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Services for AI tasks have garnered a lot of attention as an integral aspect of intelligent 

services in the new era. However, implementing such a system in a stable and distributed 

manner, while simultaneously coordinating the use of cloud computing and remote edge 

devices, is challenging due to the pressing need for energy and computing resources. The 

primary contribution of this study lies in the development of a distributed co-inference 

architecture that harnesses the collective intelligence of interconnected agents to optimize 

traffic flow in real-time. By combining Q-learning with enhanced deep learning, our 

approach enables traffic signals and routing decisions to adapt dynamically to changing 

traffic patterns and environmental conditions. The security, responsiveness, and 

dependability of intelligent systems deployed close to end-users are improved by 

deploying deep learning systems. Another critical aspect where latency and accuracy in 

models are traded off is deep learning model optimization. Finding the best offloading 

policy and model for deep learning services requires an end-to-end decision-making 

solution that takes into account computation-communication problems. This study 

presents a holistic network optimization approach for scheduling AI services based on 

artificial intelligence. By adjusting for differences in computational resources and network 

congestion, the suggested deep Q-learning technique maximizes the throughput of AI tasks 

in general. This research introduces a virtual queue for analyzing the system's Lyapunov 

stability and employs a multi-hop Directed Acyclic Graph (DAG) to explain Q-learning 

of Reinforcement learning-based co-inference network topology. To optimize the total 

task processing rate, the study develops an Optimized self-adaptive glow worm swarm 

optimization method (SA-GSO) based on deep Q-learning. It then proposes a priority-

based data forwarding approach for efficiency. The study concludes by simulating the 

distributed co-inference system's platform. We attest to the superiority of our idea by 

comparing it to other standards. 
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1. INTRODUCTION

Thanks to an ongoing mutual benefit, artificial intelligence 

(AI) has made tremendous strides in the last 20 years, giving 

rise to what is now known as AI-enabled IoT and realizing the 

goal of pervasive intelligence [1, 2]. A new network 

architecture can be built and effectively used with the help of 

methods and knowledge created under the Internet of Things 

(IoT) paradigm. This architecture will consist of 

interconnected ambient sensing devices, such as embedded 

devices and mobile phones, that are resource-constrained [3]. 

These devices are often called user equipment (UE) in the 

relevant literature. In this area, the main focus has been on 

creating and implementing more efficient and faster network 

infrastructures and building more precise sensing platforms. 

Massive improvements in these systems' sensing capabilities 

have made it possible to gather and store vast amounts of data, 

enabling ever-more-advanced artificial intelligence techniques, 

ranging from classic ML approaches to more modern deep 

learning (DL) tactics, opening up vast possibilities for a 'smart' 

life [4]. 

Deep neural networks (DNNs) have proven their power and 
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achieved great success in many application domains, including 

smart farming and smart healthcare [5]. New degrees of 

accuracy in the supplied findings have been achieved by the 

utilization of deep learning algorithms and large data 

collection made possible by utilizing the sensors incorporated 

in these systems [6]. Training the networks and forming 

inferences now require more computational and memory 

resources, but the accuracy is worth it [7]. For most use cases 

in the typical application areas of IoT schemes, time is of the 

essence, and real-time prediction presentation is expected. 

Inference, in particular, involves more than just multiple 

processed DNN outputs; it involves both devices [8]. 

To handle AI tasks efficiently and rapidly, AI-based 

services often upload raw data straight to the cloud, which is 

necessary because deep learning models require a lot of 

computing power [9]. Since the terminal lacks the 

computational capability to complete a service request alone, 

the raw data is transmitted to the cloud [10]. Network delay, 

data loss, and security threats are all possibilities when data is 

delivered to the cloud, and AI processes it. The cloud then 

provides the output to the terminal. Luckily, DNN-based co-

inference computation uses much less energy and has much 

less latency because the edge device supplies additional 

processing resources to allow distributed computing [11]. 

Central to this concept is the idea of using shallow processing 

to reduce computationally huge raw data from low-

computational devices into smaller features, which can 

subsequently be transmitted to a higher layer for additional 

processing. 

For reasons like big data capacity and privacy issues, the 

raw data is handled by the front of neural networks organized 

in edge strategies. The images, which are data, are then sent to 

the edge layer processing [12]. The final section of the neural 

network labels the characteristics that are transferred to the 

cloud after compression of the unlabeled output. For inference 

procedures that require a lot of processing power but don't 

require a huge amount of data, the cloud layer comes in handy. 

For artificial intelligence applications like face recognition and 

autonomous driving, the user's terminal receives the final 

tagged features [13]. Several supports, including processing 

power of the device, transmission quality of the network, and 

resolution precision, are typically needed for this operation. 

More effective, energy-friendly, and spontaneous scheduling 

of AI tasks using network resources is one of the key issues. 

One of the challenges in developing an integrated solution 

is combining heterogeneous devices on one platform. These 

devices' capabilities, such as transmission bandwidth and 

computing power, are on the rise in urban IoT systems and 

smart devices [14]. Processing power, as a result of energy-

efficient architectural principles, must cater to consumers' 

demands in real-time while exhibiting increased latency 

demands. Intelligent optimization of platform resources, 

including computation, communication, and cache resources, 

is the primary goal of this research. Classical convex 

optimization procedures also become inefficient when it 

comes to scheming a comprehensive plan in a limited amount 

of time due to the increasing number of terminal devices [15]. 

An optimization paradigm was designed to schedule the AI 

co-inference services across many terminal devices, thus 

enhancing the overall quantity of DNN jobs. This paradigm 

was used to tackle the aforementioned problem. Because of the 

demands of these huge devices, this research takes into 

account the possible difficulties that may arise from the 

unequal distribution of transmission and computation 

resources. In recent years, the integration of Artificial 

Intelligence (AI) techniques into various domains has 

revolutionized the way we tackle complex problems and 

optimize system performance. In transportation systems, AI-

powered solutions offer promising opportunities to enhance 

traffic management, reduce congestion, and improve overall 

efficiency. However, deploying AI services in real-world 

traffic environments poses significant challenges, particularly 

in achieving scalability, adaptability, and robustness. 

Traditional traffic management systems often rely on pre-

defined rules or centralized control mechanisms to regulate 

traffic flow and optimize signal timings. While effective to 

some extent, these approaches struggle to cope with the 

dynamic and unpredictable nature of real-time traffic 

conditions. Moreover, centralized architectures can become 

bottlenecks, limiting scalability and resilience in large-scale 

traffic networks. 

The emergence of distributed AI presents a compelling 

alternative, offering the potential to overcome many of these 

limitations. By decentralizing decision-making processes and 

distributing intelligence across interconnected agents, 

distributed AI enables more adaptive and responsive traffic 

control mechanisms. This paradigm shift not only enhances 

scalability and fault tolerance but also fosters collaboration 

and coordination among traffic management entities. 

However, implementing AI services in a distributed manner 

comes with its own set of challenges. Firstly, ensuring 

synchronization and consistency among distributed agents 

while maintaining real-time responsiveness is non-trivial, 

especially in dynamic traffic environments. Secondly, 

effective communication and information exchange between 

decentralized components are crucial for achieving collective 

intelligence and coordinated decision-making 

Moreover, distributed AI systems must contend with issues 

of privacy, security, and data integrity, particularly in the 

context of sensitive traffic data and communication protocols. 

Ensuring trust and compliance with regulatory requirements is 

paramount to the successful deployment of distributed AI in 

traffic management applications. 

Here is how the remainder of the paper is organized: Section 

2 presents the related work; The organization model is shown 

in Section 3; The projected Q-learning is discussed in Section 

4; the results analysis is obtainable in Section 5, and lastly, the 

study activity is summarized in Section 6.  

 

 

2. RELATED WORK 

 

In order to uncover neuro-physiological patterns connected 

to Situation Awareness (SA) and hierarchically recognize Air 

Traffic Controllers' (ATCOs) SA loss associated with 

workload concerns, Li et al. [16] suggest a two-stage analytical 

process that utilizes EEG and eye-tracking data. First, we used 

SA-probe tests to gather behavioral and physiological data in 

a simulated air traffic control (ATC) radar-monitoring 

experiment with varying task loads. Then, we measured the 

participants' perceived workloads using the NASA scale. In 

our research, divided into two phases, we used the Gaussian 

Mixture Model to analyze task performance behavioral data 

and calculate the sample's SA. In the second phase, we 

classified the samples according to their perceived workloads 

using NASA-TLX ratings. Based on the results of Phase I, we 

annotated the physiological data. In Phase II, we used fast 

Fourier transform and Hilbert transform to extract the 
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physiological feature base. Finally, we used linear 

discriminant analysis to extract the core features, which we 

then used to train multiple classifiers. This allowed us to 

achieve our purposes. The results demonstrated that SA loss's 

neuro-physiological behaviors varied between low and high 

workloads. The findings of a leave-one-out validation 

displayed that the optimal performance for 1-level 

classification of high/low SA was 76.1%, and for 2-level 

classification of low SA linked with high workload, it was 

82.7%. 

By utilizing a dataset and data collected from our trial 

flights, Çelik and Eren [17] sought to extract a flight 

fingerprint using several machine learning approaches. We 

used manifold learning algorithms to minimize 

multidimensional UAV sensor data to determine the 

individual flying pattern. A comparison was conducted to 

determine the optimal manifold strategy that achieves the 

maximum classification accuracy (CA). Various manifold 

types and categorization algorithms are used to compare their 

performances. The resulting manifold is further confirmed 

using classification techniques and utilized as a flight 

fingerprint. For the purpose of dimension reduction, a number 

of unsupervised manifold learning algorithms were 

implemented. Various supervised machine learning 

algorithms were evaluated for flight fingerprint classification, 

including k-Nearest Neighbors (k-NN), Adaboost, Neural 

Network, Bayes, and others. Combining the t-SNE manifold 

with the k-NN classification yields the best results in terms of 

classification accuracy. Production line performance testing, 

analysis, anomaly identification, pilot performance 

monitoring, and drone efficiency tracking are just a few of the 

numerous potential uses for the retrieved fingerprint. 

A Non-Divergent Traffic Management Scheme (NDTMS) 

was proposed by Manimurugan and Almutairi [18] to enhance 

roadside driving for both users and automobiles. Using 

environmental navigation data, this scheme can identify and 

categorize nearby vehicles, people, and obstacles. Pervasive 

computing technologies aid in non-deviating smooth 

application assistance by combining two inputs into density 

statistics provided by the input data. Neighbor data extraction 

aids feature matching and traffic reduction. Classifier learning 

links to application-specific needs, addressing the problem of 

data mishandling for traffic management. Using a combination 

of data from navigation, alarms, and communications, this 

pervasive computing technology enables exact traffic 

management. 

In order to automatically and continuously distinguish 

diverse types of unknown traffic generated by different attack 

tools in contradiction of SCADA in real-time, Sheng et al. [19] 

have proposed a self-growing ATC model that is based on a 

novel density-based heuristic clustering algorithm. To further 

enhance ATC performance, an efficient technique of 

representing SCADA system traffic is suggested. Further, the 

suggested strategy is tested by a battery of experiments dataset 

that includes the SCADA dataset and the ICS dataset. In the 

critical scenario of just regular SCADA network traffic, the 

experimental findings demonstrate that the suggested 

technique surpasses current state-of-the-art ATC algorithms. 

An evolutionary feature selection model and a 

Convolutional Neural Network (CNN) are combined in a 

hybrid model for vehicle classification suggested by Alghamdi 

et al. [20]. Sports cars, luxury cars, and hybrid powerhouse 

SUVs are just a few of the eight types of vehicles that the 

suggested model might classify. The data utilized in this study 

comes from the Stanford vehicle dataset, which includes 

nearly 196 different types of vehicles. Once the necessary data 

preparation and preprocessing processes have been completed, 

the next step is to use a pre-trained VGG16 model to learn and 

extract deep features from the input photos. The final fully 

connected layer of VGG16 is used to extract these features, 

and a Genetic Algorithm (GA), an optimization model inspired 

by nature and based on evolution, is used to carry out the 

feature optimization phase. Several support vector machine 

(SVM) kernels are used for the classification, with Cubic SVM 

achieving a 99.7 percent accuracy, surpassing all other kernels 

and performing better than previous efforts. 

In order to identify photos according to the traffic density 

and offer driving assistance, Mane et al. [21] suggest using a 

customized convolutional neural network (CCNN) on traffic 

images. Using footage from deployed cameras, the paper's 

proposed system may track traffic and assign it a high, medium, 

or low priority based on the present scenario. With this model 

as a guide, we may better teach expert systems about traffic 

density in different locations and make informed decisions 

about traffic regulation. To achieve higher accuracy, the 

training process is parallelized and complicated using an 

NVIDIA graphics processing unit (GPU). A real-time dataset 

of traffic footage from Pune city and film from highway 

CCTVs in Seattle, WA, acquired from Washington State, is 

used to assess the performance of the projected system. The 

findings of the experiment estimate the traffic density with a 

level of accuracy of up to 99.6 percent, categorizing it as high, 

medium, or low depending on the current traffic. The findings 

provided by the current algorithms are much inferior to the 

achieved testing accuracy. 

 

 

3. SYSTEM STRUCTURE  

 

After that, the study will provide the suggested system's 

overall architecture and explain the formulas, data transfer, 

inference processing, and capacity limits in detail. 

 

3.1 System framework 

 

Distributed deep learning systems typically have four levels 

of architecture: an input layer that is based on the real world, 

a pre-processing layer that uses terminal devices, an edge-

based inference layer that uses devices in the network's 

periphery, and a cloud-based inference layer that uses devices 

in the cloud. The integration of Artificial Intelligence (AI) 

techniques into transportation systems holds immense promise 

for addressing the challenges of modern urban mobility. With 

cities facing escalating congestion, pollution, and inefficient 

resource utilization, there is an urgent need for innovative 

solutions to optimize traffic flow, reduce travel time, and 

enhance overall transportation efficiency. In this context, the 

adoption of AI-powered traffic management systems has 

emerged as a pivotal strategy to tackle these pressing issues. 

However, while AI offers unprecedented capabilities for 

optimizing traffic control, traditional centralized approaches 

often struggle to adapt to the dynamic and complex nature of 

urban traffic environments. Moreover, as cities continue to 

expand and evolve, the scalability and resilience of existing 

traffic management systems become increasingly strained. In 

response, there is growing interest in leveraging distributed AI 

architectures to overcome these limitations and achieve more 

adaptive and efficient traffic control mechanisms. 
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Raw data layer: Internet of Things apps incorporate a 

variety of AI-based services, such as visual data, speech data, 

and RGB images. Data aimed at artificial intelligence (AI) is 

typically larger before processing to achieve better inference 

accuracy. For example, the maximum bit depth for a video 

frame is 134891 B. The service latency is strongly correlated 

with the user experience when dealing with lesser amounts of 

voice data [22]. It is possible for a single co-inference image 

to exceed 1 Mb/time in size. 

Local layer: In the first layer that processes the raw data, 

the Internet of Things (IoTs) is implanted with the shallow 

neural network. These gadgets help reduce the amount of 

transmission packets and point the way for future inference. 

Updated to neighboring edge devices, the processed data 

consists of unlabeled features. The devices at the edge of a 

network sometimes have less processing capacity, but they 

excel at transforming data contact. 

Edge layer: Although they lack the computing power of the 

cloud, devices in the edge layer are more equipped to provision 

resources due to their involvement in the gateway. The system 

improves processing efficiency by reducing network 

congestion and optimizing the edge devices. It finds idle 

devices to synchronize with and computes the unmarked edge 

devices to upload further by optimizing computing resources. 

The last step in the inference process is for the edge device to 

upload the treated feature statistics to the cloud. 

Cloud layer: The cloud's service capacity usually dictates 

the scheme's overall capacity. We take into account processing, 

which is prevalent in the current architecture of the IoT, in our 

study. Distributed computing structures can better balance 

computer resources, network resources, and device failures 

through the use of optimal algorithms [23]. Assuming 

sufficient bandwidth for feature data transfer to these clouds is 

a key assumption in this work [24]. 

Data preprocessing layer: 

The data preprocessing layer processes and cleans the raw 

traffic data to prepare it for further analysis and modeling. 

Tasks performed in this layer include data filtering, noise 

reduction, missing value imputation, and normalization. 

Preprocessed data is formatted into appropriate input 

representations for subsequent analysis. 

Limitations: Preprocessing techniques may introduce biases 

or loss of information, impacting the quality of input data for 

downstream tasks. 

Feature extraction layer: 

The feature extraction layer extracts relevant features from 

preprocessed traffic data using deep learning techniques, such 

as Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs). 

Features extracted may include spatial and temporal 

patterns, traffic flow dynamics, vehicle trajectories, and 

environmental factors. 

Extracted features serve as input representations for the 

decision-making process in subsequent layers. 

Limitations: The effectiveness of feature extraction may 

depend on the quality and diversity of training data, as well as 

the design of the deep learning models used. 

Decision-making layer: 

The decision-making layer incorporates Q-learning 

algorithms to optimize traffic control policies based on the 

extracted features and current traffic conditions. 

Traffic control agents, such as traffic signal controllers or 

route planners, use Q-learning to learn optimal action-

selection strategies for minimizing travel time, reducing 

congestion, and improving overall traffic flow. 

Decisions made by traffic control agents are based on the 

Q-values learned through reinforcement learning and the 

current state of the traffic network. 

Limitations: Q-learning may require extensive training and 

exploration to converge to optimal policies, and its 

performance may be affected by the complexity and 

stochasticity of traffic environments. 

 

3.2 Networking and task processing 

 

The research describes the data forwarding and task 

dispensation in the suggested structure using a graph as GðV; 

EÞ. The following is an explanation of our three-layer network 

architecture: we reflect terminal devices set as 𝑁 =
{1,2,3, … , 𝑛𝑚𝑎𝑥}, edge layer set as 𝑀 = {1,2,3, … , 𝑚𝑚𝑎𝑥} and 

cloud set as 𝐾 = {1,2,3, … , 𝑘𝑚𝑎𝑥}, correspondingly. Thus, we 

have nodes on the map 𝑣 ∈ {𝑁, 𝑀, 𝐾} = 𝑉 . Assuming that 

local device n includes both fixed and removable smart 

devices, we can say that: a mobile smart device has a stable 

link (edge) and is within the communication range r offered by 

the gateways. The same way around. A fixed edge connects 

the fixation device to the edge device. Suppose the gateway 

has a wired and wireless connection to a device in the local 

layer; device m in the edge layer serves a neighboring gateway 

with different bandwidth; and device n in the cloud layer offers 

the connection to device m in the edge layer in the third tier. 

Cloud k has a set amount of available computing and 

communiqué resources. In each time slot, the scheme 

completes the following three steps: generate tasks, convey is 

considered as 𝑇 = {1,2,3, … , 𝑡𝑚𝑎𝑥}. The N terminal devices in 

the working state produce a set of packets 𝑁g. The M edge-

layer device can receive upon to 𝑀r packets. It makes a set of 

𝑀g  packets congruently. The volume of the cloud is 𝐾r . 

Additional tasks are put into the waiting queue. The broadcast 

links are measured as E, which are DAG. Single DAG 𝐸𝑖 ∈ 𝐸 

is measured as the temporal joining graph for period slot 𝑡i. 

Therefore, the restraints of the data flow are considered as: 

the generation rate of AI tasks for node 𝑣 ∈ {𝑁, 𝑀}  is 

represented as 𝑣g . Arbitrary node’s cohort rate is 𝑣𝑔(𝑡) ∈

{𝑁𝑣
𝑔

} . The overall general rate is measured as 𝑣̅𝑔 =

∑ 𝑣𝑔(𝑡)𝑡∈𝑇 , where incomplete by 𝑣̅𝑔 ≤ 𝑣𝑚𝑎𝑥
𝑔

. The getting rate 

for 𝑣 ∈ {𝑀, 𝑘}  should satisfy 𝑣𝑔(𝑡) ≤ 𝑀𝑣
𝑔

. Therefore, the 

output of node 𝑣 ∈ {𝑀, 𝐾} is 𝑣r , where 𝑣𝑟 ≤ 𝑀𝑣
𝑟  or 𝐾𝑣

𝑟 . Its 

consistent upper processing limit is 𝑣𝑚𝑎𝑥
𝑟 .  

 

3.3 Network activate 

 

In the suggested setup, prior to dealing with AI tasks, the 

routing system activates the network in accordance with the 

following rules: 

(1) Rearrange Network: The wireless node connects to the 

main network and makes a new link. Take the device out of 

graph G that isn't working. 

(2) Link Initiation: From link set E, a matching link is 

triggered when a routing policy is set up. 

(3) A data propagation: the routing method ensures that 

every link is used by sending out at least one packet. 

Furthermore, a link's capacity dictates the maximum number 

of packets that can be transmitted. 

Suppose that 𝑣𝑠(𝑡) is the total amount of data that the node 

needs to broadcast at time t, including both externally 

456



 

generated jobs and its own initial data. The total rate of 

forwarding can be thought of as, 

 

lim
𝑡→∞

𝑣𝑠(𝑡)

𝑡
= 𝑣̅𝑠 = 𝑣̅𝑔 + 𝑣̅𝑞  (1) 

 

and 𝑣̅𝑞  is the communicating data rate. Interim, the data 

dispensation speed in node 𝑣𝑖 is renowned as 

 

lim
𝑡→∞

𝑣𝑟(𝑡)

𝑡
= 𝑣̅𝑟 (2) 

 

The common-sense conclusion is that after ∑ 𝑣𝑟  is at its 

extreme and ∑ 𝑣𝑠  is not. It means the current resource 

distribution policy is accomplished to make the optimal. When 
∑ 𝑣𝑠  is at its extreme, and ∑ 𝑣𝑟  is not, it means additional 

copies are shaped to attain lower latency. 

 

3.4 Scheme optimization goal 

 

The data-generating device in the model is only concerned 

with the final destination of the task up to the point where it is 

chosen in the subsequent layer. Network congestion and the 

processing capacity of the destination determine the data 

forwarding timing. Here, we assume the destination node 𝑣 ∈
{𝑁, 𝑀} is denoted as 𝐷v.  

If we ignore slightly capacity constraints, part of the links is 

full altogether the time. Presumptuous a scheduled route 𝑃, the 

data furtherance rate is measured as, 

 

𝑣𝑠 = ∑ 𝑣𝑔
𝑠

𝑃𝑔∈𝑃

 (3) 

 

where, 𝑣𝑔
𝑠  is the bringing degree of node 𝑣 goes to -path 𝑃𝑔. 

The data rate for node 𝑣  is the sum of each path 𝑃𝑔 ∈ 𝑃 . 

Assume 𝑒𝑖,𝑗  is the volume of the edge node j, the regular 

forwarding rate is measured as 

 

𝑣̅𝑖,𝑗
𝑠 = ∑ 𝑣𝑔 ≤ 𝑒𝑖,𝑗 , where 𝑃𝑔 passes 𝑖 to 𝑗

𝑃𝑔∈𝑃

 (4) 

 

It means the amount of entirely the path’s data proportion is 

incomplete by capacity [25]. The data rate 𝑣i,j corresponds to 

the edge from i to j. Thus, the aforementioned formula limits 

the maximum capacity for any bandwidth-limited network. 

Since only one node can handle segmented inference data at a 

time, no sibling distributed processing solution is available. 

With the node's data receiving bond taken into account, the 

total average getting rate is constrained by the node's 

processing capability. 

 

∑ 𝑣̅𝑔
𝑟 ≤ ∑ 𝑣̅𝑟

𝑣∈{𝑀,𝐾}𝑃𝑔∈𝑃

 (5) 

 

The processing speed of the cloud determines the ultimate 

system output, which is the speed of feature data marking. 

Since the processing capability of the cloud exceeds that of the 

network, one of the obstacles to forwarding is the slowness of 

the network. The final output is affected by traffic caused by 

both local devices, although the volume of lower networks is 

ultimately limited by the capacity of end devices. 

Consequently, making the most of the cloud devices' whole 

receiving capacity is the difficulty. The primary impartial of 

this study is to outline an allocation policy that maximizes the 

clouds, as this is our optimization target. 

 

max 𝑉̅ =
1

|𝑇|
∑ ∑ 𝑣𝑡

𝑟

𝑣∈𝐾𝑡∈𝑇

 

s.t. 𝑣̅𝑖,𝑗
𝑠 ≤ 𝑒𝑖,𝑗 

∑ 𝑣̅𝑔
𝑟

𝑃𝑔∈𝑃

≤ ∑ 𝑣̅𝑟

𝑣∈{𝑀,𝐾}

 

(6) 

 

where, the offloading constraint Eq. (5) and the edge restraint 

Eq. (4) bond this objective. All data rates on nodes v∈K 

during time frame T is added together to get the total data 

reception rate 𝑣̅. The system's continuous output capacity is 

represented by the average data receiving rate 𝑉̅ , where a 

larger rate indicates the completion of more jobs. Achieving 

the best possible outcomes requires a delicate balancing act 

between the overloading of all cohorts, including edges and 

nodes. 

 

 

4. PROPOSED ONLINE LEARNING FRAMEWORKS 

 

To decrease inference latency while attaining sufficient 

accuracy, one must make decisions about offloading and select 

appropriate inference models. In order to accomplish this, we 

lay out the parameters of the optimization problem and then 

suggest an RL agent to handle it. 

 

4.1 Problem formulation 

 

Time spent waiting for a service to respond after a request 

has been made is commonly referred to as response time [26]. 

Response time in our context is the total of computation time 

plus the time it takes for a signal to go from an end- node doing 

the calculation. Response time Tres for a request decision 

tuple 𝑜𝑖 = {𝑜𝑖
𝑆, 𝑜𝑖

𝐸 , 𝑜𝑖
𝐶} can be summarized as follows: 

 

𝑇𝑟𝑒𝑠𝑖
= 𝑜𝑖

𝑆. 𝑇𝑟𝑒𝑠
𝑆 + 𝑜𝑖

𝐸 . 𝑇𝑟𝑒𝑠
𝐸 + 𝑜𝑖

𝐶 . 𝑇𝑟𝑒𝑠
𝐶  (7) 

 

In order to meet the average accuracy constraint, we aim to 

minimize the regular response time. The formulation of the 

problem is as follows: 

 

𝑃1: min
1

𝑁
∑ 𝑇𝑟𝑒𝑠𝑖

(𝑜𝑖 , 𝑑𝑘)

𝑁

𝑖=1

 

s.t. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

(8) 

 

where, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is the spatial regular accuracy for 

concurrent DL implications. 

 

4.2 Reinforcement learning agent 

 

A popular method for automating intelligent, experience-

based decision-making is reinforcement learning (RL). A rule-

based policy is developed by processing data collected over 

time. There are three main parts to every rule. It is possible to 

invoke Q-learning at runtime since it has a minimal execution 

overhead compared to other RL algorithms [27]. On the other 

hand, big space concerns are not something it can handle. 

When dealing with issues involving vast spaces, Q-learning 

has two major drawbacks [28]: (a) As the sum of states and 
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actions grows, so does the quantity of memory needed to store 

and update the Q-values; (b) Accurately populating the table 

with estimates takes too much time for the huge Q-table. We 

have a situation where the space dimension of the problem 

grows as the number of users upsurges. The rationale behind 

this is that the Q-table becomes increasingly complex as the 

sum of users increases. Exploring each stage and updating the 

Q-values so requires additional time. Approximating functions 

is more attractive because of the curse of dimensionality. The 

DQL algorithm integrates deep neural networks with the Q-

learning technique. DQL eliminates the requirement for a table 

to record the Q-values by Q-function. Using (a) epsilon-greedy 

Q-learning and (b) deep Q-learning procedures, we construct 

an RL agent in this study. We test the RL agent using the 

aforementioned techniques, taking into account varying 

degrees of difficulty in the problems. A high-level black 

diagram of our agent is shown in Figure 1. During runtime, the 

RL agent is called upon to make smart orchestration decisions. 

 

 
 

Figure 1. Agent for reinforcement learning utilizing the Q-

learning procedures is proposed. Q-learning stores Q(S, A) 

values in a Q-table, whereas deep Q-learning forecasts Q-

values implemented in a neural network framework 

 

In universal, the agent is composed as shadows: 

State Space: Each computer resource's bandwidth, 

accessible memory, and CPU utilization make up our state 

vector. All of the state's components have discrete values, as 

shown in Table 1. The national vector is defined in the 

following way at time-step τ: 

 

𝑆𝜏 = 
{𝑃𝐸 , 𝑀𝐸 , 𝐵𝐸 , 𝑃𝐶 , 𝑀𝐶 , 𝐵𝐶 , 𝑃𝑆1 , 𝑀𝑆1 , 𝐵𝑆1 , … , 𝑃𝑆𝑛 , 𝑀𝑆𝑛, 𝐵𝑆𝑛} 

(9) 

 

Action Space: The deployment and assignment of inference 

models to specific layers make up the action vector. The end-

node devices can choose from l various models, while the edge 

and cloud devices are confined to always using the high 

accuracy implication perfect. Therefore, the act space is 

defined as 𝑎𝜏 = {𝑜𝑖 , 𝑑𝑗}  where 𝑖 ∈ {𝑆, 𝐸, 𝐶}  and 𝑑𝑗 ∈

{𝑑1, 𝑑2, . . . , 𝑑𝑙}. 

Reward Function: A DL inference request's reward function 

is its negative average response time. In this scenario, the goal 

of the agent is to reduce the regular response time. The 

calculation of reward R is done in such a way that the agent 

reduces average reaction time while satisfying the accuracy 

restriction: 

If 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 
𝑅𝜏 ← −𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒  

Else: 

𝑅𝜏 ← −𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒.  
In order to implement the accuracy constraint, the smallest 

reward that can be given out is given out if the accuracy 

threshold is surpassed. The benefit, however, is a decrease in 

average response time when the chosen accuracy condition. 

 

Table 1. State discrete standards 

 
State  Description Discrete Values 

𝑀𝐶 Cloud Memory Utilization Available, Busy 

𝐵𝐶  Cloud Available Bandwidth Regular, Weak 

𝐵𝑆𝑖  End-node Obtainable Bandwidth Regular, Weak 

𝑃𝐸 Edge CPU Utilization Nine discrete levels 

𝑀𝐸 Edge Memory Utilization Busy 

𝐵𝐸 Edge Available Bandwidth Regular, Weak 

𝑃𝐶 Cloud CPU Utilization Nine discrete levels 

𝑀𝑆𝑖  End-node Utilization Available, Busy 

 

4.2.1 Q-learning algorithm 

To determine the worth of a deed in a given state, the Q-

learning method employs model-free reinforcement learning. 

Problems involving stochastic transitions and incentives can 

be handled by the method without the need for an environment 

model. Data are stored in a Q-table using the Q-learning 

method. An agent is organized like a table, with states on one 

hand and actions on the other. Every cell in the Q-table has a 

Q-value that is an estimate of the total instant and future 

reward for the corresponding state-action pair. A popular 

modification to Q-learning, epsilon-greedy, helps to prevent 

becoming trapped at local optima. 

 

4.2.2 Deep Q-learning algorithm 

Many real-world problems have been solved with Q-

learning. However, it has limitations when dealing with 

problems that have multiple inputs and outputs in high 

dimensions, as representing the Q-function as a Q-table for 

large pairs of S and A is not viable. Additionally, Q(S, A) 

couples cannot be traversed by it. Therefore, a neural network 

is employed to estimate the Q-values. The deep Q-learning 

Network (DQN) is used for this purpose, outputting the 

matching Q-value for the supplied action input, which takes 

the current state and likely actions as inputs. The neural 

network approximation allows for solving problems involving 

high-dimensional spaces [29]. 

Stability is a major issue with deep Q-learning. To address 

this, the replay buffer technique is included in the DQL 

algorithm, helping to mitigate instability arising from training 

on sequential data that is correlated [30]. Using a buffer, the 

loss and its gradient are determined during training. A new 

record is added to the buffer whenever the agent progresses to 

the next state as a result of an action choice. This is part 1 of 

the deep Q-learning procedure. 

Suitability: Q-learning, a form of reinforcement learning, 

is well-suited for traffic control applications due to its ability 

to learn optimal control policies through trial and error in 

dynamic and uncertain environments. Traffic control 

inherently involves making sequential decisions based on 

current states and expected future rewards (e.g., minimizing 

travel time or reducing congestion). Q-learning's iterative 

learning process allows traffic control agents to adapt their 

actions over time based on observed rewards, thereby 

optimizing traffic flow and efficiency. 

Decentralized decision-making: In traffic management 

systems, where multiple intersections or traffic signals operate 
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concurrently, Q-learning facilitates decentralized decision-

making. Each traffic control agent (e.g., traffic signal 

controller) can learn and update its control policy 

independently based on local traffic conditions. This 

decentralized approach enhances scalability and resilience, as 

traffic control agents can adapt autonomously to changes in 

traffic patterns without relying on centralized coordination. 

Adaptability: Q-learning's adaptability is particularly 

advantageous in dynamic traffic environments where 

traditional rule-based approaches may be inadequate. By 

continuously updating action-value functions based on 

observed rewards, Q-learning enables traffic control agents to 

respond effectively to changing traffic conditions, such as 

fluctuations in traffic volume, unexpected incidents, or road 

closures. 

Deep learning:  

Feature Representation: Deep learning techniques, such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), excel at learning complex patterns and 

representations from raw sensor data. In traffic control 

applications, deep learning models can extract meaningful 

features from various sources, including traffic camera feeds, 

vehicle trajectory data, and environmental sensors. These 

extracted features serve as valuable inputs to decision-making 

processes, enhancing the understanding of current traffic 

conditions and aiding in predictive modeling. 

 
Algorithm 1: Deep Q-learning algorithm with experience replay 

1: Initialization in design time: 
Initialize replay buffer 𝐷 to capacity 𝑁 
Initialize action − value function 𝑄 𝑤ith random weight 𝜃 
3: for episode =  1, Episodes do 
4: From Resource Monitoring: 
𝑆𝜏 ←  State at step 𝜏 
5: if 𝑅𝐴𝑁 𝐷 <  𝜖 then 
6: Choose random action 𝐴𝜏 
7: else 
8: Choose action 𝐴𝜏 with largest 𝑄𝜃 (𝑆𝜏 , 𝐴𝜏 ) 
9: end if 
10: Monitor the response time for each device 
11: Calculate reward 𝑅𝜏 
12: Store the record (𝑆𝜏 , 𝐴𝜏 , 𝑅𝜏 , 𝑆𝜏 + 1) into buffer 𝐷 
13: Sample random mini − batch of records from buffer 𝐷 
14: To Updating 𝑄 − Network: 
Compute temporal difference loss with respect to the network 

parameter θ, which is optimally selected by proposed SA 

−GSO. 
15: 𝑆𝜏 ←  𝑆𝜏 + 1 
16: end for 
17: end for 

 

4.2.3 Optimal parameter identification using SA-GSO 

During the routing phase, the SA-GSO procedure can be 

utilized effectively to identify the best pathways to the 

destination. Using the glow-worm's light as a signal to entice 

other glow-worms is the basis of GSO [31], an intelligently 

tailored approach. This tactic makes use of a swarm of solution 

space glow-worms that are scattered at random. The placement 

of each glowworm indicates a potential solution.  

Raining process: 

The training of the traffic control agent, which employs Q-

learning, involves iterative interactions with the traffic 

environment to learn optimal control policies. 

At each time step, the agent observes the current state of the 

traffic network, selects an action based on its policy (either 

exploiting learned knowledge or exploring new actions), 

executes the action, observes the resulting state transition and 

associated reward, and updates its Q-values accordingly. 

The training process continues for multiple episodes, 

allowing the agent to gradually refine its control policies and 

improve performance over time. 

Hyperparameters: 

Learning rate (α): Determines the rate at which the agent 

updates its Q-values based on observed rewards. A higher 

learning rate may lead to faster convergence but risks 

instability, while a lower learning rate may result in slower 

learning but greater stability. 

Discount factor (γ): Balances the importance of immediate 

rewards versus future rewards in the agent's decision-making 

process. A higher discount factor gives more weight to future 

rewards, encouraging the agent to prioritize long-term benefits 

over short-term gains. 

Exploration rate (ε): Controls the balance between 

exploration and exploitation in the agent's action selection 

strategy. A higher exploration rate increases the likelihood of 

exploring new actions, facilitating the discovery of optimal 

policies, while a lower exploration rate prioritizes exploitation 

of learned knowledge. 

Number of episodes: Determines the number of iterations 

or episodes over which the agent is trained. More episodes 

allow for more extensive exploration of the state-action space 

but may also increase training time. 

Batch Size: Specifies the number of state-action pairs 

sampled from the replay buffer during each training iteration. 

Larger batch sizes may lead to more stable learning but require 

more computational resources. 

Attracting worm with the lowest luminosity is the job of the 

brightest glow-worm. This achieves the method's goal of 

global optimization. The primary steps are as follows: 

First, set the basic limit of GSO to an initial value. Included 

in this parameter are the following: the upgrade rate b, the 

collection of glowworms 𝑁𝑖(𝑡) field, the threshold nt for the 

sum of glow-worms in the neighborhood, the range rs, and the 

change phase s. It also contains the population size g and factor 

r. 

Step 2. Using the following equation, the fitness charge of 

glow-worm i at the tth repetition was adjusted according to 

value. 

 

𝑙𝑖(𝑡) = (1 − 𝜌)𝑙𝑖(𝑡 − 1) + 𝛾𝐽(𝑋(𝑡)) (10) 

 

where, g is the fluorescein improvement constant and r is the 

range of values for the fluorescein decomposition constant. 

Stage 3. All select entities with superior brightness than 

themselves in their radius 𝑟𝑑
𝑖 (𝑡)  for the process of their 

neighbor set 𝑁𝑖(𝑡). 

Stage 4. Calculate the probability 𝑝𝑖𝑗(𝑡)  of glow-worm 

𝑋𝑖(𝑡)  moving the glow-worm 𝑋𝑗(𝑡)  from their dynamic 

choice range by Eq. (11): 
 

𝑝𝑖𝑗(𝑡) =
𝑙𝑗(𝑡) − 𝑙𝑖(𝑡)

∑ 𝑙𝑘(𝑡) − 𝑙𝑖(𝑡)𝑘∈𝑁𝑖(𝑡)

 (11) 

 

Stage 5. Promotion the residence of glow-worm X(t) in Eq. 

(12): 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑠 × [
𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)

‖𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)‖
] (12) 
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Step 6. Promotion -worm 𝑋(𝑡) in Eq. (13): 

 

𝑟𝑑
𝑖 (𝑡 + 1) = 𝑚𝑖𝑛{𝑟𝑠 , 𝑚𝑎𝑥{0, 𝛽 × (𝑛𝑡 − |𝑁𝑖(𝑡)|)}} (13) 

 

In most cases, the GSO algorithm will assign a fixed value 

to the step size based on established criteria. Given the 

significance of selecting an appropriate step size for best 

results, this study takes into account two variables that affect 

the step size: the total sum of rounds and the distance among 

the glow-worm and its optimal state at the nith round. The size 

of the step increases when the worms are farther away from 

the optimal solutions and decreases when they are closer. 

When the ith glow-worm reveals the best option in the nith 

round, the step size of that worm is 0. The SA-GSO procedure 

is created from the GSO algorithm by using a self-adaptive 

step size formulation, as shown below, after the effect of 

changing the step size on the method has been investigated: 

 

𝑠𝑖(𝑡) = 𝐷𝑖(𝑡). (𝑙𝑒𝑛 (𝑒 −
𝑡

𝑁𝑡

)) ‖𝑥𝑖(𝑡) − 𝑥𝑏(𝑡)‖ (14) 

 

where, each 𝑥𝑖(𝑡) is allocated to precisely one 𝑠𝑖(𝑡), even if it 

could be allocated to additional of them, where 𝐷𝑖(𝑡) arbitrary 

sum in unchanging delivery, 𝑁t  denotes extreme iterations, 

and 𝑥𝑏(𝑡) designates the site of worm at the tth round. 

By utilizing the greatest parameter charge from Algorithm 

1, we can calculate the maximal fitness, as the fitness with the 

maximum charge is deemed the ideal path. The following 

formulas can be used to evaluate the maximal fitness function: 

 

𝐵 =
1

3𝑎2 × 𝜂
∑[𝐷𝑇 + 𝑅𝑇 + 𝐻𝑇]

𝑎

𝐾=1

 (15) 

 

whereas B characterizes fitness function. 

 

 

5. RESULTS AND DISCUSSION  

 

Here, we put our theory and the algorithm we suggested to 

the test. We check whether a policy computing algorithm 

based on Q-learning can handle real-time control. 

 

5.1 Application deployment experiments 

 

A total of four devices—a Raspberry Pi 3 laptop (i5 2.4 GHz, 

4 GB RAM), a desktop (i7 3.4 GHz, 16 GB RAM), and a 

server (i7 4 GHz, 32 GB RAM)—are employed in the study to 

assess the running time using Python repeatedly. The 

processing time required by cloud devices is significantly 

lower than that of other devices when 72 kb photos are input. 

Here, we've adjusted the Raspberry Pi time to 0.2 times the 

real time so it's easier to see literature [32]. As new processing 

layers are added, the PC adjusts to handle them. The 

exceptional computation performance of desktop computers 

makes them superior to mobile devices when it comes to 

processing jobs. 

Size of the Dataset: We discover that traditional layers have 

the normal quantity of data by dividing the data size of each 

object identification task by the file size. A higher file size is 

escorted by a shorter sum of layers. A larger disparity in the 

amount of output data is observed in the pooling layer as a 

result of adjusting the parameters. Consequently, the scheme 

automatically slices the neural network to reduce total 

resource ingesting when applying the CNN perfect with 

numerous settings. 

Ways of Learning: Using a GeForce RTX 2080 graphics 

card, we trained 10,000 records at a global training level of 

about 1600 during the experiment. Using workstation-level 

graphics cards could further compress the round costs, which 

are between 0.15 and 0.19 seconds. Consequently, the time 

required for the local learning process is 140 seconds. The time 

cost is also managed within the interval of 0.1s to 0.5s when 

positioned transfer learning. The processing time of the output 

assignment strategy is under 100ms, which is reasonable when 

compared to other algorithms and obviously better than brute 

force searches. On top of that, the system control can be more 

easily maintained because the data collecting, learning, and 

allocation scheme calculation processes run in parallel. 

 

5.2 Validation analysis of proposed model 

 

In the Table 2 and Figure 2, the characterization shows the 

data flow vs coverage. In the analysis of the proposed model, 

800 data flows are achieved at a coverage of 65, 1000 data 

flows at a coverage of 76, 1200 data flows at a coverage of 91, 

1400 data flows at a coverage of 94, 1600 data flows at a 

coverage of 94, 1800 data flows at a coverage of 94, and 2000 

data flows at a coverage of 94, respectively. 

 

Table 2. Data flow vs coverage 

 
Data 

Flow 
800 1000 1200 1400 1600 1800 2000 

Proposed 65 76 91 94 94 94 94 

LSTM 55 71 85 89 89 89 89 

RNN 45 60 62 65 70 71 69 

DCNN 35 40 45 40 45 40 45 

DBN 37 20 25 30 27 25 20 

 

 
 

Figure 2. Coverage rate 

 

Next, the LSTM model achieves 800 data flows at a 

coverage of 55, 1000 data flows at a coverage of 71, 1200 data 

flows at a coverage of 85, 1400 data flows at a coverage of 89, 

1800 data flows at a coverage of 89, 1800 data flows at a 

coverage of 89, and 2000 data flows at a coverage of 89, 

respectively. 

Following that, the RNN model attains 800 data flows at a 

coverage of 45, 1000 data flows at a coverage of 60, 1200 data 

flows at a coverage of 62, 1400 data flows at a coverage of 65, 

1400 data flows at a coverage of 70, 1600 data flows at a 

coverage of 71, and 2000 data flows at a coverage of 69, 
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respectively. 

Then, the DCNN model achieves 800 data flows at a 

coverage of 35, 1000 data flows at a coverage of 40, 1200 data 

flows at a coverage of 45, 1400 data flows at a coverage of 40, 

1600 data flows at a coverage of 45, 1800 data flows at a 

coverage of 40, and 2000 data flows at a coverage of 45, 

respectively. 

Finally, the DBN model attains 800 data flows at a coverage 

of 37, 1000 data flows at a coverage of 20, 1200 data flows at 

a coverage of 25, 1400 data flows at a coverage of 30, 1800 

data flows at a coverage of 27, 1800 data flows at a coverage 

of 25, and 2000 data flows at a coverage of 20, respectively. 

In Table 3 and Figure 3, the characterization shows the data 

flow vs the number of data packets. In the analysis of the 

proposed model, 800 data flows are achieved with the number 

of data packets at 70, 1000 data flows with the number of data 

packets at 75, 1400 data flows with the number of data packets 

at 120, 1600 data flows with the number of data packets at 135, 

1600 data flows with the number of data packets at 142, 1800 

data flows with the number of data packets at 175, and 2000 

data flows with the number of data packets at 180, respectively. 

 

Table 3. Data flow vs number of data packets 

 
Data 

Flow 
800 1000 1200 1400 1600 1800 2000 

Proposed 70 75 120 135 142 175 180 

LSTM 20 40 60 70 80 90 90 

RNN 20 25 30 35 40 45 45 

DCNN 30 32 34 38 40 48 55 

DBN 20 21 23 25 24 23 21 

 

 
 

Figure 3. Number of data packets 

 

Next, the LSTM model achieves 800 data flows with the 

number of data packets at 20, 1000 data flows with the number 

of data packets at 40, 1200 data flows with the number of data 

packets at 60, 1400 data flows with the number of data packets 

at 70, 1600 data flows with the number of data packets at 80, 

1800 data flows with the number of data packets at 90, and 

2000 data flows with the number of data packets at 90, 

respectively. 

Following that, the RNN model attains 800 data flows with 

the number of data packets at 20, 1000 data flows with the 

number of data packets at 25, 1200 data flows with the number 

of data packets at 30, 1400 data flows with the number of data 

packets at 35, 1600 data flows with the number of data packets 

at 40, 1800 data flows with the number of data packets at 45, 

and 2000 data flows with the number of data packets at 45, 

respectively. 

Then, the DCNN model achieves 800 data flows with the 

number of data packets at 30, 1200 data flows with the number 

of data packets at 32, 1400 data flows with the number of data 

packets at 34, 1600 data flows with the number of data packets 

at 38, 40, 1800 data flows with the number of data packets at 

48, and 2000 data flows with the number of data packets at 55, 

respectively. 

Finally, the DBN model attains 800 data flows with the 

number of data packets at 20, 1000 data flows with the number 

of data packets at 21, 1200 data flows with the number of data 

packets at 23, 1400 data flows with the number of data packets 

at 25, 1600 data flows with the number of data packets at 24, 

1800 data flows with the number of data packets at 23, and 

2000 data flows with the number of data packets at 21, 

respectively. 

In Table 4 and Figure 4, the characterization shows the 

Delay flow vs delay. In the analysis of the proposed model, 

800 data flows are achieved with the delay at 0.40, 1000 data 

flows with the delay at 0.38, 1200 data flows with the delay at 

0.37, 1400 data flows with the delay at 0.35, 1600 data flows 

with the delay at 0.30, 1800 data flows with the delay at 0.27, 

and 2000 data flows with the delay at 0.25, respectively. 

 

Table 4. Delay flow vs delay 

 
Data 

Flow 
800 1000 1200 1400 1600 1800 2000 

Proposed 0.40 0.38 0.37 0.35 0.30 0.27 0.25 

LSTM 0.11 0.14 0.16 0.18 0.20 0.21 0.22 

RNN 0.20 0.19 0.18 0.17 0.16 0.15 0.14 

DCNN 0.10 0.14 0.18 0.22 0.24 0.26 0.28 

DBN 0.30 0.28 0.26 0.25 0.26 0.25 0.26 

 

 
 

Figure 4. Delay analysis 

 

Next, the LSTM model achieves 800 data flows with the 

delay at 0.11, 1000 data flows with the delay at 0.14, 1200 data 

flows with the delay at 0.16, 1400 data flows with the delay at 

0.18, 1600 data flows with the delay at 0.20, 1800 data flows 

with the delay at 0.21, and 2000 data flows with the delay at 

0.22, respectively. 

Following that, the RNN model attains 800 data flows with 

the delay at 0.20, 1000 data flows with the delay at 0.19, 1200 

data flows with the delay at 0.18, 1400 data flows with the 

delay at 0.17, 1600 data flows with the delay at 0.16, 1800 data 

flows with the delay at 0.15, and 2000 data flows with the 

delay at 0.14, respectively. 

Then, the DCNN model achieves 800 data flows with the 

delay at 0.10, 1000 data flows with the delay at 0.14, 1200 data 

flows with the delay at 0.18, 1400 data flows with the delay at 

0.22, 1600 data flows with the delay at 0.24, 1800 data flows 
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with the delay at 0.26, and 2000 data flows with the delay at 

0.28, respectively. 

Finally, the DBN model attains 800 data flows with the 

delay at 0.30, 1000 data flows with the delay at 0.28, 1200 data 

flows with the delay at 0.26, 1400 data flows with the delay at 

0.25, 1600 data flows with the delay at 0.26, 1800 data flows 

with the delay at 0.25, and 2000 data flows with the delay at 

0.26, respectively. 

In Table 5 and Figure 5, it is demonstrated the Traffic flow 

vs the average number of collisions. In the analysis of the 

proposed model, 800 data flows result in the sum of collisions 

as 2, 1000 data flows result in the sum of collisions as 4, 1200 

data flows result in the sum of collisions as 6, 1400 data flows 

result in the sum of collisions as 8, 1600 data flows result in 

the sum of collisions as 9, 1800 data flows result in the sum of 

collisions as 10, and 2000 data flows result in the sum of 

collisions as 11, respectively. 

 

Table 5. Traffic flow vs average number of collisions 

 
Data 

Flow 
800 1000 1200 1400 1600 1800 2000 

Proposed 2 4 6 8 9 10 11 

LSTM 3 3 4 4 6 6 8 

RNN 1 2 2 2 3 3 5 

DCNN 1 3 4 5 5 7 7 

DBN 0 1 1 1 2 2 3 

 

 
 

Figure 5. Analysis of collisions 

 

Next, the LSTM model achieves 800 data flows with the 

sum of collisions as 3, 1000 data flows with the sum of 

collisions as 3, 1200 data flows with the sum of collisions as 

4, 1400 data flows with the sum of collisions as 4, 1600 data 

flows with the sum of collisions as 6, 1800 data flows with the 

sum of collisions as 6, and 2000 data flows with the sum of 

collisions as 8, respectively. 

Following that, the RNN model attains 800 data flows with 

the sum of collisions as 1, 1000 data flows with the sum of 

collisions as 2, 1200 data flows with the sum of collisions as 

2, 1400 data flows with the sum of collisions as 2, 1400 data 

flows with the sum of collisions as 3, 1600 data flows with the 

sum of collisions as 3, and 1800 data flows with the sum of 

collisions as 5, respectively. 

Then, the DCNN model achieves 800 data flows with the 

sum of collisions as 1, 1000 data flows with the sum of 

collisions as 3, 1200 data flows with the sum of collisions as 

4, 1400 data flows with the sum of collisions as 5, 1600 data 

flows with the sum of collisions as 5, 1800 data flows with the 

sum of collisions as 7, and 2000 data flows with the sum of 

collisions as 7, respectively. 

Finally, the DBN model attains 800 data flows with the sum 

of collisions as 0, 1000 data flows with the sum of collisions 

as 1, 1200 data flows with the sum of collisions as 1, 1400 data 

flows with the sum of collisions as 1, 1600 data flows with the 

sum of collisions as 2, 1800 data flows with the sum of 

collisions as 2, and 2000 data flows with the sum of collisions 

as 3, respectively.  

Analyze the learning dynamics of the Q-learning algorithm 

over the course of training episodes. Plot learning curves to 

visualize how the agent's performance evolves over time and 

assess convergence behavior. 

Investigate any instances of slow convergence or instability 

in the learning process. Identify potential causes, such as 

suboptimal hyperparameters, insufficient exploration, or 

convergence to local optima, and propose strategies to address 

these issues. 

 

 

6. CONCLUSION AND FUTURE WORK 

 

The optimization and coordination of modern AI task-

oriented structures heavily rely on AI-based solutions. As the 

number of smart devices continues to rise, there is a growing 

need to develop efficient strategies for managing dispersed co-

inference-oriented service optimization issues. In this context, 

this paper focuses specifically on deep Q-learning, aiming to 

address the challenge of optimizing total throughput in a three-

tier synergistic inference scheme. The main challenge in 

optimizing total throughput lies in finding a balance among 

imbalanced resources such as transmission, computation, and 

caching. Traditional approaches often struggle to effectively 

allocate resources and coordinate tasks in such heterogeneous 

environments, leading to suboptimal performance and 

resource wastage. In this article, we propose a priority-based 

advancement method and a deep Q-learning-based multicopy 

reserve allocation procedure to address these challenges. Our 

approach leverages the consumption of multiple resources 

after establishing the Lyapunov stability of virtual queues, 

enabling more efficient utilization of available resources and 

better coordination of inference tasks across the network. 

Through empirical evaluations and performance assessments, 

we demonstrate the viability and superiority of our proposed 

approach for the distributed co-inference scheme. Our results 

show a significant throughput increase of 11.3 percent 

compared to other benchmarks, highlighting the effectiveness 

of our approach in optimizing resource allocation and 

improving overall system performance.  

Additionally, we aim to investigate the applicability of our 

approach in various real-world scenarios and diverse domains 

beyond the scope of our current study. This includes exploring 

its effectiveness in domains such as edge computing, Internet 

of Things (IoT) networks, and cloud-based services, where 

distributed co-inference schemes are prevalent. 
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