𝑢 , …… 𝑑𝐿𝑢} (6) 

 

where, the updated limit is designated as lu, and the final 

updated limit as Lu.  

Finally, we identify the LMTDs as the local maxima 

preceding the updated limits. The process for detecting 

LMTDs is further illustrated in Figure 4.  

 

 
 

Figure 4. LMTDs detection 

 

To approximate the index values of the suppressed troughs, 

we examined the marginal distance between LMTDs and 

detectable troughs. Analysis of the signals revealed mean 

distances (MDs) and standard deviation distances (STDs) of 

2.6±1.1 and 1.22±0.95 for ABP and PPG signals, respectively. 

As a result, the formula for approximating the suppressed 

troughs is defined as: 

 

𝑡𝑟𝑠𝑢𝑝 = 𝐿𝑀𝑇𝐷𝑖𝑑𝑥 +𝑀𝐷 (7) 

 

where, trsup denotes a suppressed trough, LMTDidx represents 

the LMTD index, and MD represents the mean distances. 

 

2.5 Dicrotic notch detection 

 

A dicrotic notch is typically identified by locating the local 

minimum at the end of the systolic phase. However, in the case 

of a suppressed dicrotic notch, a slight inflection point replaces 

the local minimum, making it difficult to detect using 

conventional methods. Therefore, we present a novel approach 

for detecting suppressed dicrotic notches using a multi-

objective optimization technique. 

 

2.5.1 Measurements 

We introduce a tool that measures the angles of inflection 

points using two intersecting lines, as shown in Figure 5. 

Conventionally, the angle between two intersecting lines is 

calculated as follows: 
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𝜃 = 𝑡𝑎𝑛−1(
𝑎2−𝑎1

1+𝑎1𝑎2
)  (8) 

 

where, a1 and a2 are the slopes of the first and second lines, 

respectively. 

However, this method is only valid when the signal axes are 

equally calibrated. Instead, we suggest estimating the 

inflection point measurements using a modified formula that 

considers the degree of deviation of one line relative to the 

other, as presented in Figure 5. Additionally, we impose 

constraints on the slopes of the intersected lines to ensure the 

exclusive measurement of the inflection points, as denoted in 

Eq. (9). 

 

𝜃𝑖𝑛𝑓 =
𝑎2−𝑎1

𝑎1
 , such that {

𝑎1, 𝑎2 < 0
𝑎1 < 𝑎2

 (9) 

 

where, θinf represents the degree of deviation of the second line 

compared to the first line, while inf is the inflection point index.  

 

 
 

Figure 5. Measurement technique 

 

2.5.2 Search space 

The search process involves obtaining a set of θinf 

measurements within a predetermined search space, which is 

delineated as a segment of the pulse wave extending between 

the peak and the trough (Figure 6). The pulse wave can be 

represented as a sequence of values, denoted as: 

 

𝑃𝑊 = {𝑥𝑡𝑟 , 𝑥𝑡𝑟+1, 𝑥𝑡𝑟+𝑛, … 𝑥𝑝𝑒 , … 𝑥𝑡𝑟+𝑘} (10) 

 

where, tr and pe respectively represent the pulse’s trough and 

peak indexes, while k indicates the pulse’s length.  

The search space is then identified as a subset of PW, 

denoted as: 

 

𝑆𝑃 = {𝑥α1 , …… 𝑥α2} (11) 

 

where, α1 and α2 represent the indexes that mark the boundaries 

of the search space and are given by α1≈pe+0.55k and 

α2≈pe+0.15k. 

 

 
 

Figure 6. Random θinf measurements in the search space 

2.5.3 Search technique 

The θinf measurements are taken by sliding the intersected 

lines along the entire search space while respecting the 

established constraints, as illustrated in Figure 6. 

A suppressed dicrotic notch is indicative of an inflection 

point at the minimum-measurement θinf in the search space, 

denoted as θmin. However, a single search to obtain 𝜃𝑚𝑖𝑛 may 

yield inaccurate measurements, leading to false positive 

results. As a result, we implement a search process involving 

multiple iterations (i) to identify the optimal solution (infopt). 

Within each iteration, measurements are taken using 

intersected lines of increasing lengths, resulting in varying 

slopes. In a given iteration, the slope of each line is defined as: 

 

𝑎𝑖,𝑗 =
𝑓(𝑐𝑒𝑛𝑑) − 𝑓(𝑐𝑖𝑛)

𝑐𝑒𝑛𝑑 − 𝑐𝑖𝑛
 

𝑤𝑖𝑡ℎ {
𝑐𝑖𝑛 = 𝑖𝑛𝑓 − 𝑖,   𝑐𝑒𝑛𝑑 = 𝑖𝑛𝑓   𝑤ℎ𝑒𝑛   𝑗 = 1
𝑐𝑖𝑛 = 𝑖𝑛𝑓, 𝑐𝑒𝑛𝑑 = 𝑖𝑛𝑓 + 𝑖    𝑤ℎ𝑒𝑛   𝑗 = 2

 

(12) 

 

where, cin and cend represent the initial and the last sample 

index of a line, respectively, while f(cin) and f(cend) are their 

expected values. The length of the lines increases by i=1 

during each iteration, until it reaches a maximum iteration of 

I≈0.15k.  

Each of the resulting θmin(i) corresponds to a specific inf in 

the search space. Therefore, we determine infopt by considering 

all the θmin(i) measurements and their respective inf(i) obtained 

during the search process. We present the search process 

results φr for a particular pulse r as: 

 

𝜑𝑟 =

{
 
 

 
 
𝜃𝑚𝑖𝑛(1) 
𝜃𝑚𝑖𝑛(2)

𝜃𝑚𝑖𝑛(𝑖)
⋮

𝜃𝑚𝑖𝑛(𝐼)

|
|

inf (1)
inf (2)

inf (𝑖)
⋮

inf (𝐼)}
 
 

 
 

 (13) 

 

The θmin measurements that were taken from similar indexes 

are counted to identify the most present inf in φr. As a result, 

the most prevalent inf(i) in φr is identified as infopt. The search 

process is further explained in Figure 7. 

 

 
 

Figure 7. Search process 

 

2.5.4 Evaluation process 

To evaluate the efficacy of the optimization algorithm, we 

employ the standard deviation (SD) as a metric to ensure that 

the dicrotic notches are accurately located. Typically, the 

distance between a peak and its corresponding dicrotic notch 
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is nearly constant across all pulses in a signal. Thus, the SD 

captures the variation between the optimal solutions infopt and 

the peaks throughout the entire signal Xnorm. The SD can be 

defined using the following equation: 

 

𝑆𝐷 =
∑ (𝑖𝑛𝑓𝑜𝑝𝑡(𝑟) − 𝑝𝑒(𝑟) − 𝜎)

2𝑅
𝑟=1

𝑅
 (14) 

 

where, σ represents the mean distance between the peak and 

the optimal inflection point, while r denotes the index of each 

pulse and R represents the total number of pulses in the signal. 

To further minimize the SD index, the search process is 

regenerated by gradually narrowing the search space 

(specifically α2) through three iterations until improved results 

are obtained, as depicted in Figure 8. If no improvement is 

observed, we select the search with the lowest SD value as the 

final result. Nevertheless, our analysis indicates that a 

marginal improvement of less than 1.38 is considered an 

instance of over-minimization. To address this, we have set a 

threshold to control the SD minimization process, requiring the 

SD index to improve by a value equal to or greater than 1.38.  

To evaluate the efficacy of the proposed optimizer, Figure 

8 presents a segment of a disrupted ABP signal. This particular 

signal was intentionally selected for its instability and 

association with various fluctuations, with the aim of testing 

whether any false positive dicrotic notches are detected.  

Overall, our proposed algorithm incorporates three 

objective functions in an iterative manner. Firstly, we 

minimized θinf to obtain the minimum inflection point 

measurement (θmin). Secondly, we maximized φr to identify the 

optimal inflection point index (infopt). Finally, we minimized 

the SD index to improve the overall optimization process. 

Algorithm 1 displays a step-by-step pseudocode for the 

detection of the dicrotic notches within a signal. 

 

 
 

Figure 8. A segment from an ABP signal during evaluation process 

 
Algorithm 1: Dicrotic notches detector  

INPUT: 𝑋𝑛𝑜𝑟𝑚, 𝑇𝑟, 𝑃𝑒 . 1-min ABP-PPG Signal, Troughs Vector, Peaks Vector 

OUTPUT: 𝑑𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑛𝑜𝑡𝑐ℎ  . Dicrotic Notches Vector 

1 𝑦 ← 0.55 . y is the search space’s right boundary that needs 

decreasing during the evaluation process 

2 𝒇𝒐𝒓 𝑛 = 1   𝒕𝒐  3   𝒅𝒐 . Evaluation process (overall optimization loop) 

3    𝒊𝒇 𝑛 == 2     𝒕𝒉𝒂𝒏   

4   𝑦 ← 0.3 . Narrowing the search space by decreasing y  

5  𝒆𝒍𝒔𝒆𝒊𝒇 𝑛 == 3     𝒕𝒉𝒂𝒏  

6   𝑦 ← 0.2 . Narrowing the search space by decreasing y  

7  𝒆𝒏𝒅 𝒊𝒇  

8  𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑓𝑖𝑛𝑑_𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑖𝑛𝑓(𝑋𝑛𝑜𝑟𝑚, 𝑇𝑟, 𝑃𝑒, 𝑦) . Search process function  

9   𝑁𝑢𝑚 𝑇𝑟 ← 𝑙𝑒𝑛𝑔𝑡ℎ (𝑇𝑟) . Number of troughs in a 1-min signal 

10   𝒇𝒐𝒓 𝑟 = 1   𝒕𝒐     (𝑁𝑢𝑚 𝑇𝑟 − 1)    𝒅𝒐  . A loop searching for 𝑖𝑛𝑓𝑟 of a given r pulse 

11    𝑃𝑊 ← 𝑋𝑛𝑜𝑟𝑚 (𝑇𝑟(𝑟) ∶  𝑇𝑟(𝑟 + 1) ) . Pulse initialisation 

12    𝑘 ←  𝑙𝑒𝑛𝑔𝑡ℎ (𝑃𝑊) . The pulse’s length 

13    α1 ← 𝑃𝑒(𝑟) + 0.15𝑘 . Left boundary of the search space 

14    α2 ← 𝑃𝑒(𝑟) + 𝑦𝑘 . Right boundary of the search space 

15    𝑆𝑃 ← 𝑋𝑛𝑜𝑟𝑚 (α1 ∶  α2 ) . Search space indexes initialisation 

16    𝑓 ←  𝑃𝑊(𝑆𝑃) . Search space values initialisation 

17    𝑁𝑢𝑚 𝑖𝑛𝑓 ←  𝑙𝑒𝑛𝑔𝑡ℎ (𝑆𝑃) . Number of possible inflection points 

18    𝑙𝑖𝑛𝑒𝑙𝑛𝑖𝑡 ← 3 . Initial length value of the lines 

19    𝐼 ← 0.15𝑘 . Maximum length value 

20    𝒇𝒐𝒓  𝑖 = 𝑙𝑖𝑛𝑒𝑖𝑛𝑖𝑡   𝒕𝒐     𝐼   𝒅𝒐 . A loop for increasing the lines’ lengths starting 

from: 𝑙𝑖𝑛𝑒𝑖𝑛𝑖𝑡 = 3 
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21     𝑚 ← 1  

22     𝒇𝒐𝒓 𝑖𝑛𝑓𝑝𝑜𝑠  = 1   𝒕𝒐     (𝑁𝑢𝑚 𝑖𝑛𝑓 − 1)    𝒅𝒐 . Search process loop, 𝑖𝑛𝑓𝑝𝑜𝑠 denotes a possible 

𝑖𝑛𝑓 in the search space 𝑆𝑃  

23      𝑎1 ← (𝑓(𝑖𝑛𝑓𝑝𝑜𝑠) − 𝑓(𝑖𝑛𝑓𝑝𝑜𝑠 − 𝑖)) / (𝑖𝑛𝑓𝑝𝑜𝑠 − (𝑖𝑛𝑓𝑝𝑜𝑠 − 𝑖)) 
. Computing the value of the left slop 

24      𝑎2 ← (𝑓(𝑖𝑛𝑓𝑝𝑜𝑠 + 𝑖) − 𝑓(𝑖𝑛𝑓𝑝𝑜𝑠)) / ((𝑖𝑛𝑓𝑝𝑜𝑠 + 𝑖) − 𝑖𝑛𝑓𝑝𝑜𝑠) 
. Computing the value of the right slop 

25        𝒊𝒇 𝑎1, 𝑎2 < 0 𝒂𝒏𝒅 𝑎1 < 𝑎2     𝒕𝒉𝒂𝒏 . Constraints to ensure the exclusive measurement 

of 𝑖𝑛𝑓 

26       𝜃𝑖𝑛𝑓 ← (𝑎2 − 𝑎1)/𝑎1 . Inflection point measurement  

27       𝜃𝑠𝑡𝑜𝑟𝑒(𝑚) ← 𝜃𝑖𝑛𝑓 . Storing the 𝜃𝑖𝑛𝑓 measurements in the vector 𝜃𝑖𝑛𝑓 

28       𝑖𝑛𝑓𝑠𝑡𝑜𝑟𝑒(𝑚) ← 𝑖𝑛𝑓𝑝𝑜𝑠 . Storing the 𝑖𝑛𝑓 indexes in the vector 𝑖𝑛𝑓𝑠𝑡𝑜𝑟𝑒 

29       𝑚 ← 𝑚 + 1  

30      𝒆𝒏𝒅 𝒊𝒇  

31     𝒆𝒏𝒅 𝒇𝒐𝒓  

32     {𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥} ← 𝒎𝒊𝒏 (𝜃𝑠𝑡𝑜𝑟𝑒) . Extracting the index of the minimum 𝜃𝑖𝑛𝑓within 

the storage vector 

33     𝑖𝑛𝑓 (𝑖) ← 𝑖𝑛𝑓𝑠𝑡𝑜𝑟𝑒  (𝜃𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥) . Matching the index with original infection point 

34    𝒆𝒏𝒅 𝒇𝒐𝒓  

35    𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ←  𝒄𝒐𝒖𝒏𝒕 (𝜑(𝑟)) . Counting similar 𝑖𝑛𝑓(𝑖) indexes 

36    𝑖𝑛𝑓𝑜𝑝𝑡(𝑟) ← 𝒎𝒂𝒙 (𝑐𝑜𝑢𝑛𝑡𝑒𝑟) . The most prevalent 𝑖𝑛𝑓(𝑖) have the most counts 

37    𝑑𝑖𝑠𝑡_𝑝𝑒𝑎𝑘_𝑡𝑜_𝑖𝑛𝑓(𝑟) ←  𝑖𝑛𝑓𝑜𝑝𝑡(𝑟) − 𝑃𝑒(𝑟) . Distances between peaks and estimated 𝑖𝑛𝑓𝑜𝑝𝑡  

38   𝒆𝒏𝒅 𝒇𝒐𝒓  

39  𝒆𝒏𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏  

40  𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑓𝑜𝑝𝑡(𝑛) ← 𝑖𝑛𝑓𝑜𝑝𝑡   . The vector 𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑓𝑜𝑝𝑡represent the 𝑖𝑛𝑓𝑜𝑝𝑡of the 

entire input signal 𝑋𝑛𝑜𝑟𝑚 

41  𝑑𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑛𝑜𝑡𝑐ℎ ←  𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑓𝑜𝑝𝑡(1) . Initialisation of the output vector 

42  𝑆𝐷 ← 𝒔𝒕𝒅( 𝑑𝑖𝑠𝑡_𝑝𝑒𝑎𝑘_𝑡𝑜_𝑖𝑛𝑓) . Evaluation metric that measures the detection 

precision before re-looping the process 

43  𝒊𝒇 𝑛 == 2  𝒂𝒏𝒅  𝑆𝐷(𝑛) < 𝑆𝐷(𝑛 − 1) 𝒂𝒏𝒅 𝑆𝐷(𝑛) > 1.38 𝒕𝒉𝒂𝒏  

44   𝑑𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑛𝑜𝑡𝑐ℎ ←  𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑓𝑜𝑝𝑡(𝑛) . Conditional update on the output vector 

45  𝒆𝒏𝒅 𝒊𝒇  

46 𝒆𝒏𝒅 𝒇𝒐𝒓  

 

2.6 AAP modeling 

 

The identification of AAPs poses a challenge due to the 

absence of clear guidelines and the necessity of a 

comprehensive understanding of their unique characteristics. 

To demonstrate these abnormalities, researchers have 

presented theories and benchmarks based on the analysis of 

diverse pathological cases. Consequently, an effective 

approach for modeling AAPs involves examining pathologies 

commonly associated with the manifestation of such 

abnormalities, specifically peripheral abnormalities in our 

case. Therefore, this section aims to investigate prior studies 

to establish conditions that assist in the modeling of AAPs. 

Three key abnormal features define an AAP: abnormalities in 

its wave pattern, duration, and amplitude.  

 

 
 

Figure 9. Bisferiens pulse features 

2.6.1 Bisferiens model 

The bisferiens pulse is characterized by both prominent tidal 

and percussion waves. These waves can be of equal height or 

one higher than the other. For example, in cases of AR or 

combined AR and AS, the tidal wave may be taller or 

approximately equal to the percussion wave, with a short 

decline in mid-systole [18]. The bisferiens pulse in HOCM has 

a higher percussion wave than the tidal wave and a deeper mid-

systolic drop in amplitude [19]. In this study, both bisferiens 

patterns are categorized under the same class, identified by the 

presence of two peaks during systole (Figure 9). 

 

2.6.2 Anacrotic model 

The typical pulse in AS is referred to as anacrotic, derived 

from the term "anadicrotic," meaning twice beating on the 

upstroke [20]. It indicates the presence of two waves during 

systole. However, this statement creates confusion regarding 

whether the first wave represents the percussion wave of the 

bisferiens pulse or the anacrotic wave of the anacrotic pulse 

[38]. This confusion arises when the first wave has a lower 

peak compared to the second wave, as illustrated in Figure 10. 

Fleming [39] described the peaks in the bisferiens pulse as 

twin peaks. This is visually evident due to their brisk 

appearance in time [40]. In contrast, anacrotic pulses lack this 

suddenness. Instead, the upstroke seems interrupted by a notch, 

resulting in a small first wave, followed by a longer duration 

to reach the peak of the second wave. This explains Fleming's 

description of the second wave as being taller and broader than 

the first wave [39]. Thus, the shape and depth of the dip 
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between the two peaks help differentiate between anacrotic 

and bisferiens pulses, as they depend on the magnitude of the 

two waves [41]. 

 

 
 

Figure 10. A confusing double peaked pulse 

 

Temporal analysis. Considering the temporal aspect, our 

analysis demonstrates that the two waves appear briskly when 

the peak-to-peak time (PPT) is shorter than the onset-to-peak 

time (OPT) (Figure 11 (a)). Conversely, the tidal wave appears 

larger when the PPT is longer than the OPT (Figure 11 (b)). 

Hence, it is reasonable to assume that the anacrotic pulse has 

a longer PPT than the OPT. 

 

 
(a) Brisk peaks in a bisferiens pulse 

 

 
(b) Broad tidal wave in anacrotic pulse 

 

Figure 11. Bisferiens and anacrotic pulses comparaison 

 

Contour analysis. We define anacrotic pulses associated 

with a non-prominent anacrotic wave based on two conditions: 

Firstly, we set a line connecting the onset and peak of the 

pulse, and then we subtract the upstroke curve from this line. 

This subtraction generates a subtracted curve (SC) comprising 

positive and negative samples. The positive samples represent 

the curve above the line, while the negative samples represent 

the curve below the line. Consequently, for an anacrotic wave 

to be present, the area under the positive curve (AUPC) must 

be greater than the area under the negative curve (AUNC). 

Secondly, we locate the peak value of the SC, which 

represents the positive inflection point of the wave. We then 

set another line connecting the inflection point and the pulse 

peak. The trough in the secondary SC represents the notch of 

the anacrotic pulse. 

Figure 12 provides a further illustration of the detection 

process.  

 

 
 

Figure 12. Anacrotic pulse characteristics detection 

 

2.6.3 Dicrotic model 

In contrast to bisferiens and anacrotic pulses, a dicrotic 

pulse is characterized by the presence of two waves, with the 

first wave occurring during systole and the second wave 

during diastole.  

Contour analysis. Meadows et al. [22] defined a fully 

dicrotic pulse as having a dicrotic wave amplitude (DWA) 

greater than 30% of the PP and a dicrotic notch level (DNL) 

less than 10% of the PP. They also established borderline 

criteria, which include a DWA greater than 20% of the PP and 

a DNL less than 20% of a PP. However, it's important to note 

that a low level of the dicrotic notch does not necessarily 

indicate a large dicrotic wave. Therefore, pulses with low DNL 

and high DWA are labeled as dicrotic pulses, while pulses with 

only low DNLs are labeled as deep pulses. In this study, we 

employ the borderline criteria to model dicrotic and deep 

pulses, as illustrated in Figure 13. 

 

 
 

Figure 13. Borderline dicrotic pulse criteria 

 

2.6.4 High amplitude models 

The amplitude of a pulse can be understood in terms of 

volume or pressure [42]. The specific interpretation depends 

on the type of pulse and the nature of the study. In our study, 

we focus on arterial pressure pulses, and thus we refer to the 

amplitude as PP. The normal range for PP is considered to be 

between 40 mmHg and 60 mmHg [43]. Therefore, a high 

amplitude pulse (HAP) is defined as having a PP greater than 

60 mmHg. Our analysis includes three types of HAP models: 

bounding pulse (BDP), shallow HAP, and water hammer pulse 

(WHP). 

(1) The BDP is characterized by a rapid rise in pressure, 

resulting in a steep upstroke, as illustrated in Figure 14. To our 

knowledge, there are no defined cutoff values or guidelines to 
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determine the normal range of upstroke time (UT). However, 

Wood [20] proposed that an UT of less than 0.16 s can be 

considered normal. In line with Wood's criterion, Boiteau et al. 

[44] reported a normal radial UT ranging between 0.11 s and 

0.16 s. Thus, we define a BDP as having a PP greater than 60 

mmHg and an UT less than or equal to 0.16 s. 

 

 
 

Figure 14. Bounding pulse model 

 

(2) We refer to the second type of HAP as shallow due to its 

inclined upstroke, late systolic peak, and occasional early 

hump. This pulse pattern is commonly observed in conditions 

associated with arterial stiffness [45]. Similarly, in the case of 

bradycardia (slow heart rate), the pulse displays a prolonged 

time in reaching the peak, leading to a broad peak, as 

illustrated in Figure 15. In contrast to the BDP, a pulse is 

considered shallow when its UT exceeds 0.16 s.  

 

 
 

Figure 15. A high amplitude pulse with a slow upstroke 

 

(3) As pointed out in the first section, the BDP can be 

observed in various physiological and pathological states [19]. 

Particularly, a unique bounding quality often occurs in 

moderate to severe AR states known as a WHP, which is 

mostly marked in peripheral arteries [46]. As revealed long 

ago, the main characteristics that distinguish WHP from other 

HAPs are its sudden upstroke, narrow and wide percussion 

wave, and preferably flattened tidal and dicrotic waves [47]. 

In response to these signs, we propose three interpretation 

criteria to identify a WHP: 

Contour analysis. In accordance with the aforementioned 

signs, most researchers define a WHP by a steep upstroke, 

sharp or narrow percussion wave, wide pulse pressure, 

collapsing, and a sharp downstroke [25, 41, 46, 48]. Therefore, 

sharpness is an important feature in defining the WHP. 

Estimating the degree of sharpness in the pulse has been 

suggested in the literature [49]. However, assessing the 

sharpness of the WHP requires considering the entire systolic 

wave, which includes a sharp systolic upstroke and 

downstroke. To achieve this, we establish two lines: the first 

line extends from the onset to the peak (upstroke), while the 

second line extends from the peak to the dicrotic notch 

(downstroke). The proximity of the wave to these lines 

indicates its sharpness. Thus, a pulse is considered sharp if the 

AUNC is greater than the AUPC for both the systolic upstroke 

and downstroke, as illustrated in Figure 16. Similarly, we 

define a flat diastolic portion if its corresponding AUNC is 

greater than or equal to its AUPC. 

 

 
 

Figure 16. Sharp systolic wave from a water hammer model 

 

Amplitude. McGee [48] stated in his book that a PP equal 

to or greater than 80 mmHg and a DBP equal to or less than 

50 mmHg increase the probability of moderate to severe AR. 

These benchmarks were established based on studies 

investigating the correlation between the severity of AR and 

PP [50] as well as DBP [51]. Although the WHP is primarily 

a systolic phenomenon that is not directly defined by low DBP 

[25], setting this condition up enhances the likelihood of its 

manifestation. This has been confirmed by elevating the arm 

of patients diagnosed with AR, resulting in a decrease in their 

DBP and a more pronounced water hammer quality [46-48]. 

Temporal analysis. Boiteau et al. [44] emphasized that the 

UT in normal individuals is shortened and does not 

significantly differ from that observed in AR cases. However, 

upon further examination of the UT and systolic time (ST) 

measurements in their study, we observed that some AR 

subjects had UT values below the normal range reported in 

their study (0.11 s to 0.16 s). Interestingly, all AR subjects with 

UT values below 0.11 s had UTs that were less than one third 

of the ST (UT/ST < 34%), while the majority of the remaining 

subjects had UTs that were less than half of the ST [44]. Based 

on this observation, it is reasonable to assume that a short UT, 

particularly one that is less than one third of the ST, may be 

indicative of the suddenness in the upstroke of the WHP. 

Furthermore, the ST is another important feature in identifying 

a WHP, as it is typically prolonged in AR conditions, ranging 

between 0.28 s and 0.4 s [44].  

 

 
 

Figure 17. Pulsus tardus characteristics 
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2.6.5 Tardus model 

A slow-rising pulse, known as pulsus tardus, is 

characterized by a delayed peak and is sometimes referred to 

as pulsus parvus et tardus when associated with low amplitude 

(Figure 17). People with AS have pulsus tardus, and its slanted 

upstroke can look smooth or be broken up by a notch [52], as 

was shown before in the anacrotic pulse. 

Temporal analysis. We define pulsus tardus as having an 

UT greater than 0.156 s, based on a study conducted by 

Yoshioka et al. [53], in which the authors concluded that an 

UT exceeding 0.156 s indicates severe AS. In certain cases, 

pulsus tardus can be mistaken for a shallow HAP, as it can be 

associated with a high PP in the radial artery due to arterial 

stiffness [53]. Therefore, we define the pulsus tardus model as 

having an UT longer than the remaining ST, with an UT/ST 

ratio greater than 50%, as illustrated in Figure 17.  

This definition is supported by the observation that the 

systolic peak in pulsus tardus often occurs near the second 

sound of the heart, which represents the closure of the aortic 

valve at the end of the systolic phase [19].  

Amplitude. The term "parvus" is used to describe a pulse 

with low volume [54] or a narrow PP [55]. In the context of 

pulse pressure, researchers investigated PP measurements in 

AS states to determine whether pulsus parvus is indicative of 

severe AS [53]. Thus, a narrow pulse pressure is one of the 

defining features of pulsus parvus. Accordingly, we define a 

narrow PP as being less than 40 mmHg [43]. Therefore, pulsus 

parvus et tardus shares the same characteristics as pulsus 

tardus, except for the presence of a narrow PP. 

 

2.7 Class labels 

 

Table 1 and Table 2 provide an overview of the parameters 

used in the modeling process of AAPs. Table 1 presents the 

contour parameters, while Table 2 outlines the time and 

amplitude parameters. 

The modeling process involved a total of 1120 records. 

Analysis of the obtained records revealed a prevalence of 

similar pulse models, as depicted in Figure 18. All the 

resulting models were classified individually, except for the 

anacrotic models. Due to their limited occurrence, the 

anacrotic pulses were categorized under the tardus class. 

Similarly, anacrotic pulses featuring low amplitude were 

categorized under the parvus et tardus class.  

Furthermore, an additional model named "shallow pulse" 

was introduced to reduce the number of cases falling under the 

unidentified class. As indicated in Table 2, the shallow pulse 

shares similar features with the shallow HAP model except for 

the high amplitude. Figure 19 displays the sample size 

distribution among the different classes, with each sample 

representing a group of models derived from a specific record. 

 

 
 

Figure 18. AAP modeling results taken from different ABP 

records 

 

 
 

Figure 19. AAP classes sample size 

 

Table 1. Pulse contour parameters used in AAP modeling process  

 
Pulse DNL (%) DWA (%) USC DSC P Wave T Wave D Wave 

Normal ≥ 20 > 20 NS NS Prominent Non-prominent Prominent 

Bisferiens NS NS NS NS Prominent Prominent NS 

Anacrotic NS NS AUPC > AUNC NS Either Prominent NS 

Dicrotic < 20 > 20 NS NS Prominent None Prominent 

Deep < 20 ≤ 20 NS NS Prominent None NS 

Water hammer NS NS AUPC < AUNC AUPC < AUNC Prominent Non-prominent Non-prominent 
Notes: 1. NS: Not specified. 2. P: Percussion. 3. T: Tidal. 4. D: Dicrotic. 5. USC: Upstroke subtracted curve. 6. DSC: Downstroke subtracted curve. 
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Table 2. Time and amplitude parameters used in AAP modeling process  

 

Pulse UT (s) ST (s) UT/ST (%) PP (mmHg) DBP (mmHg) 

Normal ≤ 0.16 ≥ 0.28 < 50 ≤ 60 NS 

Bounding ≤ 0.16 ≥ 0.28 ≤ 50 > 60 NS 

Shallow ↑ > 0.16 NS ≤ 50 > 60 NS 

Water hammer ≤ 0.11 ≥ 0.28 < 34 ≥ 80 ≤ 50 

Shallow > 0.16 NS ≤ 50 ≤ 60 NS 

Tardus > 0.156 ≥ 0.28 > 50 ≥ 40 NS 

Parvus et tardus > 0.156 ≥ 0.28 > 50 < 40 NS 

Anacrotic PPT > OPT NS NS NS NS 
Note: ↑: High amplitude. 
 

2.8 Feature extraction and data preparation 

 

Before extracting features, a subset comprising 40% of the 

pulses was selected from each PPG signal. From each pulse, a 

set of 24 features was extracted for use in our classification 

system. Our analysis begins by selecting six segments from the 

pulse signal, including the total pulse (Figure 20). Each 

segment is then processed to derive four distinct features.  

 

 
 

Figure 20. Features extraction from a PPG pulse signal 

 

The first feature relates to the temporal aspects of the 

selected phases and is defined as:  

 

𝐹𝑇 =
𝑝ℎ

𝑓𝑠
 (15) 

 

where, FT represents the time feature, ph denotes the length of 

the selected phase, and fs corresponds to the sampling 

frequency. 

Next, we determine the slope features by establishing lines 

that connect the limits of each curve within the selected 

segments. The slope is calculated using the following equation: 

 

𝐹𝑆𝐿 =
𝑌𝑒𝑛𝑑 − 𝑌𝑖𝑛
𝑝ℎ − 1

 (16) 

 

where, FSL represents the slope feature, while Yin and Yend denote 

the data values marking the beginning and end of a given segment in 

the PPG signal.  

Finally, we explore the SCs obtained by subtracting each 

curve from its corresponding line. These SCs are represented 

as a sequence of data points: 

 

𝐶𝑠𝑢𝑏 = {𝑣1, 𝑣2, 𝑣𝑚, …… 𝑣𝑀} (17) 

 

where, v is the expected data value from a given sample index 

m, and M is the length of the data points.  

We then calculate the mean and kurtosis of the SCs. The 

mean represents the average value of the SC: 

 

𝐹𝑀 =
1

𝑀
∑ 𝑣𝑚

𝑀

𝑚=1

 (18) 

 

The kurtosis measures the tailedness of the SC is defined as: 

 

𝐹𝐾𝑅 =

1
𝑀
 ∑ (𝑣𝑚 − 𝐹𝑀)

4𝑀
𝑚=1

(
1
𝑀
 ∑ (𝑣𝑚 − 𝐹𝑀)

2𝑀
𝑚=1 )

2 (19) 

 

As a result, we present the input matrix Fin as follows: 

 

𝐹𝑖𝑛 = [

𝑓1(1) 𝑓1(2) 𝑓1(𝑢)

𝑓2(1) 𝑓2(2) 𝑓2(𝑢)

… 𝑓1(𝑈)

… 𝑓2(𝑈)
⋮       ⋮         ⋮    

𝑓𝑊(1) 𝑓𝑊(2) 𝑓𝑊(𝑢)
⋮

… 𝑓𝑊(𝑈)

] (20) 

 

where, u∈{1, 2…, 24} denotes a specific feature in a row 

matrix, U represents the twenty fourth feature while W is the 

length of the input dataset.  

To complete the data preparation, we assign class labels to 

each row of the input matrix based on its corresponding AAP 

class. Next, we divide the input data into an 80% training set 

and a 20% test set. This division enables the classifiers to be 

trained on a majority of the data and evaluate their 

performance on unseen data during testing. 

To address potential biases resulting from class imbalance, 

a data balancing process is applied to the training set. This 

involves oversampling the classes with low datasets by 

duplicating their instances until they reach a similar size to the 
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class with the highest number of samples. This prevents the 

training model from favoring classes with larger datasets. 

 

2.9 Classification algorithms 

 

Unlike other disciplines, explainability is paramount for 

Artificial intelligence (AI) in healthcare [16]. While DNNs 

might offer impressive performance, their internal complexity 

challenges interpretation [56]. For explainable AI (XAI) 

researchers investigating the communication of clinical AI 

logic and reasoning, algorithms with more transparent internal 

representations are preferable. By selecting ML techniques 

that retain a certain interpretability degree of internal 

processes, XAI researchers can better systematically explore, 

evaluate, and clearly explain models' functioning. 

 

2.9.1 Parametric models 

Parametric models, by design, often have a simpler and 

more transparent structure [57]. The relationship between 

variables is explicitly defined by a set of parameters. However, 

the simplicity of parametric models may limit their ability to 

capture complex and nonlinear relationships present in the 

PPG signals. For instance, NB assumes that features are 

conditionally independent, given the class label [58]. This 

assumption might not hold in tasks involving physiological 

signals like PPG, where features might have complex 

interdependencies. Similarly, discriminant analysis classifiers 

assume that the features follow a specific distribution within 

each class [59]. 

 

2.9.2 Non-parametric models 

In contrast, non-parametric models are more flexible and 

can capture complex relationships in the data without relying 

on strong assumptions. DTs are non-parametric models that 

can handle non-linear relationships between variables. This 

type of algorithm offers high interpretability as its decision-

making process is based on a sequence of explicit rules that 

form a hierarchical structure [60]. However, training a single 

DT with a relatively large dataset might lead to deeper or more 

complex trees, which could potentially compromise 

interpretability and increase the risk of overfitting. Ensemble 

methods like bagging, which combine multiple DTs, might 

offer better performance while retaining interpretability to a 

certain extent. BT involves training multiple DTs on different 

subsets of the training data and combining their outputs to 

make predictions [31]. This reduces the variance of individual 

trees and helps mitigate overfitting [32]. 

KNN is another example of a non-parametric model. It is 

known as a "lazy learning" or "instance-based learning" 

algorithm because it doesn’t involve explicit training or 

building a model in the same way as many other algorithms 

[30]. It basically stores all available training cases and 

classifies new cases by assigning them to similar classes as the 

closest cases (neighbors) in the training set. The idea is simple: 

cases near each other have the same features [61]. For this 

purpose, only two parameters are needed: the number of 

neighbors (K) in the training set and the formula that calculates 

the distances (distance metric) between a new case (query 

point) and K-neighbors. The city block (Manhattan distance) 

is a simple distance metric that could be used for distance 

measuring. The distance between two points X and Y in a D 

dimensional space is calculated as: 

 

𝐶𝑖𝑡𝑦𝐵𝑙𝑜𝑐𝑘(𝑋, 𝑌) =  |𝑋𝑖 − 𝑌𝑖|𝑖=1
𝐷  (21) 

 

To better improve the query point outcome, weights could 

be assigned to the neighbors so that the nearest one will have 

more influence on the output class [61]. The weight for each 

neighbor in KNN can be calculated using the inverse of the 

square root of the distances: 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑠(𝑋, 𝑌) =
1

√𝐶𝑖𝑡𝑦𝐵𝑙𝑜𝑐𝑘(𝑋, 𝑌)
 (22) 

 

2.9.3 Proposed experiment 

As non-parametric classifiers, KNN and BT provide 

intuitive approaches for nonlinear problems due to their simple 

structure, compared to other complex classifiers like SVM [62] 

or DNN [56]. Meanwhile, this nonlinear flexibility could offer 

higher performance compared to parametric models while 

retaining a certain degree of simplicity. Accordingly, we 

validated the efficacy of the BT and KNN classifiers by 

comparing them with other classifiers. This included both 

parametric and non-parametric models, such as NB, Linear 

Discriminant analysis (LDA), SVM, and DT. MATLAB’s 

classification learner toolbox was used to train the models 

using a subset of the original dataset. 

Next, we explored different KNN and BT models with 

varied K values and learners (DTs), respectively. The most 

performing KNN and BT models were re-trained and re-tested 

using the entire dataset. To stabilize the model's performance, 

the k-fold cross-validation technique was employed by 

randomly splitting the data into 10 equally sized groups (folds). 

Within each iteration, 9 folds are used for training, and the 

remaining 1-fold is used for validation. The process was 

repeated 10 times, and the results from each iteration were 

averaged to determine the overall accuracy of the model. 

 

2.9.4 Evaluation metrics 

Different metrics are used to evaluate the performance of 

the classification system, including sensitivity (SE), 

specificity (SP), precision (PR), accuracy (AC), and F1 score 

(F1), and are defined as follows:  

 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (23) 

 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (24) 

 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (25) 

 

𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (26) 

 

𝐹1 =
2(𝑆𝐸 × 𝑃𝑅)

(𝑆𝐸 + 𝑃𝑅)
 (27) 

 

where, TP represents true positives, which are instances 

correctly identified as positive. TN represents true negatives, 

which are instances correctly identified as negative. FP 

represents false positives, which are instances incorrectly 

classified as positive. FN represents false negatives, which are 

instances incorrectly classified as negative. 
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3. RESULTS AND DISCUSSION 

 

3.1 Dataset development 

 

The data preparation aimed at providing labeled PPG 

features to create a dataset that enabled proceeding with the 

ML-modeling experiments. The dataset was developed by 

extracting sets of 24 features from pre-segmented PPG pulses. 

The PPG-ABP pulses were extracted from the 1120 1-minute 

signals using a third derivative approach that uses LMTDs to 

approximate the troughs. Afterward, the pulses were fed into 

an optimizer to locate their dicrotic notches. 

To capture meaningful physiological variations, features 

were extracted by identifying changes that occur at specific 

cardiac cycle landmarks. The pulse onset (initial trough) 

reflects the beginning of the cycle. The peak signifies mid-

systole. The dicrotic notch indicates the end-systole and start 

of diastole. The offset (latter trough) highlights the end of the 

cycle. Segmenting the pulse at these cardiac landmarks yielded 

six distinct sub-waves, each of which describes a particular 

cardiac event. 

Mathematically, pulse morphology changes represent 

statistical variations affecting waveform segments over time. 

Considering each segment as a normal distribution, kurtosis 

describes the extension of waveforms in the tail regions 

compared to normal. The mean indicates a central tendency. 

Slopes measure the waveform angle of inclination. 

Ultimately, four metrics—kurtosis, mean, slope, and time—

characterized feature morphologies. Measurements were taken 

from each segment, yielding 24 features per pulse (6 segments 

× 4 metrics). Only 40% of pulses from single 1-minute signals 

were analyzed. The features were then assigned to 11 class 

labels created via a modeling process applied to pre-

segmented ABP pulses. This involved characterizing the 

amplitude, contour, and temporal profiles of key AAP types. 

In total, the final dataset contained 24 × 47,000 samples. 

 

3.2 Machine learning modeling 

 

We evaluated several machine learning models in 

MATLAB R2020a, including NB, LDA, SVM, KNN, DT, and 

BT. These classifiers were integrated into the software's 

classification learner toolbox. Models were developed using a 

subset of 27,000 samples from the full dataset, labeled with 11 

classes. 80% of the data was used for training, and the 

remaining 20% was for testing. As shown in Table 3, KNN 

and BT substantially outperformed other models in terms of 

training accuracy, time, prediction speed, and test accuracy. 

This demonstrates their effectiveness in addressing multiclass 

challenges and nonlinear relationships within the dataset. 

 

Table 3. Models comparison 

 
Results KNN BT DT LDA SVM NB 

Training accuracy (%) 98.2 97.7 69.7 59.6 61.5 54.3 

Training time (sec) 79 11 9 8 1722 8 

Prediction speed (obs/sec) 2000 69000 210000 130000 6800 87000 

Test accuracy 92.5 90.2 67.5 61.5 35.6 57 
Notes: 1. obs: observation (data point). 2. sec: second. 

 

Based on the results in Table 3, LDA and NB provided 

efficient computation times of 8 seconds and prediction speeds 

up to 210,000 observations per second. However, their training 

and test accuracies were relatively low, likely due to 

inconsistencies between their underlying assumptions and the 

actual data distribution. This confirms that parametric models 

struggle with nonlinear relationships in the data. SVM training 

took 1722 seconds to achieve only 61.5% and 35.6% for 

training and test accuracy, respectively. In addition to its 

computational complexity, SVM seems to overfit the data. 

Decision trees appeared to learn meaningful patterns in only 9 

seconds but resulted in relatively low accuracies as well. 

Overall, the results indicate that the models failed to handle 

the multiclass problems effectively. With more classes, there 

is less average training data per class, making class boundaries 

harder to learn accurately. 

To further analyze KNN and BT, we tuned their 

hyperparameters. K values for KNN ranged from 1 to 10, and 

learners for BT increased from 10 to 200. Figure 21 shows 

how training and test accuracy evolved with these 

hyperparameters. 

As Figure 21(a) depicts, KNN training and test accuracy 

progressively decreased as K increased, indicating optimal 

performance with a single neighbor to separate the 11 classes. 

This emphasizes the fact that simpler KNN models can 

achieve more accurate results. In contrast, Figure 21(b) shows 

BT required 200 learners to reach the best accuracy, 

emphasizing that more complex models suit multiclass 

problems better. In summary, hyperparameter tuning validated 

KNN and BT suitability for these nonlinear, multiclass 

challenges. 

 

 
(a) K-value variation versus accuracies 

 
(b) Learner variation versus accuracies 

 

Figure 21. Training a test accuracies evolution against KNN 

and BT hyperparameters 
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3.3 Classification results 

 

In this study, we developed a PPG-based classification 

system aimed at predicting various AAPs. For this purpose, 

MATLAB’s classification learner app was used to train and 

validate the KNN and BT classifiers using a dataset sized 24 x 

47,000 samples. In accordance with the tuning process, the 

KNN model was created by setting K = 1, while the BT model 

was created by setting the number of learners at 200. The 

proposed methodology exhibited good performance for both 

the BT and KNN classifiers, as indicated in Table 4. 

 

Table 4. Classification results 

 
Training Accuracy (%) Test Accuracy (%) 

BT KNN BT KNN 

97.6 97.5 91 90.9 

 

The BT model achieved an overall training accuracy of 

97.6%, while the KNN model achieved 97.5%. The 

corresponding testing accuracies were 91% for the BT model 

and 90.9% for the KNN model. It is evident that the BT 

classifier outperformed the KNN classifier, although both 

classifiers proved to be effective predictors of AAPs.  

However, evaluating the reliability of an ML model relies 

on analyzing its testing performance. Additionally, it is 

essential to analyze each class individually to gain a more 

insightful assessment of the system, particularly when dealing 

with multiple classes and achieving high overall testing 

accuracy. In such cases, metrics such as specificity and 

accuracy, which incorporate TN classes, tend to yield high 

values (Table 5). Alternatively, metrics such as sensitivity, 

precision, and F1 score offer more appropriate measures for 

individual assessment. 

Specifically, the BT model achieved a sensitivity, precision, 

and F1 score of 95.1%, 96.2%, and 95.6% for the 'deep' class, 

while the KNN model achieved a sensitivity, precision, and F1 

score of 95.7%, 95.4%, and 95.6% for the same class. 

Conversely, the 'shallow↑' class exhibited the lowest values for 

the BT model, with a sensitivity, precision, and F1 score of 

83.7%, 85.4%, and 84.5%, respectively. Similarly, the 'parvus 

et tardus' class displayed the lowest values for the KNN model, 

with a sensitivity, precision, and F1 score of 84.8%, 84.8%, 

and 84.8%, respectively. 

Furthermore, classes such as 'dicrotic', 'bisferiens', 'shallow', 

and 'tardus' demonstrated performance values close to those of 

the 'deep' class for both models. Conversely, classes such as 

'water hammer', 'bounding', and 'normal' showed performance 

values close to those of the 'shallow↑' and 'parvus et tardus' 

classes. These findings suggest that both models consistently 

perform well and exhibit comparable performance across 

different classes, indicating their capabilities as AAP detectors. 

 

3.4 System design 

 

Table 6 overviews different approaches used to create CVD 

systems, presenting their outputs, related pathologies, 

classifiers, input features, as well as their accuracies. The main 

advantage of the current system is its multitasking abilities, as 

evidenced by the related pathologies. However, transparency 

is also crucial in healthcare systems. This requires balancing 

performance and simplicity at both the modular and instance 

levels. While previous studies achieved good accuracy, their 

features and models involved complex trade-offs. 

Particularly, heuristic and transformational feature 

extraction techniques in studies [9-11, 14-15, 26] provided 

abstract representations that could be difficult to justify in a 

clinical context. For instance, algorithms like swarm 

intelligence [14] and transformations [9, 15] often involve 

intricate mathematical operations or optimization techniques. 

Besides, classifiers such as SVM, ANN, Gaussian Mixture 

Model (GMM), and Bidirectional Long Short-Term Memory 

(BLSTM) may compromise modular simplicity. 

For example, DNNs like BLSTM operate as black-box 

models, making it challenging to explain predictions [56]. 

Similarly, Multi-layer perceptron (MLPs) and ANNs can be 

complex, with many hidden layers and neurons. SVMs can add 

complexity as well [62], especially with non-linear kernels. 

GMMs also increase in complexity with more components and 

high-dimensional data [63]. However, the LR and NB models 

created by Prabhakar et al. [14] offer interpretability through 

their parametric nature. Unfortunately, dimensionally reduced 

features introduce instance-level trade-offs. 

The present work used physiological PPG morphology 

features extracted from time, slope, and SCs to describe pulse 

shape characteristics. This resulted in a 24-feature set, which 

is reasonable given the multiple classes involved. In terms of 

complexity, the KNN model was designed with simpler 

hyperparameters, requiring a single neighbor for multi-class 

prediction. However, relying solely on the closest data point 

could lead to erratic predictions if that point is an outlier. 

Conversely, using 200 learners for the BT model undermines 

its simplicity, despite incorporating interpretable individual 

models. Tuning parameters exclusively for performance may 

thus trade off simplicity. 

 

Table 5. Test performance  

 

Classes 
Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F1-Score (%) 

BT KNN BT KNN BT KNN BT KNN BT KNN 

Bisferiens 93 92.3 99 99.3 89.8 92.3 98.5 98.6 91.4 92.3 

Dicrotic 94.9 94 98.6 98.4 94.5 93.9 97.8 97.5 94.7 93.9 

Tardus 91.7 91.3 98.9 99.2 86.6 90 98.3 98.6 89.1 90.6 

Parvus et tardus 83 84.8 99.8 99.6 92.8 84.8 99.4 99.2 87.7 84.8 

Water hammer 87.8 89.1 98.2 98.1 88.3 87.7 96.8 96.8 88.1 88.4 

Bounding 86.8 86 98.1 98.3 88.8 90 96.4 96.5 87.8 88 

Deep 95.1 95.7 99.3 99.2 96.2 95.4 98.7 98.6 95.6 95.6 

Shallow ↑ 83.7 84.2 99.6 99.6 85.4 85.9 99.1 99.1 84.5 85.1 

Shallow 92 94.4 99.5 99.4 89.2 88.8 99.1 99.2 90.5 91.5 

Normal 86.1 85.1 99.5 99.4 89.2 86.6 98.9 98.7 87.6 85.9 

Unidentified 90.9 90.5 98.6 98.5 90.1 89.4 97.6 97.5 90.5 90 
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Table 6. Comparative results relative to prior studies  

 
Study Classification Output Input Features  Related Pathologies Classifier Accuracy 

Putra et al. [10] Healthy vs. CHD 
Frequency band features 

and statistical features 
• Coronary Heart Disease KNN 90.9% 

Hackstein et al. 

[11]  

Control Group vs. 

Aneurysms 

Parameter estimation of 

ARMAX models and 

frequency response features 

• Aneurysms KNN 60% 

Hosseini et al. 

[12] 

High Risk CAD vs. Low 

Risk CAD 

Statistical, time-interval and 

time-domain features  
• Coronary Artery Disease KNN 81.5% 

De Moraes et al. 

[13] 
Cardiopathies vs. Healthy 

Time domain and statistical 

features 

• Idiopathic Dilated 

Cardiomyopathy 

• Chagas Cardiomyopathy 

• Ischemic Cardiomyopathy 

KNN 

MLP 

K-means 

SOM 

88.57-100% 

90-100% 

91.85-100% 

87.5-100% 

Ramachandran 

et al. [15] 

Cardiac-risk level 1 vs. 

Cardiac- risk level 2 vs. 

Respiratory disorder vs. 

Normal 

Statistical features, DWT 

coefficients, dimensionally 

reduced features via SVD  

• Risk assessment  
GMM 

SDC 

96.64 

97.88% 

Prabhakar et al. 

[14] 
CVD-risk vs. Normal 

Dimensionally reduced 

features via metaheuristic 

optimization algorithms 

• Risk assessment  

LR 

SVM 

NB 

ANN 

99.48% 

98.96% 

98.96% 

98.96% 

Palanisamy and 

Rajaguru [9] 
CVD-risk vs. Normal 

Dimensionally reduced 

features via heuristic- and 

transformation-based 

techniques 

• Risk assessment  HS 98.31% 

Tjahjadi et al. 

[26] 

Hypertension vs. Pre-

hypertension vs. 

Normotension 

Time-Frequency analysis  • Hypertension BLSTM 93% 

Tjahjadi and 

Ramli [61] 

Hypertension vs. Pre-

hypertension vs. 

Normotension 

2100 PPG samples • Hypertension KNN 93% 

This study  
9 AAPs vs. Normal vs. 

Unidentified 

Statistical and time-domain 

morphological features 

• Hypertrophic obstructive 

cardiomyopathy  

• Aortic stenosis  

• Aortic regurgitation  

• Mixt valvular diseases 

• Pulmonary embolism  

• Constrictive pericarditis 

• Pericardial tamponade  

• Cardiomyopathies 

• Arteriovenous fistula 

• Sepsis 

• Anemia 

• Thyrotoxicosis 

• Severe bradycardia 

KNN 

BT 

90.9% 

91% 

 

3.5 Pulse wave features 

 

In our research, we relied on pulse signal segmentation to 

extract PPG features, a process facilitated by the 

implementation of our proposed trough and dicrotic notch 

detectors. This was particularly important given that a 

significant number of signal records exhibited undetectable 

dicrotic notches and troughs. 

Similarly, the precise detection of troughs and dicrotic 

notches proves indispensable in obtaining key measurements 

such as UT, ST, PP, DBP, AUNC, AUPC, DNL, DWA, OPT, 

and PPT, all of which contribute to the proposed AAP models. 

Figure 22 presents some segments of ABP and PPG signals 

resulting from the application of the proposed detectors. The 

results demonstrate the algorithm's efficiency in detecting 

suppressed troughs and dicrotic notches.  

Visual inspection alone is not enough to judge how well 

these detectors work, even though Figure 22 shows that the 

proposed algorithms can find suppressed troughs and dicrotic 

notches. The human physiology is inherently dynamic over 

time [29], leading to the dynamic occurrence of pulse wave 

features within each cardiac cycle. 

 

 
(a) Suppressed troughs in a PPG signal 

 
(b) Suppressed dicrotic noches in a PPG signal 

 
(c) Suppressed troughs and dicrotic noches in a PPG signal  
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(d) A disturbing PPG signal with suppressed troughs and 

dicrotic notches 

 
(e) Suppressed dicrotic notches in a ABP signal 

 
(f) Suppressed dicrotic notches in an ABP signal 

 
(g) Suppressed troughs in an ABP signal 

 

Figure 22. Dicrotic notch and trough detection results 

 

Visual inspection alone is not enough to judge how well 

these detectors work, even though Figure 22 shows that the 

proposed algorithms can find suppressed troughs and dicrotic 

notches. The human physiology is inherently dynamic over 

time [29], leading to the dynamic occurrence of pulse wave 

features within each cardiac cycle. 

Consequently, we introduced the SD metric to capture the 

variation of dicrotic notches throughout the entire signal 

during the evaluation process. The underlying idea behind the 

SD metric was to ensure temporal consistency in the 

prevalence of dicrotic notches within a signal record. By 

making sure this condition is met, the dicrotic notches stay in 

place even when the signal has different morphological pulse 

patterns, as seen in Figure 22(d). 

Similarly, the SD metric can be applied to evaluate the 

detected troughs by considering the variation in the length of 

pulses within a signal. To provide quantitative insight into the 

performance of the detectors, Table 7 displays the average SD 

values for both detectors, derived from the analysis of over 200 

records during the detection procedures. 

 

Table 7. Average of SD value results 

 
Dicrotic Notch  Trough  

PPG ABP PPG ABP 

1.22 0.94 1.75 1.56 

 

Notably, the parameters employed in trough and dicrotic 

notch detection are specific for signals with an Fs=125 Hz, as 

in the MIMIC databases [29, 35]. Hence, further analysis is 

necessary when applying our detection methodology to signals 

with higher sampling frequencies. 

 

3.6 Clinical perspectives 

 

The proposed classification system holds potential as an 

inexpensive assistant tool in clinical settings. Its ability to 

detect individual AAPs, which may be indicative of specific 

disease states, makes it particularly valuable. For instance, the 

identified AAPs, such as pulsus tardus, pulsus parvus et tardus, 

bisferiens pulse, and water hammer pulse, could aid in 

detecting several VHDs [25, 52, 53]. Similarly, the presence 

of a dicrotic pulse may suggest conditions related to low 

cardiac output [21, 22]. A deep pulse, on the other hand, could 

be indicative of sepsis or low peripheral resistance [23, 24]. 

Moreover, conditions such as anemia, thyrotoxicosis, severe 

bradycardia, AR, or arteriovenous fistula are typically 

associated with a bounding pulse or a slow bounding pulse, 

which we referred to as shallow HAP [19]. 

Although AAPs have been historically linked to specific 

CVDs [18, 20, 22, 38, 39, 47], there are no precise 

hemodynamic standards to identify their morphological states. 

Clinicians often use AAP morphological terms only when 

there is an association with particular CVDs. For instance, 

terms such as pulsus tardus, parvus et tardus, and anacrotic are 

frequently utilized in the analysis of AS tracings [20, 53]. 

Similarly, terms like bisferiens, water hammer, and bounding 

are commonly employed when examining AR tracings [25, 

46]. Additionally, the radial artery is thought to be the best way 

to get ABP signals, but there isn't a lot written about the 

hemodynamic features that define the normal morphological 

state of the radial pulse. Currently, the criteria used involve 

visual examination of pulse signals or palpation of an artery 

[19]. 

In light of this, we sought to develop a modeling process to 

identify AAP patterns, relying on three interpretations, 

including contour, amplitude, and temporal analysis. For the 

contour analysis, criteria, theories, and descriptions from 

studies on AAP morphologies had to be taken into account. 

This let the right contour parameters be found. The amplitude 

and temporal analysis, on the other hand, used criteria and 

hemodynamic measurements from relevant pathological 

studies that were known to show up with those shapes. This 

enabled us to generate the time and amplitude parameters for 

the AAP models. 

Linking morphologies to specific CVDs based on known 

hemodynamic mechanisms could make doctors more 

confident in assessments compared to systems that don't have 

likely causes. This offers promise as a practical, affordable 

clinical monitoring and screening tool. By integrating it into 

wearable biosensing devices [8], it could enable several 

benefits: 

(1) Doctor assistance: Direct doctor intervention if CVD is 

suspected, as they could non-invasively verify abnormalities 

and view diseases commonly associated with a patient's 

morphological profile. 

(2) Surgery assistance: Post-surgery follow-ups, allowing 

doctors to remotely monitor patients dismissed from the clinic 

via a connected patient portal within the Electronic Health 

Record (EHR). This could aid recovery oversight and early 

intervention if issues arise. 

(3) Nursing assistance: By setting automated alerts for any 

abnormalities detected in a patient's pulse patterns (AAPs). 

(4) Timely notifications: Any concerning patterns would 

trigger alerts to patients and clinicians to act promptly if 

needed. 

However, successful clinical integration depends on 

addressing some potential challenges: 

(1) Motion artifact susceptibility: PPG is sensitive to motion 

artifacts [36]. Automatic rejection of corrupted signals using 

techniques like the skewness signal quality index (SSQI) can 
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help minimize motion interference [64]. Customizable 

reminders or strategic sensor placement in less-prone body 

locations could also be explored to reduce motion artifacts. 

(2) System update: Ongoing clinically annotated ABP/AAP 

data collection is needed to refine the model over time, but 

guidelines and dedicated collection programs are currently 

lacking. To solve this, awareness must be raised among 

biomedical engineers about the need to collaborate with clinics 

to facilitate data collection programs. Beyond clinics, 

smartwatch/fitness band integration could foster global health 

awareness alerts. 

(3) Explainability: Gaining physician and patient trust 

requires explainable model predictions [16]. Interactive tools 

can demonstrate prediction logic by linking patient pulse 

patterns to animations of corresponding hemodynamics. For 

example, visualize patterns alongside diagrams of associated 

processes. Inputs can also be adjusted in "what if" scenario 

simulations, where users can manipulate feature values and see 

how the predicted risk or disease changes in response. 

Together, visualization and simulation approaches elucidate 

models grounded in medical evidence, fostering trust through 

transparency. 

 

 

4. CONCLUSIONS 

 

This study introduced a novel, non-invasive system for 

classifying AAPs in western medicine using exclusively PPG 

signals. Our ML approach using KNN and BT classifiers 

achieved high accuracy and effectively identified individual 

classes with high sensitivity, precision, and F1 score values. A 

comparison of several classifiers on a 27,000-sample dataset 

found that KNN and BT performed superiorly. This qualified 

them for further exploration on a larger (47,000 sample) 

dataset, where both continued to demonstrate high 

performance. However, the tuning process resulted in BT 

using 200 learners, compromising its simplicity advantage. 

Whereas KNN reliance on a single neighbor risks random 

outlier prediction. 

One of the strengths of our study lies in the use of novel 

trough and dicrotic notch detection tools, which are essential 

in extracting PPG features and modeling AAPs. However, to 

improve the reliability of our findings, further analysis is 

needed to establish more coherent parameters for higher 

sampling frequencies. Additionally, PPG signals' sensitivity to 

motion artifacts [36] may influence the algorithms' accuracy 

negatively. The dicrotic notch detector may also face 

difficulties in instances where the pulse wave exhibits too 

many peaks during systole. Increasing the evaluation process 

iterations could help address this issue, but it could also result 

in an instance of over-minimization. 

The proposed system shows promise as a practical, cost-

effective diagnostic tool. Its ability to detect and categorize 

abnormalities linked to specific CVDs enables more informed 

care planning than basic risk evaluation systems. This offers 

potential value for early CVD detection and prevention when 

integrated into wearables. Possible applications include 

doctor-assisted CVD verification, remote post-surgery 

monitoring via EHR, nursing alerts for abnormalities, and 

timely notifications. Successful integration depends on 

addressing challenges like motion artifact susceptibility 

through signal rejection techniques like SSQI [64]. Ongoing 

clinically annotated data collection for model refinement is 

important, but current guidelines lack dedicated programs. 

Raising biomedical awareness could facilitate data collection 

partnerships with clinics. Ensuring explainability through 

interactive tools linking patterns to animations and visualizing 

predicted changes from adjustments helps understand 

prediction logic and build trust. Addressing technical and 

adoption barriers is important to realize the system's potential 

for various healthcare uses. 

Overall, our study makes a promising contribution to the 

field of ABP prediction. Further research is necessary to 

validate our results using a larger dataset and potentially 

extend our approach to other physiological signals and health 

conditions. This could include collecting multisite PPG 

datasets recorded at different body locations like the wrist, 

finger, forehead, and earlobe to uncover new morphological 

features. Synchronizing higher sampling rates of PPG with 

other signals like Electrocardiography (ECG) may enhance 

cardiovascular representation. Classifying morphologies from 

central or proximal sites like the aorta and carotid may reveal 

patterns not evident distally. Comparing brachial, femoral, and 

radial morphologies could identify site-specific characteristics. 

The approach also shows potential for detecting conditions 

like renal artery stenosis by analyzing pressure wave 

differences upstream and downstream of a stenosis, as well as 

the consequences of chronically elevated blood pressure over 

many years, such as vascular dementia [65]. Future work 

should focus on acquiring more reliable characteristics to 

assist AAP modeling. These advancements will enhance 

understanding and applications of AAP prediction in 

healthcare settings. 
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