
Holistic Traffic Control Through Q-Learning and Enhanced Deep Learning for Distributed

Co-Inference

Suryachandra Palli1, Ghamya Kotapati2 , Kranthi Kumar Lella3 , Jagadeeswara Rao Palisetti4 ,

Dorababu Sudarsa5 , Syed Ziaur Rahman6 , Ramesh Vatambeti7*

1 Department of Computer Science, Government Degree College, Pattikonda 518380, India
2 Department of AI & ML, School of Computing, Mohan Babu University, Tirupati 517102, India
3 School of Computer Science and Engineering, VIT-AP University, Vijayawada 522237, India
4 Department of Computer Science and Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram 521230, India
5 Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur

522302, India
6 Faculty of Information Technology, Majan University College (Affiliated to University of Bedfordshire, United Kingdom),

Muscat 710, Oman
7 School of Computer Science and Engineering, VIT-AP University, Vijayawada 522237, India

Corresponding Author Email: ramesh.v@vitap.ac.in

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.570215 ABSTRACT

Received: 17 January 2024

Revised: 22 March 2024

Accepted: 9 April 2024

Available online: 28 April 2024

Services for AI tasks have garnered a lot of attention as an integral aspect of intelligent

services in the new era. However, implementing such a system in a stable and distributed

manner, while simultaneously coordinating the use of cloud computing and remote edge

devices, is challenging due to the pressing need for energy and computing resources. The

primary contribution of this study lies in the development of a distributed co-inference

architecture that harnesses the collective intelligence of interconnected agents to optimize

traffic flow in real-time. By combining Q-learning with enhanced deep learning, our

approach enables traffic signals and routing decisions to adapt dynamically to changing

traffic patterns and environmental conditions. The security, responsiveness, and

dependability of intelligent systems deployed close to end-users are improved by

deploying deep learning systems. Another critical aspect where latency and accuracy in

models are traded off is deep learning model optimization. Finding the best offloading

policy and model for deep learning services requires an end-to-end decision-making

solution that takes into account computation-communication problems. This study

presents a holistic network optimization approach for scheduling AI services based on

artificial intelligence. By adjusting for differences in computational resources and network

congestion, the suggested deep Q-learning technique maximizes the throughput of AI tasks

in general. This research introduces a virtual queue for analyzing the system's Lyapunov

stability and employs a multi-hop Directed Acyclic Graph (DAG) to explain Q-learning

of Reinforcement learning-based co-inference network topology. To optimize the total

task processing rate, the study develops an Optimized self-adaptive glow worm swarm

optimization method (SA-GSO) based on deep Q-learning. It then proposes a priority-

based data forwarding approach for efficiency. The study concludes by simulating the

distributed co-inference system's platform. We attest to the superiority of our idea by

comparing it to other standards.

Keywords:

Q-Learning, deep learning, reinforcement

learning agent, co-inference

1. INTRODUCTION

Thanks to an ongoing mutual benefit, artificial intelligence

(AI) has made tremendous strides in the last 20 years, giving

rise to what is now known as AI-enabled IoT and realizing the

goal of pervasive intelligence [1, 2]. A new network

architecture can be built and effectively used with the help of

methods and knowledge created under the Internet of Things

(IoT) paradigm. This architecture will consist of

interconnected ambient sensing devices, such as embedded

devices and mobile phones, that are resource-constrained [3].

These devices are often called user equipment (UE) in the

relevant literature. In this area, the main focus has been on

creating and implementing more efficient and faster network

infrastructures and building more precise sensing platforms.

Massive improvements in these systems' sensing capabilities

have made it possible to gather and store vast amounts of data,

enabling ever-more-advanced artificial intelligence techniques,

ranging from classic ML approaches to more modern deep

learning (DL) tactics, opening up vast possibilities for a 'smart'

life [4].

Deep neural networks (DNNs) have proven their power and

Journal Européen des Systèmes Automatisés
Vol. 57, No. 2, April, 2024, pp. 453-464

Journal homepage: http://iieta.org/journals/jesa

453

mailto:ramesh.v@vitap.ac.in
https://orcid.org/0000-0002-0879-7304
https://orcid.org/0000-0001-7736-5321
https://orcid.org/0009-0000-0096-6911
https://orcid.org/0000-0002-2339-4036
https://orcid.org/0000-0002-9007-6556
https://orcid.org/0000-0002-2611-4925
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.570215&domain=pdf

achieved great success in many application domains, including

smart farming and smart healthcare [5]. New degrees of

accuracy in the supplied findings have been achieved by the

utilization of deep learning algorithms and large data

collection made possible by utilizing the sensors incorporated

in these systems [6]. Training the networks and forming

inferences now require more computational and memory

resources, but the accuracy is worth it [7]. For most use cases

in the typical application areas of IoT schemes, time is of the

essence, and real-time prediction presentation is expected.

Inference, in particular, involves more than just multiple

processed DNN outputs; it involves both devices [8].

To handle AI tasks efficiently and rapidly, AI-based

services often upload raw data straight to the cloud, which is

necessary because deep learning models require a lot of

computing power [9]. Since the terminal lacks the

computational capability to complete a service request alone,

the raw data is transmitted to the cloud [10]. Network delay,

data loss, and security threats are all possibilities when data is

delivered to the cloud, and AI processes it. The cloud then

provides the output to the terminal. Luckily, DNN-based co-

inference computation uses much less energy and has much

less latency because the edge device supplies additional

processing resources to allow distributed computing [11].

Central to this concept is the idea of using shallow processing

to reduce computationally huge raw data from low-

computational devices into smaller features, which can

subsequently be transmitted to a higher layer for additional

processing.

For reasons like big data capacity and privacy issues, the

raw data is handled by the front of neural networks organized

in edge strategies. The images, which are data, are then sent to

the edge layer processing [12]. The final section of the neural

network labels the characteristics that are transferred to the

cloud after compression of the unlabeled output. For inference

procedures that require a lot of processing power but don't

require a huge amount of data, the cloud layer comes in handy.

For artificial intelligence applications like face recognition and

autonomous driving, the user's terminal receives the final

tagged features [13]. Several supports, including processing

power of the device, transmission quality of the network, and

resolution precision, are typically needed for this operation.

More effective, energy-friendly, and spontaneous scheduling

of AI tasks using network resources is one of the key issues.

One of the challenges in developing an integrated solution

is combining heterogeneous devices on one platform. These

devices' capabilities, such as transmission bandwidth and

computing power, are on the rise in urban IoT systems and

smart devices [14]. Processing power, as a result of energy-

efficient architectural principles, must cater to consumers'

demands in real-time while exhibiting increased latency

demands. Intelligent optimization of platform resources,

including computation, communication, and cache resources,

is the primary goal of this research. Classical convex

optimization procedures also become inefficient when it

comes to scheming a comprehensive plan in a limited amount

of time due to the increasing number of terminal devices [15].

An optimization paradigm was designed to schedule the AI

co-inference services across many terminal devices, thus

enhancing the overall quantity of DNN jobs. This paradigm

was used to tackle the aforementioned problem. Because of the

demands of these huge devices, this research takes into

account the possible difficulties that may arise from the

unequal distribution of transmission and computation

resources. In recent years, the integration of Artificial

Intelligence (AI) techniques into various domains has

revolutionized the way we tackle complex problems and

optimize system performance. In transportation systems, AI-

powered solutions offer promising opportunities to enhance

traffic management, reduce congestion, and improve overall

efficiency. However, deploying AI services in real-world

traffic environments poses significant challenges, particularly

in achieving scalability, adaptability, and robustness.

Traditional traffic management systems often rely on pre-

defined rules or centralized control mechanisms to regulate

traffic flow and optimize signal timings. While effective to

some extent, these approaches struggle to cope with the

dynamic and unpredictable nature of real-time traffic

conditions. Moreover, centralized architectures can become

bottlenecks, limiting scalability and resilience in large-scale

traffic networks.

The emergence of distributed AI presents a compelling

alternative, offering the potential to overcome many of these

limitations. By decentralizing decision-making processes and

distributing intelligence across interconnected agents,

distributed AI enables more adaptive and responsive traffic

control mechanisms. This paradigm shift not only enhances

scalability and fault tolerance but also fosters collaboration

and coordination among traffic management entities.

However, implementing AI services in a distributed manner

comes with its own set of challenges. Firstly, ensuring

synchronization and consistency among distributed agents

while maintaining real-time responsiveness is non-trivial,

especially in dynamic traffic environments. Secondly,

effective communication and information exchange between

decentralized components are crucial for achieving collective

intelligence and coordinated decision-making

Moreover, distributed AI systems must contend with issues

of privacy, security, and data integrity, particularly in the

context of sensitive traffic data and communication protocols.

Ensuring trust and compliance with regulatory requirements is

paramount to the successful deployment of distributed AI in

traffic management applications.

Here is how the remainder of the paper is organized: Section

2 presents the related work; The organization model is shown

in Section 3; The projected Q-learning is discussed in Section

4; the results analysis is obtainable in Section 5, and lastly, the

study activity is summarized in Section 6.

2. RELATED WORK

In order to uncover neuro-physiological patterns connected

to Situation Awareness (SA) and hierarchically recognize Air

Traffic Controllers' (ATCOs) SA loss associated with

workload concerns, Li et al. [16] suggest a two-stage analytical

process that utilizes EEG and eye-tracking data. First, we used

SA-probe tests to gather behavioral and physiological data in

a simulated air traffic control (ATC) radar-monitoring

experiment with varying task loads. Then, we measured the

participants' perceived workloads using the NASA scale. In

our research, divided into two phases, we used the Gaussian

Mixture Model to analyze task performance behavioral data

and calculate the sample's SA. In the second phase, we

classified the samples according to their perceived workloads

using NASA-TLX ratings. Based on the results of Phase I, we

annotated the physiological data. In Phase II, we used fast

Fourier transform and Hilbert transform to extract the

454

physiological feature base. Finally, we used linear

discriminant analysis to extract the core features, which we

then used to train multiple classifiers. This allowed us to

achieve our purposes. The results demonstrated that SA loss's

neuro-physiological behaviors varied between low and high

workloads. The findings of a leave-one-out validation

displayed that the optimal performance for 1-level

classification of high/low SA was 76.1%, and for 2-level

classification of low SA linked with high workload, it was

82.7%.

By utilizing a dataset and data collected from our trial

flights, Çelik and Eren [17] sought to extract a flight

fingerprint using several machine learning approaches. We

used manifold learning algorithms to minimize

multidimensional UAV sensor data to determine the

individual flying pattern. A comparison was conducted to

determine the optimal manifold strategy that achieves the

maximum classification accuracy (CA). Various manifold

types and categorization algorithms are used to compare their

performances. The resulting manifold is further confirmed

using classification techniques and utilized as a flight

fingerprint. For the purpose of dimension reduction, a number

of unsupervised manifold learning algorithms were

implemented. Various supervised machine learning

algorithms were evaluated for flight fingerprint classification,

including k-Nearest Neighbors (k-NN), Adaboost, Neural

Network, Bayes, and others. Combining the t-SNE manifold

with the k-NN classification yields the best results in terms of

classification accuracy. Production line performance testing,

analysis, anomaly identification, pilot performance

monitoring, and drone efficiency tracking are just a few of the

numerous potential uses for the retrieved fingerprint.

A Non-Divergent Traffic Management Scheme (NDTMS)

was proposed by Manimurugan and Almutairi [18] to enhance

roadside driving for both users and automobiles. Using

environmental navigation data, this scheme can identify and

categorize nearby vehicles, people, and obstacles. Pervasive

computing technologies aid in non-deviating smooth

application assistance by combining two inputs into density

statistics provided by the input data. Neighbor data extraction

aids feature matching and traffic reduction. Classifier learning

links to application-specific needs, addressing the problem of

data mishandling for traffic management. Using a combination

of data from navigation, alarms, and communications, this

pervasive computing technology enables exact traffic

management.

In order to automatically and continuously distinguish

diverse types of unknown traffic generated by different attack

tools in contradiction of SCADA in real-time, Sheng et al. [19]

have proposed a self-growing ATC model that is based on a

novel density-based heuristic clustering algorithm. To further

enhance ATC performance, an efficient technique of

representing SCADA system traffic is suggested. Further, the

suggested strategy is tested by a battery of experiments dataset

that includes the SCADA dataset and the ICS dataset. In the

critical scenario of just regular SCADA network traffic, the

experimental findings demonstrate that the suggested

technique surpasses current state-of-the-art ATC algorithms.

An evolutionary feature selection model and a

Convolutional Neural Network (CNN) are combined in a

hybrid model for vehicle classification suggested by Alghamdi

et al. [20]. Sports cars, luxury cars, and hybrid powerhouse

SUVs are just a few of the eight types of vehicles that the

suggested model might classify. The data utilized in this study

comes from the Stanford vehicle dataset, which includes

nearly 196 different types of vehicles. Once the necessary data

preparation and preprocessing processes have been completed,

the next step is to use a pre-trained VGG16 model to learn and

extract deep features from the input photos. The final fully

connected layer of VGG16 is used to extract these features,

and a Genetic Algorithm (GA), an optimization model inspired

by nature and based on evolution, is used to carry out the

feature optimization phase. Several support vector machine

(SVM) kernels are used for the classification, with Cubic SVM

achieving a 99.7 percent accuracy, surpassing all other kernels

and performing better than previous efforts.

In order to identify photos according to the traffic density

and offer driving assistance, Mane et al. [21] suggest using a

customized convolutional neural network (CCNN) on traffic

images. Using footage from deployed cameras, the paper's

proposed system may track traffic and assign it a high, medium,

or low priority based on the present scenario. With this model

as a guide, we may better teach expert systems about traffic

density in different locations and make informed decisions

about traffic regulation. To achieve higher accuracy, the

training process is parallelized and complicated using an

NVIDIA graphics processing unit (GPU). A real-time dataset

of traffic footage from Pune city and film from highway

CCTVs in Seattle, WA, acquired from Washington State, is

used to assess the performance of the projected system. The

findings of the experiment estimate the traffic density with a

level of accuracy of up to 99.6 percent, categorizing it as high,

medium, or low depending on the current traffic. The findings

provided by the current algorithms are much inferior to the

achieved testing accuracy.

3. SYSTEM STRUCTURE

After that, the study will provide the suggested system's

overall architecture and explain the formulas, data transfer,

inference processing, and capacity limits in detail.

3.1 System framework

Distributed deep learning systems typically have four levels

of architecture: an input layer that is based on the real world,

a pre-processing layer that uses terminal devices, an edge-

based inference layer that uses devices in the network's

periphery, and a cloud-based inference layer that uses devices

in the cloud. The integration of Artificial Intelligence (AI)

techniques into transportation systems holds immense promise

for addressing the challenges of modern urban mobility. With

cities facing escalating congestion, pollution, and inefficient

resource utilization, there is an urgent need for innovative

solutions to optimize traffic flow, reduce travel time, and

enhance overall transportation efficiency. In this context, the

adoption of AI-powered traffic management systems has

emerged as a pivotal strategy to tackle these pressing issues.

However, while AI offers unprecedented capabilities for

optimizing traffic control, traditional centralized approaches

often struggle to adapt to the dynamic and complex nature of

urban traffic environments. Moreover, as cities continue to

expand and evolve, the scalability and resilience of existing

traffic management systems become increasingly strained. In

response, there is growing interest in leveraging distributed AI

architectures to overcome these limitations and achieve more

adaptive and efficient traffic control mechanisms.

455

Raw data layer: Internet of Things apps incorporate a

variety of AI-based services, such as visual data, speech data,

and RGB images. Data aimed at artificial intelligence (AI) is

typically larger before processing to achieve better inference

accuracy. For example, the maximum bit depth for a video

frame is 134891 B. The service latency is strongly correlated

with the user experience when dealing with lesser amounts of

voice data [22]. It is possible for a single co-inference image

to exceed 1 Mb/time in size.

Local layer: In the first layer that processes the raw data,

the Internet of Things (IoTs) is implanted with the shallow

neural network. These gadgets help reduce the amount of

transmission packets and point the way for future inference.

Updated to neighboring edge devices, the processed data

consists of unlabeled features. The devices at the edge of a

network sometimes have less processing capacity, but they

excel at transforming data contact.

Edge layer: Although they lack the computing power of the

cloud, devices in the edge layer are more equipped to provision

resources due to their involvement in the gateway. The system

improves processing efficiency by reducing network

congestion and optimizing the edge devices. It finds idle

devices to synchronize with and computes the unmarked edge

devices to upload further by optimizing computing resources.

The last step in the inference process is for the edge device to

upload the treated feature statistics to the cloud.

Cloud layer: The cloud's service capacity usually dictates

the scheme's overall capacity. We take into account processing,

which is prevalent in the current architecture of the IoT, in our

study. Distributed computing structures can better balance

computer resources, network resources, and device failures

through the use of optimal algorithms [23]. Assuming

sufficient bandwidth for feature data transfer to these clouds is

a key assumption in this work [24].

Data preprocessing layer:

The data preprocessing layer processes and cleans the raw

traffic data to prepare it for further analysis and modeling.

Tasks performed in this layer include data filtering, noise

reduction, missing value imputation, and normalization.

Preprocessed data is formatted into appropriate input

representations for subsequent analysis.

Limitations: Preprocessing techniques may introduce biases

or loss of information, impacting the quality of input data for

downstream tasks.

Feature extraction layer:

The feature extraction layer extracts relevant features from

preprocessed traffic data using deep learning techniques, such

as Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs).

Features extracted may include spatial and temporal

patterns, traffic flow dynamics, vehicle trajectories, and

environmental factors.

Extracted features serve as input representations for the

decision-making process in subsequent layers.

Limitations: The effectiveness of feature extraction may

depend on the quality and diversity of training data, as well as

the design of the deep learning models used.

Decision-making layer:

The decision-making layer incorporates Q-learning

algorithms to optimize traffic control policies based on the

extracted features and current traffic conditions.

Traffic control agents, such as traffic signal controllers or

route planners, use Q-learning to learn optimal action-

selection strategies for minimizing travel time, reducing

congestion, and improving overall traffic flow.

Decisions made by traffic control agents are based on the

Q-values learned through reinforcement learning and the

current state of the traffic network.

Limitations: Q-learning may require extensive training and

exploration to converge to optimal policies, and its

performance may be affected by the complexity and

stochasticity of traffic environments.

3.2 Networking and task processing

The research describes the data forwarding and task

dispensation in the suggested structure using a graph as GðV;

EÞ. The following is an explanation of our three-layer network

architecture: we reflect terminal devices set as 𝑁 =
{1,2,3, … , 𝑛𝑚𝑎𝑥}, edge layer set as 𝑀 = {1,2,3, … , 𝑚𝑚𝑎𝑥} and

cloud set as 𝐾 = {1,2,3, … , 𝑘𝑚𝑎𝑥}, correspondingly. Thus, we

have nodes on the map 𝑣 ∈ {𝑁, 𝑀, 𝐾} = 𝑉 . Assuming that

local device n includes both fixed and removable smart

devices, we can say that: a mobile smart device has a stable

link (edge) and is within the communication range r offered by

the gateways. The same way around. A fixed edge connects

the fixation device to the edge device. Suppose the gateway

has a wired and wireless connection to a device in the local

layer; device m in the edge layer serves a neighboring gateway

with different bandwidth; and device n in the cloud layer offers

the connection to device m in the edge layer in the third tier.

Cloud k has a set amount of available computing and

communiqué resources. In each time slot, the scheme

completes the following three steps: generate tasks, convey is

considered as 𝑇 = {1,2,3, … , 𝑡𝑚𝑎𝑥}. The N terminal devices in

the working state produce a set of packets 𝑁g. The M edge-

layer device can receive upon to 𝑀r packets. It makes a set of

𝑀g packets congruently. The volume of the cloud is 𝐾r .

Additional tasks are put into the waiting queue. The broadcast

links are measured as E, which are DAG. Single DAG 𝐸𝑖 ∈ 𝐸

is measured as the temporal joining graph for period slot 𝑡i.

Therefore, the restraints of the data flow are considered as:

the generation rate of AI tasks for node 𝑣 ∈ {𝑁, 𝑀} is

represented as 𝑣g . Arbitrary node’s cohort rate is 𝑣𝑔(𝑡) ∈

{𝑁𝑣
𝑔

} . The overall general rate is measured as 𝑣̅𝑔 =

∑ 𝑣𝑔(𝑡)𝑡∈𝑇 , where incomplete by 𝑣̅𝑔 ≤ 𝑣𝑚𝑎𝑥
𝑔

. The getting rate

for 𝑣 ∈ {𝑀, 𝑘} should satisfy 𝑣𝑔(𝑡) ≤ 𝑀𝑣
𝑔

. Therefore, the

output of node 𝑣 ∈ {𝑀, 𝐾} is 𝑣r , where 𝑣𝑟 ≤ 𝑀𝑣
𝑟 or 𝐾𝑣

𝑟 . Its

consistent upper processing limit is 𝑣𝑚𝑎𝑥
𝑟 .

3.3 Network activate

In the suggested setup, prior to dealing with AI tasks, the

routing system activates the network in accordance with the

following rules:

(1) Rearrange Network: The wireless node connects to the

main network and makes a new link. Take the device out of

graph G that isn't working.

(2) Link Initiation: From link set E, a matching link is

triggered when a routing policy is set up.

(3) A data propagation: the routing method ensures that

every link is used by sending out at least one packet.

Furthermore, a link's capacity dictates the maximum number

of packets that can be transmitted.

Suppose that 𝑣𝑠(𝑡) is the total amount of data that the node

needs to broadcast at time t, including both externally

456

generated jobs and its own initial data. The total rate of

forwarding can be thought of as,

lim
𝑡→∞

𝑣𝑠(𝑡)

𝑡
= 𝑣̅𝑠 = 𝑣̅𝑔 + 𝑣̅𝑞 (1)

and 𝑣̅𝑞 is the communicating data rate. Interim, the data

dispensation speed in node 𝑣𝑖 is renowned as

lim
𝑡→∞

𝑣𝑟(𝑡)

𝑡
= 𝑣̅𝑟 (2)

The common-sense conclusion is that after ∑ 𝑣𝑟 is at its

extreme and ∑ 𝑣𝑠 is not. It means the current resource

distribution policy is accomplished to make the optimal. When
∑ 𝑣𝑠 is at its extreme, and ∑ 𝑣𝑟 is not, it means additional

copies are shaped to attain lower latency.

3.4 Scheme optimization goal

The data-generating device in the model is only concerned

with the final destination of the task up to the point where it is

chosen in the subsequent layer. Network congestion and the

processing capacity of the destination determine the data

forwarding timing. Here, we assume the destination node 𝑣 ∈
{𝑁, 𝑀} is denoted as 𝐷v.

If we ignore slightly capacity constraints, part of the links is

full altogether the time. Presumptuous a scheduled route 𝑃, the

data furtherance rate is measured as,

𝑣𝑠 = ∑ 𝑣𝑔
𝑠

𝑃𝑔∈𝑃

 (3)

where, 𝑣𝑔
𝑠 is the bringing degree of node 𝑣 goes to -path 𝑃𝑔.

The data rate for node 𝑣 is the sum of each path 𝑃𝑔 ∈ 𝑃 .

Assume 𝑒𝑖,𝑗 is the volume of the edge node j, the regular

forwarding rate is measured as

𝑣̅𝑖,𝑗
𝑠 = ∑ 𝑣𝑔 ≤ 𝑒𝑖,𝑗 , where 𝑃𝑔 passes 𝑖 to 𝑗

𝑃𝑔∈𝑃

 (4)

It means the amount of entirely the path’s data proportion is

incomplete by capacity [25]. The data rate 𝑣i,j corresponds to

the edge from i to j. Thus, the aforementioned formula limits

the maximum capacity for any bandwidth-limited network.

Since only one node can handle segmented inference data at a

time, no sibling distributed processing solution is available.

With the node's data receiving bond taken into account, the

total average getting rate is constrained by the node's

processing capability.

∑ 𝑣̅𝑔
𝑟 ≤ ∑ 𝑣̅𝑟

𝑣∈{𝑀,𝐾}𝑃𝑔∈𝑃

 (5)

The processing speed of the cloud determines the ultimate

system output, which is the speed of feature data marking.

Since the processing capability of the cloud exceeds that of the

network, one of the obstacles to forwarding is the slowness of

the network. The final output is affected by traffic caused by

both local devices, although the volume of lower networks is

ultimately limited by the capacity of end devices.

Consequently, making the most of the cloud devices' whole

receiving capacity is the difficulty. The primary impartial of

this study is to outline an allocation policy that maximizes the

clouds, as this is our optimization target.

max 𝑉̅ =
1

|𝑇|
∑ ∑ 𝑣𝑡

𝑟

𝑣∈𝐾𝑡∈𝑇

s.t. 𝑣̅𝑖,𝑗
𝑠 ≤ 𝑒𝑖,𝑗

∑ 𝑣̅𝑔
𝑟

𝑃𝑔∈𝑃

≤ ∑ 𝑣̅𝑟

𝑣∈{𝑀,𝐾}

(6)

where, the offloading constraint Eq. (5) and the edge restraint

Eq. (4) bond this objective. All data rates on nodes v∈K

during time frame T is added together to get the total data

reception rate 𝑣̅. The system's continuous output capacity is

represented by the average data receiving rate 𝑉̅ , where a

larger rate indicates the completion of more jobs. Achieving

the best possible outcomes requires a delicate balancing act

between the overloading of all cohorts, including edges and

nodes.

4. PROPOSED ONLINE LEARNING FRAMEWORKS

To decrease inference latency while attaining sufficient

accuracy, one must make decisions about offloading and select

appropriate inference models. In order to accomplish this, we

lay out the parameters of the optimization problem and then

suggest an RL agent to handle it.

4.1 Problem formulation

Time spent waiting for a service to respond after a request

has been made is commonly referred to as response time [26].

Response time in our context is the total of computation time

plus the time it takes for a signal to go from an end- node doing

the calculation. Response time Tres for a request decision

tuple 𝑜𝑖 = {𝑜𝑖
𝑆, 𝑜𝑖

𝐸 , 𝑜𝑖
𝐶} can be summarized as follows:

𝑇𝑟𝑒𝑠𝑖
= 𝑜𝑖

𝑆. 𝑇𝑟𝑒𝑠
𝑆 + 𝑜𝑖

𝐸 . 𝑇𝑟𝑒𝑠
𝐸 + 𝑜𝑖

𝐶 . 𝑇𝑟𝑒𝑠
𝐶 (7)

In order to meet the average accuracy constraint, we aim to

minimize the regular response time. The formulation of the

problem is as follows:

𝑃1: min
1

𝑁
∑ 𝑇𝑟𝑒𝑠𝑖

(𝑜𝑖 , 𝑑𝑘)

𝑁

𝑖=1

s.t. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(8)

where, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the spatial regular accuracy for

concurrent DL implications.

4.2 Reinforcement learning agent

A popular method for automating intelligent, experience-

based decision-making is reinforcement learning (RL). A rule-

based policy is developed by processing data collected over

time. There are three main parts to every rule. It is possible to

invoke Q-learning at runtime since it has a minimal execution

overhead compared to other RL algorithms [27]. On the other

hand, big space concerns are not something it can handle.

When dealing with issues involving vast spaces, Q-learning

has two major drawbacks [28]: (a) As the sum of states and

457

actions grows, so does the quantity of memory needed to store

and update the Q-values; (b) Accurately populating the table

with estimates takes too much time for the huge Q-table. We

have a situation where the space dimension of the problem

grows as the number of users upsurges. The rationale behind

this is that the Q-table becomes increasingly complex as the

sum of users increases. Exploring each stage and updating the

Q-values so requires additional time. Approximating functions

is more attractive because of the curse of dimensionality. The

DQL algorithm integrates deep neural networks with the Q-

learning technique. DQL eliminates the requirement for a table

to record the Q-values by Q-function. Using (a) epsilon-greedy

Q-learning and (b) deep Q-learning procedures, we construct

an RL agent in this study. We test the RL agent using the

aforementioned techniques, taking into account varying

degrees of difficulty in the problems. A high-level black

diagram of our agent is shown in Figure 1. During runtime, the

RL agent is called upon to make smart orchestration decisions.

Figure 1. Agent for reinforcement learning utilizing the Q-

learning procedures is proposed. Q-learning stores Q(S, A)

values in a Q-table, whereas deep Q-learning forecasts Q-

values implemented in a neural network framework

In universal, the agent is composed as shadows:

State Space: Each computer resource's bandwidth,

accessible memory, and CPU utilization make up our state

vector. All of the state's components have discrete values, as

shown in Table 1. The national vector is defined in the

following way at time-step τ:

𝑆𝜏 =
{𝑃𝐸 , 𝑀𝐸 , 𝐵𝐸 , 𝑃𝐶 , 𝑀𝐶 , 𝐵𝐶 , 𝑃𝑆1 , 𝑀𝑆1 , 𝐵𝑆1 , … , 𝑃𝑆𝑛 , 𝑀𝑆𝑛, 𝐵𝑆𝑛}

(9)

Action Space: The deployment and assignment of inference

models to specific layers make up the action vector. The end-

node devices can choose from l various models, while the edge

and cloud devices are confined to always using the high

accuracy implication perfect. Therefore, the act space is

defined as 𝑎𝜏 = {𝑜𝑖 , 𝑑𝑗} where 𝑖 ∈ {𝑆, 𝐸, 𝐶} and 𝑑𝑗 ∈

{𝑑1, 𝑑2, . . . , 𝑑𝑙}.

Reward Function: A DL inference request's reward function

is its negative average response time. In this scenario, the goal

of the agent is to reduce the regular response time. The

calculation of reward R is done in such a way that the agent

reduces average reaction time while satisfying the accuracy

restriction:

If 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:
𝑅𝜏 ← −𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒

Else:

𝑅𝜏 ← −𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒.
In order to implement the accuracy constraint, the smallest

reward that can be given out is given out if the accuracy

threshold is surpassed. The benefit, however, is a decrease in

average response time when the chosen accuracy condition.

Table 1. State discrete standards

State Description Discrete Values

𝑀𝐶 Cloud Memory Utilization Available, Busy

𝐵𝐶 Cloud Available Bandwidth Regular, Weak

𝐵𝑆𝑖 End-node Obtainable Bandwidth Regular, Weak

𝑃𝐸 Edge CPU Utilization Nine discrete levels

𝑀𝐸 Edge Memory Utilization Busy

𝐵𝐸 Edge Available Bandwidth Regular, Weak

𝑃𝐶 Cloud CPU Utilization Nine discrete levels

𝑀𝑆𝑖 End-node Utilization Available, Busy

4.2.1 Q-learning algorithm

To determine the worth of a deed in a given state, the Q-

learning method employs model-free reinforcement learning.

Problems involving stochastic transitions and incentives can

be handled by the method without the need for an environment

model. Data are stored in a Q-table using the Q-learning

method. An agent is organized like a table, with states on one

hand and actions on the other. Every cell in the Q-table has a

Q-value that is an estimate of the total instant and future

reward for the corresponding state-action pair. A popular

modification to Q-learning, epsilon-greedy, helps to prevent

becoming trapped at local optima.

4.2.2 Deep Q-learning algorithm

Many real-world problems have been solved with Q-

learning. However, it has limitations when dealing with

problems that have multiple inputs and outputs in high

dimensions, as representing the Q-function as a Q-table for

large pairs of S and A is not viable. Additionally, Q(S, A)

couples cannot be traversed by it. Therefore, a neural network

is employed to estimate the Q-values. The deep Q-learning

Network (DQN) is used for this purpose, outputting the

matching Q-value for the supplied action input, which takes

the current state and likely actions as inputs. The neural

network approximation allows for solving problems involving

high-dimensional spaces [29].

Stability is a major issue with deep Q-learning. To address

this, the replay buffer technique is included in the DQL

algorithm, helping to mitigate instability arising from training

on sequential data that is correlated [30]. Using a buffer, the

loss and its gradient are determined during training. A new

record is added to the buffer whenever the agent progresses to

the next state as a result of an action choice. This is part 1 of

the deep Q-learning procedure.

Suitability: Q-learning, a form of reinforcement learning,

is well-suited for traffic control applications due to its ability

to learn optimal control policies through trial and error in

dynamic and uncertain environments. Traffic control

inherently involves making sequential decisions based on

current states and expected future rewards (e.g., minimizing

travel time or reducing congestion). Q-learning's iterative

learning process allows traffic control agents to adapt their

actions over time based on observed rewards, thereby

optimizing traffic flow and efficiency.

Decentralized decision-making: In traffic management

systems, where multiple intersections or traffic signals operate

458

concurrently, Q-learning facilitates decentralized decision-

making. Each traffic control agent (e.g., traffic signal

controller) can learn and update its control policy

independently based on local traffic conditions. This

decentralized approach enhances scalability and resilience, as

traffic control agents can adapt autonomously to changes in

traffic patterns without relying on centralized coordination.

Adaptability: Q-learning's adaptability is particularly

advantageous in dynamic traffic environments where

traditional rule-based approaches may be inadequate. By

continuously updating action-value functions based on

observed rewards, Q-learning enables traffic control agents to

respond effectively to changing traffic conditions, such as

fluctuations in traffic volume, unexpected incidents, or road

closures.

Deep learning:

Feature Representation: Deep learning techniques, such as

Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs), excel at learning complex patterns and

representations from raw sensor data. In traffic control

applications, deep learning models can extract meaningful

features from various sources, including traffic camera feeds,

vehicle trajectory data, and environmental sensors. These

extracted features serve as valuable inputs to decision-making

processes, enhancing the understanding of current traffic

conditions and aiding in predictive modeling.

Algorithm 1: Deep Q-learning algorithm with experience replay

1: Initialization in design time:
Initialize replay buffer 𝐷 to capacity 𝑁
Initialize action − value function 𝑄 𝑤ith random weight 𝜃
3: for episode = 1, Episodes do
4: From Resource Monitoring:
𝑆𝜏 ← State at step 𝜏
5: if 𝑅𝐴𝑁 𝐷 < 𝜖 then
6: Choose random action 𝐴𝜏
7: else
8: Choose action 𝐴𝜏 with largest 𝑄𝜃 (𝑆𝜏 , 𝐴𝜏)
9: end if
10: Monitor the response time for each device
11: Calculate reward 𝑅𝜏
12: Store the record (𝑆𝜏 , 𝐴𝜏 , 𝑅𝜏 , 𝑆𝜏 + 1) into buffer 𝐷
13: Sample random mini − batch of records from buffer 𝐷
14: To Updating 𝑄 − Network:
Compute temporal difference loss with respect to the network

parameter θ, which is optimally selected by proposed SA

−GSO.
15: 𝑆𝜏 ← 𝑆𝜏 + 1
16: end for
17: end for

4.2.3 Optimal parameter identification using SA-GSO

During the routing phase, the SA-GSO procedure can be

utilized effectively to identify the best pathways to the

destination. Using the glow-worm's light as a signal to entice

other glow-worms is the basis of GSO [31], an intelligently

tailored approach. This tactic makes use of a swarm of solution

space glow-worms that are scattered at random. The placement

of each glowworm indicates a potential solution.

Raining process:

The training of the traffic control agent, which employs Q-

learning, involves iterative interactions with the traffic

environment to learn optimal control policies.

At each time step, the agent observes the current state of the

traffic network, selects an action based on its policy (either

exploiting learned knowledge or exploring new actions),

executes the action, observes the resulting state transition and

associated reward, and updates its Q-values accordingly.

The training process continues for multiple episodes,

allowing the agent to gradually refine its control policies and

improve performance over time.

Hyperparameters:

Learning rate (α): Determines the rate at which the agent

updates its Q-values based on observed rewards. A higher

learning rate may lead to faster convergence but risks

instability, while a lower learning rate may result in slower

learning but greater stability.

Discount factor (γ): Balances the importance of immediate

rewards versus future rewards in the agent's decision-making

process. A higher discount factor gives more weight to future

rewards, encouraging the agent to prioritize long-term benefits

over short-term gains.

Exploration rate (ε): Controls the balance between

exploration and exploitation in the agent's action selection

strategy. A higher exploration rate increases the likelihood of

exploring new actions, facilitating the discovery of optimal

policies, while a lower exploration rate prioritizes exploitation

of learned knowledge.

Number of episodes: Determines the number of iterations

or episodes over which the agent is trained. More episodes

allow for more extensive exploration of the state-action space

but may also increase training time.

Batch Size: Specifies the number of state-action pairs

sampled from the replay buffer during each training iteration.

Larger batch sizes may lead to more stable learning but require

more computational resources.

Attracting worm with the lowest luminosity is the job of the

brightest glow-worm. This achieves the method's goal of

global optimization. The primary steps are as follows:

First, set the basic limit of GSO to an initial value. Included

in this parameter are the following: the upgrade rate b, the

collection of glowworms 𝑁𝑖(𝑡) field, the threshold nt for the

sum of glow-worms in the neighborhood, the range rs, and the

change phase s. It also contains the population size g and factor

r.

Step 2. Using the following equation, the fitness charge of

glow-worm i at the tth repetition was adjusted according to

value.

𝑙𝑖(𝑡) = (1 − 𝜌)𝑙𝑖(𝑡 − 1) + 𝛾𝐽(𝑋(𝑡)) (10)

where, g is the fluorescein improvement constant and r is the

range of values for the fluorescein decomposition constant.

Stage 3. All select entities with superior brightness than

themselves in their radius 𝑟𝑑
𝑖 (𝑡) for the process of their

neighbor set 𝑁𝑖(𝑡).

Stage 4. Calculate the probability 𝑝𝑖𝑗(𝑡) of glow-worm

𝑋𝑖(𝑡) moving the glow-worm 𝑋𝑗(𝑡) from their dynamic

choice range by Eq. (11):

𝑝𝑖𝑗(𝑡) =
𝑙𝑗(𝑡) − 𝑙𝑖(𝑡)

∑ 𝑙𝑘(𝑡) − 𝑙𝑖(𝑡)𝑘∈𝑁𝑖(𝑡)

 (11)

Stage 5. Promotion the residence of glow-worm X(t) in Eq.

(12):

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑠 × [
𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)

‖𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)‖
] (12)

459

Step 6. Promotion -worm 𝑋(𝑡) in Eq. (13):

𝑟𝑑
𝑖 (𝑡 + 1) = 𝑚𝑖𝑛{𝑟𝑠 , 𝑚𝑎𝑥{0, 𝛽 × (𝑛𝑡 − |𝑁𝑖(𝑡)|)}} (13)

In most cases, the GSO algorithm will assign a fixed value

to the step size based on established criteria. Given the

significance of selecting an appropriate step size for best

results, this study takes into account two variables that affect

the step size: the total sum of rounds and the distance among

the glow-worm and its optimal state at the nith round. The size

of the step increases when the worms are farther away from

the optimal solutions and decreases when they are closer.

When the ith glow-worm reveals the best option in the nith

round, the step size of that worm is 0. The SA-GSO procedure

is created from the GSO algorithm by using a self-adaptive

step size formulation, as shown below, after the effect of

changing the step size on the method has been investigated:

𝑠𝑖(𝑡) = 𝐷𝑖(𝑡). (𝑙𝑒𝑛 (𝑒 −
𝑡

𝑁𝑡

)) ‖𝑥𝑖(𝑡) − 𝑥𝑏(𝑡)‖ (14)

where, each 𝑥𝑖(𝑡) is allocated to precisely one 𝑠𝑖(𝑡), even if it

could be allocated to additional of them, where 𝐷𝑖(𝑡) arbitrary

sum in unchanging delivery, 𝑁t denotes extreme iterations,

and 𝑥𝑏(𝑡) designates the site of worm at the tth round.

By utilizing the greatest parameter charge from Algorithm

1, we can calculate the maximal fitness, as the fitness with the

maximum charge is deemed the ideal path. The following

formulas can be used to evaluate the maximal fitness function:

𝐵 =
1

3𝑎2 × 𝜂
∑[𝐷𝑇 + 𝑅𝑇 + 𝐻𝑇]

𝑎

𝐾=1

 (15)

whereas B characterizes fitness function.

5. RESULTS AND DISCUSSION

Here, we put our theory and the algorithm we suggested to

the test. We check whether a policy computing algorithm

based on Q-learning can handle real-time control.

5.1 Application deployment experiments

A total of four devices—a Raspberry Pi 3 laptop (i5 2.4 GHz,

4 GB RAM), a desktop (i7 3.4 GHz, 16 GB RAM), and a

server (i7 4 GHz, 32 GB RAM)—are employed in the study to

assess the running time using Python repeatedly. The

processing time required by cloud devices is significantly

lower than that of other devices when 72 kb photos are input.

Here, we've adjusted the Raspberry Pi time to 0.2 times the

real time so it's easier to see literature [32]. As new processing

layers are added, the PC adjusts to handle them. The

exceptional computation performance of desktop computers

makes them superior to mobile devices when it comes to

processing jobs.

Size of the Dataset: We discover that traditional layers have

the normal quantity of data by dividing the data size of each

object identification task by the file size. A higher file size is

escorted by a shorter sum of layers. A larger disparity in the

amount of output data is observed in the pooling layer as a

result of adjusting the parameters. Consequently, the scheme

automatically slices the neural network to reduce total

resource ingesting when applying the CNN perfect with

numerous settings.

Ways of Learning: Using a GeForce RTX 2080 graphics

card, we trained 10,000 records at a global training level of

about 1600 during the experiment. Using workstation-level

graphics cards could further compress the round costs, which

are between 0.15 and 0.19 seconds. Consequently, the time

required for the local learning process is 140 seconds. The time

cost is also managed within the interval of 0.1s to 0.5s when

positioned transfer learning. The processing time of the output

assignment strategy is under 100ms, which is reasonable when

compared to other algorithms and obviously better than brute

force searches. On top of that, the system control can be more

easily maintained because the data collecting, learning, and

allocation scheme calculation processes run in parallel.

5.2 Validation analysis of proposed model

In the Table 2 and Figure 2, the characterization shows the

data flow vs coverage. In the analysis of the proposed model,

800 data flows are achieved at a coverage of 65, 1000 data

flows at a coverage of 76, 1200 data flows at a coverage of 91,

1400 data flows at a coverage of 94, 1600 data flows at a

coverage of 94, 1800 data flows at a coverage of 94, and 2000

data flows at a coverage of 94, respectively.

Table 2. Data flow vs coverage

Data

Flow
800 1000 1200 1400 1600 1800 2000

Proposed 65 76 91 94 94 94 94

LSTM 55 71 85 89 89 89 89

RNN 45 60 62 65 70 71 69

DCNN 35 40 45 40 45 40 45

DBN 37 20 25 30 27 25 20

Figure 2. Coverage rate

Next, the LSTM model achieves 800 data flows at a

coverage of 55, 1000 data flows at a coverage of 71, 1200 data

flows at a coverage of 85, 1400 data flows at a coverage of 89,

1800 data flows at a coverage of 89, 1800 data flows at a

coverage of 89, and 2000 data flows at a coverage of 89,

respectively.

Following that, the RNN model attains 800 data flows at a

coverage of 45, 1000 data flows at a coverage of 60, 1200 data

flows at a coverage of 62, 1400 data flows at a coverage of 65,

1400 data flows at a coverage of 70, 1600 data flows at a

coverage of 71, and 2000 data flows at a coverage of 69,

460

respectively.

Then, the DCNN model achieves 800 data flows at a

coverage of 35, 1000 data flows at a coverage of 40, 1200 data

flows at a coverage of 45, 1400 data flows at a coverage of 40,

1600 data flows at a coverage of 45, 1800 data flows at a

coverage of 40, and 2000 data flows at a coverage of 45,

respectively.

Finally, the DBN model attains 800 data flows at a coverage

of 37, 1000 data flows at a coverage of 20, 1200 data flows at

a coverage of 25, 1400 data flows at a coverage of 30, 1800

data flows at a coverage of 27, 1800 data flows at a coverage

of 25, and 2000 data flows at a coverage of 20, respectively.

In Table 3 and Figure 3, the characterization shows the data

flow vs the number of data packets. In the analysis of the

proposed model, 800 data flows are achieved with the number

of data packets at 70, 1000 data flows with the number of data

packets at 75, 1400 data flows with the number of data packets

at 120, 1600 data flows with the number of data packets at 135,

1600 data flows with the number of data packets at 142, 1800

data flows with the number of data packets at 175, and 2000

data flows with the number of data packets at 180, respectively.

Table 3. Data flow vs number of data packets

Data

Flow
800 1000 1200 1400 1600 1800 2000

Proposed 70 75 120 135 142 175 180

LSTM 20 40 60 70 80 90 90

RNN 20 25 30 35 40 45 45

DCNN 30 32 34 38 40 48 55

DBN 20 21 23 25 24 23 21

Figure 3. Number of data packets

Next, the LSTM model achieves 800 data flows with the

number of data packets at 20, 1000 data flows with the number

of data packets at 40, 1200 data flows with the number of data

packets at 60, 1400 data flows with the number of data packets

at 70, 1600 data flows with the number of data packets at 80,

1800 data flows with the number of data packets at 90, and

2000 data flows with the number of data packets at 90,

respectively.

Following that, the RNN model attains 800 data flows with

the number of data packets at 20, 1000 data flows with the

number of data packets at 25, 1200 data flows with the number

of data packets at 30, 1400 data flows with the number of data

packets at 35, 1600 data flows with the number of data packets

at 40, 1800 data flows with the number of data packets at 45,

and 2000 data flows with the number of data packets at 45,

respectively.

Then, the DCNN model achieves 800 data flows with the

number of data packets at 30, 1200 data flows with the number

of data packets at 32, 1400 data flows with the number of data

packets at 34, 1600 data flows with the number of data packets

at 38, 40, 1800 data flows with the number of data packets at

48, and 2000 data flows with the number of data packets at 55,

respectively.

Finally, the DBN model attains 800 data flows with the

number of data packets at 20, 1000 data flows with the number

of data packets at 21, 1200 data flows with the number of data

packets at 23, 1400 data flows with the number of data packets

at 25, 1600 data flows with the number of data packets at 24,

1800 data flows with the number of data packets at 23, and

2000 data flows with the number of data packets at 21,

respectively.

In Table 4 and Figure 4, the characterization shows the

Delay flow vs delay. In the analysis of the proposed model,

800 data flows are achieved with the delay at 0.40, 1000 data

flows with the delay at 0.38, 1200 data flows with the delay at

0.37, 1400 data flows with the delay at 0.35, 1600 data flows

with the delay at 0.30, 1800 data flows with the delay at 0.27,

and 2000 data flows with the delay at 0.25, respectively.

Table 4. Delay flow vs delay

Data

Flow
800 1000 1200 1400 1600 1800 2000

Proposed 0.40 0.38 0.37 0.35 0.30 0.27 0.25

LSTM 0.11 0.14 0.16 0.18 0.20 0.21 0.22

RNN 0.20 0.19 0.18 0.17 0.16 0.15 0.14

DCNN 0.10 0.14 0.18 0.22 0.24 0.26 0.28

DBN 0.30 0.28 0.26 0.25 0.26 0.25 0.26

Figure 4. Delay analysis

Next, the LSTM model achieves 800 data flows with the

delay at 0.11, 1000 data flows with the delay at 0.14, 1200 data

flows with the delay at 0.16, 1400 data flows with the delay at

0.18, 1600 data flows with the delay at 0.20, 1800 data flows

with the delay at 0.21, and 2000 data flows with the delay at

0.22, respectively.

Following that, the RNN model attains 800 data flows with

the delay at 0.20, 1000 data flows with the delay at 0.19, 1200

data flows with the delay at 0.18, 1400 data flows with the

delay at 0.17, 1600 data flows with the delay at 0.16, 1800 data

flows with the delay at 0.15, and 2000 data flows with the

delay at 0.14, respectively.

Then, the DCNN model achieves 800 data flows with the

delay at 0.10, 1000 data flows with the delay at 0.14, 1200 data

flows with the delay at 0.18, 1400 data flows with the delay at

0.22, 1600 data flows with the delay at 0.24, 1800 data flows

461

with the delay at 0.26, and 2000 data flows with the delay at

0.28, respectively.

Finally, the DBN model attains 800 data flows with the

delay at 0.30, 1000 data flows with the delay at 0.28, 1200 data

flows with the delay at 0.26, 1400 data flows with the delay at

0.25, 1600 data flows with the delay at 0.26, 1800 data flows

with the delay at 0.25, and 2000 data flows with the delay at

0.26, respectively.

In Table 5 and Figure 5, it is demonstrated the Traffic flow

vs the average number of collisions. In the analysis of the

proposed model, 800 data flows result in the sum of collisions

as 2, 1000 data flows result in the sum of collisions as 4, 1200

data flows result in the sum of collisions as 6, 1400 data flows

result in the sum of collisions as 8, 1600 data flows result in

the sum of collisions as 9, 1800 data flows result in the sum of

collisions as 10, and 2000 data flows result in the sum of

collisions as 11, respectively.

Table 5. Traffic flow vs average number of collisions

Data

Flow
800 1000 1200 1400 1600 1800 2000

Proposed 2 4 6 8 9 10 11

LSTM 3 3 4 4 6 6 8

RNN 1 2 2 2 3 3 5

DCNN 1 3 4 5 5 7 7

DBN 0 1 1 1 2 2 3

Figure 5. Analysis of collisions

Next, the LSTM model achieves 800 data flows with the

sum of collisions as 3, 1000 data flows with the sum of

collisions as 3, 1200 data flows with the sum of collisions as

4, 1400 data flows with the sum of collisions as 4, 1600 data

flows with the sum of collisions as 6, 1800 data flows with the

sum of collisions as 6, and 2000 data flows with the sum of

collisions as 8, respectively.

Following that, the RNN model attains 800 data flows with

the sum of collisions as 1, 1000 data flows with the sum of

collisions as 2, 1200 data flows with the sum of collisions as

2, 1400 data flows with the sum of collisions as 2, 1400 data

flows with the sum of collisions as 3, 1600 data flows with the

sum of collisions as 3, and 1800 data flows with the sum of

collisions as 5, respectively.

Then, the DCNN model achieves 800 data flows with the

sum of collisions as 1, 1000 data flows with the sum of

collisions as 3, 1200 data flows with the sum of collisions as

4, 1400 data flows with the sum of collisions as 5, 1600 data

flows with the sum of collisions as 5, 1800 data flows with the

sum of collisions as 7, and 2000 data flows with the sum of

collisions as 7, respectively.

Finally, the DBN model attains 800 data flows with the sum

of collisions as 0, 1000 data flows with the sum of collisions

as 1, 1200 data flows with the sum of collisions as 1, 1400 data

flows with the sum of collisions as 1, 1600 data flows with the

sum of collisions as 2, 1800 data flows with the sum of

collisions as 2, and 2000 data flows with the sum of collisions

as 3, respectively.

Analyze the learning dynamics of the Q-learning algorithm

over the course of training episodes. Plot learning curves to

visualize how the agent's performance evolves over time and

assess convergence behavior.

Investigate any instances of slow convergence or instability

in the learning process. Identify potential causes, such as

suboptimal hyperparameters, insufficient exploration, or

convergence to local optima, and propose strategies to address

these issues.

6. CONCLUSION AND FUTURE WORK

The optimization and coordination of modern AI task-

oriented structures heavily rely on AI-based solutions. As the

number of smart devices continues to rise, there is a growing

need to develop efficient strategies for managing dispersed co-

inference-oriented service optimization issues. In this context,

this paper focuses specifically on deep Q-learning, aiming to

address the challenge of optimizing total throughput in a three-

tier synergistic inference scheme. The main challenge in

optimizing total throughput lies in finding a balance among

imbalanced resources such as transmission, computation, and

caching. Traditional approaches often struggle to effectively

allocate resources and coordinate tasks in such heterogeneous

environments, leading to suboptimal performance and

resource wastage. In this article, we propose a priority-based

advancement method and a deep Q-learning-based multicopy

reserve allocation procedure to address these challenges. Our

approach leverages the consumption of multiple resources

after establishing the Lyapunov stability of virtual queues,

enabling more efficient utilization of available resources and

better coordination of inference tasks across the network.

Through empirical evaluations and performance assessments,

we demonstrate the viability and superiority of our proposed

approach for the distributed co-inference scheme. Our results

show a significant throughput increase of 11.3 percent

compared to other benchmarks, highlighting the effectiveness

of our approach in optimizing resource allocation and

improving overall system performance.

Additionally, we aim to investigate the applicability of our

approach in various real-world scenarios and diverse domains

beyond the scope of our current study. This includes exploring

its effectiveness in domains such as edge computing, Internet

of Things (IoT) networks, and cloud-based services, where

distributed co-inference schemes are prevalent.

REFERENCES

[1] Liu, Q., Cheng, L., Jia, A.L., Liu, C. (2021). Deep

reinforcement learning for communication flow control

in wireless mesh networks. IEEE Network, 35(2): 112-

119. https://doi.org/10.1109/MNET.011.2000303

[2] Li, Z., Yu, H., Zhang, G., Dong, S., Xu, C.Z. (2021).

Network-wide traffic signal control optimization using a

multi-agent deep reinforcement learning. Transportation

462

Research Part C: Emerging Technologies, 125: 103059.

https://doi.org/10.1016/j.trc.2021.103059

[3] Alavizadeh, H., Alavizadeh, H., Jang-Jaccard, J. (2022).

Deep Q-learning based reinforcement learning approach

for network intrusion detection. Computers, 11(3): 41.

https://doi.org/10.3390/computers11030041

[4] Baswaraju, S., Maheswari, V.U., Chennam, K.K.,

Thirumalraj, A., Kantipudi, M.P., Aluvalu, R. (2023).

Future food production prediction using AROA based

hybrid deep learning model in agri-sector. Human-

Centric Intelligent Systems, 3(4): 521-536.

https://doi.org/10.1007/s44230-023-00046-y

[5] Macherla, H., Kotapati, G., Sunitha, M.T., Chittipireddy,

K.R., Attuluri, B., Vatambeti, R. (2023). Deep learning

framework-based chaotic hunger games search

optimization algorithm for prediction of air quality index.

Ingénierie des Systèmes d’Information, 28(2): 433-441.

https://doi.org/10.18280/isi.280219

[6] Wang, G., Hu, J., Li, Z., Li, L. (2021). Harmonious lane

changing via deep reinforcement learning. IEEE

Transactions on Intelligent Transportation Systems,

23(5): 4642-4650.

https://doi.org/10.1109/TITS.2020.3047129

[7] Wang, T., Cao, J., Hussain, A. (2021). Adaptive traffic

signal control for large-scale scenario with cooperative

group-based multi-agent reinforcement learning.

Transportation Research Part C: Emerging Technologies,

125: 103046. https://doi.org/10.1016/j.trc.2021.103046

[8] Rao, M.V., Sreeraman, Y., Mantena, S.V., Gundu, V.,

Roja, D., Vatambeti, R. (2024). Brinjal crop yield

prediction using shuffled shepherd optimization

algorithm based ACNN-OBDLSTM model in smart

agriculture. Journal of Integrated Science and

Technology, 12(1): 710.

[9] Wang, L., Mao, W., Zhao, J., Xu, Y. (2021). DDQP: A

double deep Q-learning approach to online fault-tolerant

SFC placement. IEEE Transactions on Network and

Service Management, 18(1): 118-132.

https://doi.org/10.1109/TNSM.2021.3049298

[10] Shi, H., Zhou, Y., Wu, K., Wang, X., Lin, Y., Ran, B.

(2021). Connected automated vehicle cooperative

control with a deep reinforcement learning approach in a

mixed traffic environment. Transportation Research Part

C: Emerging Technologies, 133: 103421.

https://doi.org/10.1016/j.trc.2021.103421

[11] Xia, D., Wan, J., Xu, P., Tan, J. (2022). Deep

reinforcement learning-based QoS optimization for

software-defined factory heterogeneous networks. IEEE

Transactions on Network and Service Management,

19(4): 4058-4068.

https://doi.org/10.1109/TNSM.2022.3208342

[12] Wang, Y., Sarkar, E., Li, W., Maniatakos, M., Jabari, S.E.

(2021). Stop-and-go: Exploring backdoor attacks on

deep reinforcement learning-based traffic congestion

control systems. IEEE Transactions on Information

Forensics and Security, 16: 4772-4787.

https://doi.org/10.1109/TIFS.2021.3114024

[13] Wei, H., Zheng, G., Gayah, V., Li, Z. (2021). Recent

advances in reinforcement learning for traffic signal

control: A survey of models and evaluation. ACM

SIGKDD Explorations Newsletter, 22(2): 12-18.

https://doi.org/10.1145/3447556.3447565

[14] Zhu, H., Gupta, V., Ahuja, S. S., Tian, Y., Zhang, Y., Jin,

X. (2021). Network planning with deep reinforcement

learning. In Proceedings of the 2021 ACM SIGCOMM

2021 Conference, Virtual Event, USA, pp. 258-271.

https://doi.org/10.1145/3452296.3472902

[15] Naderializadeh, N., Sydir, J.J., Simsek, M., Nikopour, H.

(2021). Resource management in wireless networks via

multi-agent deep reinforcement learning. IEEE

Transactions on Wireless Communications, 20(6): 3507-

3523. https://doi.org/10.1109/TWC.2021.3051163

[16] Li, Q., Ng, K.K., Simon, C.M., Yiu, C.Y., Lyu, M.

(2023). Recognising situation awareness associated with

different workloads using EEG and eye-tracking features

in air traffic control tasks. Knowledge-Based Systems,

260: 110179.

https://doi.org/10.1016/j.knosys.2022.110179

[17] Çelik, Ü., Eren, H. (2023). Classification of manifold

learning-based flight fingerprints of UAVs in air traffic.

IEEE Transactions on Intelligent Transportation Systems,

24(5): 5229-5238.

https://doi.org/10.1109/TITS.2023.3237159

[18] Manimurugan, S., Almutairi, S. (2023). Non-divergent

traffic management scheme using classification learning

for smart transportation systems. Computers and

Electrical Engineering, 106: 108581.

https://doi.org/10.1016/j.compeleceng.2023.108581

[19] Sheng, C., Yao, Y., Li, W., Yang, W., Liu, Y. (2023).

Unknown attack traffic classification in SCADA network

using heuristic clustering technique. IEEE Transactions

on Network and Service Management, 20(3): 2625-2638.

https://doi.org/10.1109/TNSM.2023.3238402

[20] Alghamdi, A.S., Saeed, A., Kamran, M., Mursi, K.T.,

Almukadi, W.S. (2023). Vehicle classification using

deep feature fusion and genetic algorithms. Electronics,

12(2): 280. https://doi.org/10.3390/electronics12020280

[21] Mane, D., Bidwe, R., Zope, B., Ranjan, N. (2022).

Traffic density classification for multiclass vehicles

using customized convolutional neural network for smart

city. In Communication and Intelligent Systems:

Proceedings of ICCIS 2021, New Delhi, India, pp. 1015-

1030. https://doi.org/10.1007/978-981-19-2130-8_78

[22] Zhang, C., Dong, M., Ota, K. (2020). Enabling

computational intelligence for green Internet of Things:

Data-driven adaptation in LPWA networking. IEEE

Computational Intelligence Magazine, 15(1): 32-43.

https://doi.org/10.1109/MCI.2019.2954642

[23] Davydow, A., Chuprikov, P., Nikolenko, S.I., Kogan, K.

(2017). Throughput optimization with latency

constraints. In EEE INFOCOM 2017 - IEEE Conference

on Computer Communications, Atlanta, GA, USA, pp.

1-9. https://doi.org/10.1109/INFOCOM.2017.8057015

[24] Wu, J., Dong, M., Ota, K., Li, J., Guan, Z. (2017). FCSS:

Fog-computing-based content-aware filtering for

security services in information-centric social networks.

IEEE Transactions on Emerging Topics in computing,

7(4): 553-564.

https://doi.org/10.1109/TETC.2017.2747158

[25] Chou, Y.L., Moreira, C., Bruza, P., Ouyang, C., Jorge, J.

(2022). Counterfactuals and causability in explainable

artificial intelligence: Theory, algorithms, and

applications. Information Fusion, 81: 59-83.

https://doi.org/10.1016/j.inffus.2021.11.003

[26] Nakhkash, M.R., Gia, T.N., Azimi, I., Anzanpour, A.,

Rahmani, A.M., Liljeberg, P. (2019). Analysis of

performance and energy consumption of wearable

devices and mobile gateways in IoT applications. In

463

https://doi.org/10.18280/isi.280219

Proceedings of the International Conference on Omni-

Layer Intelligent Systems, Crete, Greece, pp. 68-73.

https://doi.org/10.1145/3312614.3312632

[27] Sutton, R.S., Barto, A.G. (2018). Reinforcement

Learning: An Introduction. MIT Press, USA.

[28] Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015).

Human-level control through deep reinforcement

learning. Nature, 518(7540): 529-533.

https://doi.org/10.1038/nature14236

[29] Moerland, T.M., Broekens, J., Plaat, A., Jonker, C.M.

(2023). Model-based reinforcement learning: A survey.

Foundations and Trends® in Machine Learning, 16(1):

1-118. http://doi.org/10.1561/2200000086

[30] Ladosz, P., Weng, L., Kim, M., Oh, H. (2022).

Exploration in deep reinforcement learning: A survey.

Information Fusion, 85: 1-22.

https://doi.org/10.1016/j.inffus.2022.03.003

[31] Mohan, P., Subramani, N., Alotaibi, Y., Alghamdi, S.,

Khalaf, O.I., Ulaganathan, S. (2022). Improved

metaheuristics-based clustering with multihop routing

protocol for underwater wireless sensor networks.

Sensors, 22(4): 1618. https://doi.org/10.3390/s22041618

[32] Thirumalraj, A., Asha, V., Kavin, B.P. (2023). An

improved hunter-prey optimizer-based DenseNet model

for classification of hyper-spectral images. In AI and

IoT-Based Technologies for Precision Medicine, pp. 76-

96. https://doi.org/10.4018/979-8-3693-0876-9.ch005

464

