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Overhead cranes are used to move heavy, bulky objects above the factory floor instead of 

along floor walkways. They are commonly used to load and unload goods in factories, 

outdoor warehouses and serve at stations, ports. During operation, chain hoists or cable 

hoists are the main equipment, plays the role of hoisting/lowering materials and moving 

mechanism along the main beam. Therefore, vibration cannot be avoided during the 

process of moving heavy objects, causing danger to people and affecting the product. In 

addition, the overhead crane is an uncertain nonlinear system, compared to the single 

pendulum type, moving two loads at the same time is much more complicated. That's why 

the author proposes to design a new controller that not only helps balance the cart but also 

the two pendulums during operation. First, the system dynamics model is built. Next, an 

adaptive controller based on the radial basis function neural network (RBFNN) is designed 

and proven to be stable according to Lyapunov theory. Simulation results of the overhead 

crane system on MATLAB/Simulink software have shown the effectiveness of the 

proposed algorithm even when the working system is affected by model uncertainty. 

Keywords: 
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1. INTRODUCTION

Overhead crane is a type of equipment used to lift and move 

goods in factories as well as outdoors. Normally, overhead 

cranes are often used in factories, but when used outdoors, 

people use gantry cranes. The use of overhead cranes is very 

convenient and highly effective in work, loading and 

unloading goods and bulky heavy objects such as iron and 

steel in steel factories. Operated mainly by electric motors, it 

is widely used in industrial plants, steel plants, hydroelectric 

plants, as well as civil works... 

The main parts of the overhead crane are shown in detail in 

Figure 1. 

Main beams: These are beams that span the width of the 

overhead crane and support the moving hoist system. In a 

single girder overhead crane there is one main girder, while in 

a double girder overhead crane there are two. 

Edge beam: This is a beam frame with wheels located at 

both ends. They allow the overhead crane to move along the 

runway beam. 

Rail support beams: These are parallel overhead structural 

beams on which the edge beams move. They will support the 

entire overhead crane system and are often mounted on 

support columns or attached to the house frame structure. 

(a) Structure of the overhead crane (b) Operating principle of each part

Figure 1. Structure diagram and operating principle of the overhead crane 
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Hoist: A hoist is a device that lifts, lowers and holds loads. 

It can be electric, hand-pulled or pneumatic. Includes motor, 

gearbox, cable reel, cable or chain and hook. 

Cart: The cart is the part that carries the hoist and allows the 

hoist to move along the main beam. It includes frame, wheels 

and transmission mechanism. 

Control: Overhead cranes can be controlled by wire control, 

remote control or cabin control. These systems allow operators 

to control overhead crane movements including hoisting, 

lowering and positioning loads. 

Electrical system: This system includes power supply 

components such as wires, contact brushes, power rails that 

supply power to the motor and overhead crane control system. 

These parts are shown in detail in Figure 1. 

During overhead crane operation, the goal is to design the 

controller so that the goods are transported to the desired 

location without vibration or vibration. Usually, parameters 

such as cable length and load volume change, these are 

uncertain parameters of the overhead crane. In addition, the 

system is also affected by external disturbances such as 

friction, wind... which also make it difficult for the vehicle to 

reach the desired position and causes the pendulum to vibrate. 

Therefore, designing a controller for the overhead crane 

system to ensure stable working system in all situations is 

always of interest to research by scientists. 

In the studies [1, 2], the authors proposed a closed-loop 

feedback system control structure using a proportional integral 

derivative (PID) controller to control the position of the cart 

and reduce the vibration angle. The results show good control 

performance, fast response, but traditional PID controllers 

easily lose control when noise occurs, and adjustment depends 

on the operating engineer. Linear quadratic regulation (LQR) 

optimal controller proposed in studies [3, 4]. When the system 

has uncertain model parameters, adaptive control methods 

have been proposed by authors in the studies [5-12]. A robust 

control method based on sliding mode control (SMC) is also 

often applied to nonlinear systems, which is very useful for 

overhead crane systems [13-16]. However, SMC has 

disadvantages that cause chattering, affecting output response 

performance as well as reducing the lifespan of the devices. 

Model predictive control (MPC) is studied for its advantages 

in handling constraints as shown in the studies [17, 18]. In 

addition to the above methods, many intelligent controllers 

such as fuzzy control [19, 20], neural networks [21, 22] have 

also been proposed to implement for overhead crane systems. 

From the analysis of the works published above, we see that 

most of these methods only design control for structural 

systems with one load. For a system consisting of two loads, 

research mainly proposes traditional control methods and 

represents the model in linear form. Therefore, the authors 

proposed an adaptive control method based on the RBF neural 

network for the uncertain nonlinear overhead crane system. 

In summary, the main contributions of this paper are 

presented in the following ideas. 

- Designing a new controller not only helps balance the cart 

but also helps balance the two pendulums during operation. 

- The effects of model uncertainty are regulated by an 

adaptive law based on the RBF neural network. This is 

completely suitable for real-life applications when overhead 

cranes operate. 

- Data about overhead crane systems can be measured 

through output feedback, reducing costs when designing 

hardware. 

 

2. MATHEMATICAL MODEL OF THE OVERHEAD 

CRANE SYSTEM  

 

We can represent a simple model of a crane system as 

shown in Figure 2. Suppose the cart, pendulum and payload 

work on a two-dimensional plane, the cart moves on a 

horizontal line. 

 

 
 

Figure 2. Simple overhead crane system model 

 

The overhead crane system model can be built according to 

the Newton-Euler or Euler-Lagrange method. In this study, the 

authors use the Euler-Lagrange method based on kinetic and 

potential energy to establish the equations of the mechanical 

system. The Euler-Lagrange equation is represented as follows: 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑞
+
𝜕𝑃

𝜕𝑞
= 𝑢 (1) 

 

where, 𝐿  and 𝑃  are kinetic energy and potential energy, 

respectively; 𝑢  denotes the driving force of the cart; 𝑞 =
[𝑥 𝜑1 𝜑2]𝑇, 𝑥 is the position of the cart, 𝜑1 and 𝜑2 are the 

positions of pendulum 1 and pendulum 2, respectively, relative 

to the vertical axis. 

The total potential energy of the mechanical system is 

written as: 

 

𝑃 = 𝑚1𝑙1𝑔 (1 − 𝑐𝑜𝑠(𝜑1(𝑡))) 

+𝑚2𝑙2𝑔 (1 − 𝑐𝑜𝑠(𝜑2(𝑡))) 
(2) 

 

The total kinetic energy of a mechanical system is written 

as: 

 

𝐿 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 +
1

2
𝑀�̇�2 

=
1

2
𝑚1((𝑙1�̇�1𝑠𝑖𝑛𝜑1)

2 + (�̇� − 𝑙1�̇�1𝑐𝑜𝑠𝜑1)
2) 

+
1

2
𝑚2((𝑙2�̇�2𝑠𝑖𝑛𝜑2)

2 + (�̇� − 𝑙2�̇�2𝑐𝑜𝑠𝜑2)
2)

+
1

2
𝑀�̇�2 

(3) 

 

where, �̇� is the linear velocity of the cart; �̇�1  is the angular 

velocity of the payload 1; �̇�2  is the angular velocity of the 

payload 2; 𝑣1, 𝑣2 are the velocity components of the pendulum 

in the x and y directions calculated as follows: 
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𝑣1
2 = (�̇� − 𝑙1�̇�1𝑐𝑜𝑠𝜑1)

2 + (𝑙1�̇�1𝑠𝑖𝑛𝜑1)
2;  

𝑣2
2 = (�̇� − 𝑙2�̇�2𝑐𝑜𝑠𝜑2)

2 + (𝑙2�̇�2𝑠𝑖𝑛𝜑2)
2. 

 

The parameters of the mechanical system model are 

described in Table 1. 
 

Table 1. Parameters of the mechanical system model 

 
Symbol Meaning 

𝑀 Denotes the mass of the cart 

𝑚1 Mass of payload 1 

𝑙1 
Cable length between the center of the cart and the 

payload 1 

𝜑1 Payload 1 swing angle 

𝑚2 Mass of payload 2 

𝑙2 
Cable length between the center of the cart and the 

payload 2 

𝜑2 Payload 2 swing angle 

𝑔 Gravitational constant 

 

Partial derivative of Eq. (1) with respect to the variables 𝑥, 

𝜑1, 𝜑2 respectively. 

Partial derivative with respect to variable 𝑥 we get: 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑥
+
𝜕𝑃

𝜕𝑥
= 𝑢 

⇒ 𝑚1𝑙1(�̇�1
2𝑠𝑖𝑛𝜑1 − �̈�1𝑐𝑜𝑠𝜑1) 

+𝑚2𝑙2(�̇�2
2𝑠𝑖𝑛𝜑2 − �̈�2𝑐𝑜𝑠𝜑2) 

+(𝑚1 +𝑚2 +𝑀)�̈� = 𝑢 

⇒ �̈� =
𝑚1𝑙1(�̈�1𝑐𝑜𝑠𝜑1 − �̇�1

2𝑠𝑖𝑛𝜑1)

𝑚1 +𝑚2 +𝑀
 

+
𝑚2𝑙2(�̈�2𝑐𝑜𝑠𝜑2 − �̇�2

2𝑠𝑖𝑛𝜑2)

𝑚1 +𝑚2 +𝑀
+

𝑢

𝑚1 +𝑚2 +𝑀
 

(4) 

 

Partial derivative with respect to variable 𝜑1 we get: 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�1
) −

𝜕𝐿

𝜕𝜑1
+
𝜕𝑃

𝜕𝜑1
= 0 

⇒ 𝑚1𝑙1(𝑔𝑠𝑖𝑛𝜑1 − 𝑐𝑜𝑠𝜑1�̈� + 𝑙1�̈�1) = 0 

(𝑔𝑠𝑖𝑛𝜑1 − 𝑐𝑜𝑠𝜑1�̈� + 𝑙1�̈�1) = 0 

⇒ �̈�1 =
𝑐𝑜𝑠𝜑1�̈� − 𝑔𝑠𝑖𝑛𝜑1

𝑙1
 

(5) 

 

Similarly, partial derivative with respect to variable 𝜑2 we 

have: 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�2
) −

𝜕𝐿

𝜕𝜑2
+
𝜕𝑃

𝜕𝜑2
= 0 

⇒ 𝑚2𝑙2(𝑔𝑠𝑖𝑛𝜑2 − 𝑐𝑜𝑠𝜑2�̈� + 𝑙2�̈�2) = 0 

(𝑔𝑠𝑖𝑛𝜑2 − 𝑐𝑜𝑠𝜑2�̈� + 𝑙2�̈�2) = 0 

⇒ �̈�2 =
𝑐𝑜𝑠𝜑2�̈� − 𝑔𝑠𝑖𝑛𝜑2

𝑙2
 

(6) 

 

Substituting Eqs. (6) and (5) into Eq. (4) we have: 

 

�̈� =
−𝑚1𝑔𝑠𝑖𝑛𝜑1𝑐𝑜𝑠𝜑1 −𝑚2𝑔𝑠𝑖𝑛𝜑2𝑐𝑜𝑠𝜑2
𝑚1𝑠𝑖𝑛

2(𝜑1) + 𝑚2𝑠𝑖𝑛
2(𝜑2) + 𝑀

 

+
−𝑚1𝑙1�̇�1

2𝑠𝑖𝑛𝜑1 −𝑚2𝑙2�̇�2
2𝑠𝑖𝑛𝜑2

𝑚1𝑠𝑖𝑛
2(𝜑1) + 𝑚2𝑠𝑖𝑛

2(𝜑2) + 𝑀
 

+
𝑢

𝑚1𝑠𝑖𝑛
2(𝜑1) + 𝑚2𝑠𝑖𝑛

2(𝜑2) + 𝑀
 

(7) 

 

Let 𝑋 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]𝑇 . Then the state 

space equation of the nonlinear system is: 

{
 
 

 
 

�̇�1 = �̇� = 𝑥2
�̇�2 = �̈� = 𝑓1(𝑋) + 𝑔1(𝑋)𝑢

�̇�3 = 𝑥4 = �̇�1
�̇�4 = �̈�1 = 𝑓2(𝑋) + 𝑔2(𝑋)𝑢

�̇�5 = 𝑥6 = �̇�2
�̇�6 = �̈�2 = 𝑓3(𝑋) + 𝑔3(𝑋)𝑢

 (8) 

 

Eq. (8) is briefly written as follows: 

 

�̇� = 𝐹(𝑋) + 𝐺(𝑋)𝑢 (9) 

 

 

3. DESIGN A CONTROLLER FOR AN OVERHEAD 

CRANE SYSTEM 

 

3.1 Adaptive RBFNN controller 

 

Recently, the RBF neural network has attracted the research 

attention of scientists. With a simple three-layer structure 

including input layer, hidden layer, output layer and good 

generalization ability, lengthy and unnecessary calculations 

are avoided compared to multi-layer feed forward networks. 

This section introduces an adaptive control method based 

on neural approximation with unknown parameters [21-23]. 

Defining error vector 

 

𝑒(𝑡) = [

𝑥1 − 𝑥𝑟𝑒𝑓
𝑥3 − 𝜑1𝑟𝑒𝑓
𝑥5 − 𝜑2𝑟𝑒𝑓

] = [

𝑥 − 𝑥𝑟𝑒𝑓
𝜑1 − 𝜑1𝑟𝑒𝑓
𝜑2 − 𝜑2𝑟𝑒𝑓

] = 𝑞 − 𝑞𝑟𝑒𝑓  (10) 

 

where, 𝑞𝑟𝑒𝑓 = [𝑥𝑟𝑒𝑓 𝜑1𝑟𝑒𝑓 𝜑2𝑟𝑒𝑓]𝑇 , 𝑥𝑟𝑒𝑓  is the desired 

position and 𝜑1𝑟𝑒𝑓 , 𝜑2𝑟𝑒𝑓  are the desired rotation angles. 

The control law is designed as follows: 

 

𝑢 =
1

𝐺(𝑋)
[�̈�𝑟𝑒𝑓 − 𝐹(𝑋) + 𝐾

𝑇𝔢] (11) 

 

where, 𝑒 = [𝑒 �̇�]𝑇, 𝐾 = [𝐾𝑝 𝐾𝑑]𝑇 . 

Substituting Eq. (11) into (9), we get the error equation of 

the system as follows: 

 

�̈� + 𝐾𝑑�̇� + 𝐾𝑝𝑒 = 0 (12) 

 

We have the characteristic equation of the system as: 

 

𝑠2 + 𝐾𝑑𝑠 + 𝐾𝑝 = 0 (13) 

 

where, 𝐾𝑝 and 𝐾𝑑  are designed so that the characteristic Eq. 

(13) has a solution on the left side of the complex plane, 

meaning when 𝑡 → ∞ then 𝑒(𝑡) → 0 and �̇�(𝑡) → 0. 

To find the control law in Eq. (10), we need to know the 

function 𝐹(𝑋) . However, 𝐹(𝑋)  is an uncertain nonlinear 

function. Therefore, the authors use the RBFNN to 

approximate 𝐹(𝑋). 
The RBFNN is described as follows: 

 

ℎ𝑗 = 𝑒𝑥𝑝 (
‖𝔢 − 𝑐𝑖𝑗‖

2

𝑏𝑗
2 ) (14) 

 

𝐹(𝑋) = 𝑊𝑇ℎ(𝔢) + 𝜀 (15) 

 

where, 𝑒 is the input vector of the neural network; 
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𝑖 represents the number of input layer neurons; 

𝑗 represents the number of hidden layer neurons; 

ℎ = [ℎ1, ℎ2, ℎ3, . . . , ℎ𝑛]
𝑇 represents the output of the hidden 

layer; 

𝑐𝑖𝑗  represents the coordinate vector of the center point of the 

Gaussian basis function; 

𝑏𝑗 represents the width of the Gaussian function; 

𝑊 is the weight value of the neural network; 

𝜀 is the approximation error of the neural network. 

Then the function 𝐹(𝑋) is approximated as follows: 

 

�̂�(𝑋) = �̂�𝑇ℎ(𝑒) (16) 

 

where, �̂�(𝑋)  is the output of the neural network; �̂�  is an 

approximation of the neural network weight 𝑊; input vector 

of the neural network 𝑒 = [𝑒 �̇�]𝑇. 

At this point, the control law (11) will become: 

 

𝑢 =
1

𝐺(𝑋)
[�̈�𝑟𝑒𝑓 − �̂�(𝑋) + 𝐾

𝑇𝑒] (17) 

 

Substituting Eq. (16) into (17), the system control law is 

expressed as follows: 

 

𝑢 =
1

𝐺(𝑋)
[�̈�𝑟𝑒𝑓 − �̂�

𝑇ℎ(𝔢) + 𝐾𝑇𝑒] (18) 

 

The neural network weight adaptation law is chosen as: 

 

�̇̂� = −𝛾𝔢𝑇𝑃𝑏ℎ(𝑒) (19) 

 

where, 𝑃 is a positive definite symmetric matrix; 𝛾 > 0. 
The block diagram of the closed-loop control system is 

shown in Figure 3. 

 

 
 

Figure 3. Block diagram of closed loop control system 

 

3.2 Stability analysis 

 

Substituting Eq. (11) into (9) we have: 

 

�̈� = (�̂�(𝑋) − 𝐹(𝑋)) − 𝐾𝑇𝑒 (20) 

 

Transforming Eq. (20) we have: 

 

�̇� = 𝐴𝔢 + 𝐵(�̂�(𝑋) − 𝐹(𝑋)) (21) 

 

Assuming W is the optimal weight of RBFNN, then W is 

calculated according to the following equation. 

𝑊∗ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑠𝑢𝑝|�̂�(𝑋) − 𝐹(𝑋)|) (22) 

 

Set the model approximation error calculated by the optimal 

RBFNN weights to be: 

 

�̃�(𝑋) = �̂�(𝑋/𝑊∗) − 𝐹(𝑋) (23) 

 

⇒ �̃�(𝑋) − �̂�(𝑋/𝑊∗) = −𝐹(𝑋) (24) 

 

Substituting Eq. (24) into (21) we have: 

 

�̇� = 𝐴𝔢 + 𝐵(�̂�(𝑋) + �̃�(𝑋) − �̂�(𝑋/𝑊∗)) (25) 

 

⇒ �̇� = 𝐴𝔢 + 𝐵(�̂�(𝑋) + �̃�(𝑋) − �̂�(𝑋/𝑊∗)) 

= 𝐴𝔢 + 𝐵[(�̂�(𝑋) − �̂�(𝑋/𝑊∗))] + �̃�(𝑋) 

= 𝐴𝔢 + 𝐵 ((�̂� −𝑊∗)ℎ(𝔢) + �̃�(𝑋)) 

(26) 

 

Set 𝑁 = 𝐵 ((�̂� −𝑊∗)
𝑇
ℎ(𝔢) + �̃�(𝑋)) , then Eq. (26) is 

rewritten as: 

 

�̇� = 𝐴𝔢 + 𝑁 (27) 

 

Choose the Lyapunov function: 

 

𝐿 =
1

2
𝑒𝑇𝑃𝑒 +

1

2𝛾
(�̂� −𝑊∗)

𝑇
(�̂� −𝑊∗) (28) 

 

The matrix P must satisfy the Lyapunov equation: 

 

𝑃𝐴 + 𝐴𝑇𝑃 = −𝑄 (29) 

 

where, 𝐴 = [
0 𝐼
−𝐾𝑝 −𝐾𝑑

]; 𝐵 = [
0
𝐼
]; 𝑄 ≥ 0. 

 

�̇� =
1

2
�̇�𝑇𝑃𝑒 +

1

2
𝔢𝑇𝑃�̇� +

1

𝛾
(�̂� −𝑊∗)

𝑇
�̇̂� 

=
1

2
(𝑒𝑇𝐴𝑇 + 𝑁𝑇)𝑃𝑒 +

1

2
𝑒𝑇𝑃(𝐴𝐸 + 𝑁) 

+
1

𝛾
(�̂� −𝑊∗)

𝑇
�̇̂� 

=
1

2
𝑒𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑒 +

1

2
𝑁𝑇𝑃𝑒 +

1

2
𝑒𝑇𝑃𝑁 

+
1

𝛾
(�̂� −𝑊∗)

𝑇
�̇̂� 

= −
1

2
𝑒𝑇𝑄𝑒 +

1

2
(𝑁𝑇𝑃𝑒 + 𝑒𝑇𝑃𝑁) 

+
1

𝛾
(�̂� −𝑊∗)

𝑇
�̇̂� 

(30) 

 

⇒ �̇� = −
1

2
𝑒𝑇𝑄𝑒 + 𝑒𝑇𝑃𝑁 +

1

𝛾
(�̂� −𝑊∗)

𝑇
�̇̂� (31) 

 

Substituting the 𝑁 value set above into Eq. (31), we get: 
 

�̇� = −
1

2
𝑒𝑇𝑄𝔢 + 𝑒𝑇𝑃𝐵 ((�̂� −𝑊∗)

𝑇
ℎ(𝑒) + �̃�(𝑋))

+
1

𝛾
(�̂� −𝑊∗)

𝑇
�̇̂� 

= −
1

2
𝑒𝑇𝑄𝑒 + 𝑒𝑇𝑃𝐵(�̂� −𝑊∗)

𝑇
ℎ(𝑒) + 𝑒𝑇𝑃𝐵�̃�(𝑋) 

+
1

𝛾
(�̂� −𝑊∗)

𝑇
�̇̂� 

(32) 
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�̇� = −
1

2
𝑒𝑇𝑄𝑒 + 𝑒𝑇𝑃𝐵�̃�(𝑋) 

+
1

𝛾
(�̂� −𝑊∗)

𝑇
(�̇̂� + 𝛾𝑒𝑇𝑃𝐵ℎ(𝑒)) 

 

With the adaptation law Eq. (19) the Lyapunov function 

becomes: 

 

�̇� = −
1

2
𝑒𝑇𝑄𝑒 + 𝑒𝑇𝑃𝐵�̃�(𝑋) ≤ 0 (33) 

 

Complete proof. 

 

 

4. SIMULATION VERIFICATION 

 

To verify the effectiveness of the proposed algorithm. We 

perform system simulation on Matlab/Simulink software with 

different scenarios. The selected RBF neural network has 6 

input layer neurons, 13 hidden layer neurons and 1 output layer 

neuron. The hidden layer parameters 𝑐𝑖𝑗  and 𝑏𝑗 of the neural 

network are: [-3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3] 

and 2. 

The parameters of the selected controller are: 𝐾𝑝 = 30 , 

𝐾𝑑 = 50, 𝛾 = 500. The initial neural network weight values 

are 0. 

Scenario 1: The parameters of the overhead crane system 

are: 𝑀 = 1000 (𝑘𝑔) , 𝑚1 = 50 (𝑘𝑔) , 𝑚2 = 100 (𝑘𝑔) , 𝑙1 =
10 (𝑚), 𝑙2 = 20 (𝑚). 

The initial and desired positions of the system are: 

 

{
𝑋0 = [3 0 𝜋 3⁄ 0 −𝜋 3⁄ 0]𝑇

𝑋𝑟𝑒𝑓 = [5 0 0 0 0 0]𝑇
 

 

The simulation results from Figures 4-19 show that the 

proposed controller stabilizes all responses of the overhead 

crane system with good control performance. The responses of 

the cart's position and the cable's swing angle always track the 

set value with a small response time. 

 

 
 

Figure 4. Scenario 1 cart position when 𝑥 = 5 

 

 
 

Figure 5. Scenario 1 swing angle of load 1 when 𝜑1 = 𝜋 3⁄  

 

 
 

Figure 6. Scenario 1 swing angle of load 2 when 𝜑2 =
−𝜋 3⁄  

 

 
 

Figure 7. Scenario 1 control input when 𝑥 = 5 

 

The initial and desired positions of the system are: 

 

{
𝑋0 = [5 0 𝜋 4⁄ 0 −𝜋 4⁄ 0]𝑇

𝑋𝑟𝑒𝑓 = [10 0 0 0 0 0]𝑇
 

 

 
 

Figure 8. Scenario 1 cart position when 𝑥 = 10 

 

 
 

Figure 9. Scenario 1 swing angle of load 1 when 𝜑1 = 𝜋 4⁄  

 

 
 

Figure 10. Scenario 1 swing angle of load 2 when 𝜑2 =
−𝜋 4⁄  

 

 
 

Figure 11. Scenario 1 control input when 𝑥 = 10 

 

Scenario 2: The parameters of the overhead crane system 

are: 𝑀 = 100 (𝑘𝑔) , 𝑚1 = 5 (𝑘𝑔) , 𝑚2 = 10 (𝑘𝑔) , 𝑙1 =
1 (𝑚), 𝑙2 = 2 (𝑚). 

The initial and desired positions of the system are: 

 

𝑋0 = [3 0 𝜋 3⁄ 0 −𝜋 3⁄ 0]𝑇 

𝑋𝑟𝑒𝑓 = [5 0 𝜋 3⁄ 0 −𝜋 3⁄ 0]𝑇 

 

 
 

Figure 12. Scenario 2 cart position when 𝑥 = 5 

 

 
 

Figure 13. Scenario 2 swing angle of load 1 when 𝜑1 = 𝜋 3⁄  
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Figure 14. Scenario 2 swing angle of load 2 when 𝜑2 =
−𝜋 3⁄  

 

 
 

Figure 15. Scenario 2 control input when 𝑥 = 5 

 

The initial and desired positions of the system are: 

 

{
𝑋0 = [5 0 𝜋 4⁄ 0 −𝜋 4⁄ 0]𝑇

𝑋𝑟𝑒𝑓 = [10 0 0 0 0 0]𝑇
 

 

 
 

Figure 16. Scenario 2 cart position when 𝑥 = 10 

 

 
 

Figure 17. Scenario 2 swing angle of load 1 when 𝜑1 = 𝜋 4⁄  

 

 
 

Figure 18. Scenario 2 swing angle of load 2 when 𝜑2 =
−𝜋 4⁄  

 

 
 

Figure 19. Scenario 2 control input when 𝑥 = 10 

 

The simulation results from Figures 4-19 show that the 

proposed controller stabilizes all responses of the overhead 

crane system with good control performance. The responses of 

the cart's position and the cable's swing angle always track the 

set value with a small response time. 

The adaptability of the controller is studied in relation to 

changes in the parameters of the overhead crane system. 

Usually the volume of the load is very diverse and depends on 

each individual operating condition. By varying the mass of 

the load and the cable length, we obtain the system response 

as shown in Figures 12-19. Note that the controller parameters 

remain the same in the two scenarios. 

The results obtained with the controller using RBF neural 

network (overshoot 0.217%) show that the system quality is 

improved in terms of overshoot compared to the fuzzy logic 

controller [24] (overshoot 0.227%). In addition, fuzzy logic 

controllers have the disadvantage of depending on the expert's 

understanding of the object. Specifically, the operating range 

of input and output variables needs to be surveyed first 

because they greatly affect the quality of the system when 

using a fuzzy logic controller. 

 

 

5. CONCLUSIONS 

 

In this study, the authors have transformed the dynamic 

equation of the overhead crane system in accordance with the 

proposed control method. The proposed controller is stable for 

all outputs of the system: the position of the cart and the 

rotation angle of the cable accurately track the desired values, 

the vibration of the goods is completely suppressed. The 

adaptability of the system is guaranteed when changing the 

system parameters to suit the reality when the crane operates. 

Finally, in the near future the author will conduct experiments 

to check the simulation results. 

A potential future research direction is to install the 

algorithm on real application systems. In addition, we need to 

integrate additional obstacle avoidance features into the 

controller to ensure safety for people and goods during 

operation. 
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NOMENCLATURE 

 

𝑀  Denotes the mass of the cart, kg 

𝑚1  Mass of payload 1, kg 

𝑙1  Cable length between the center of the cart and the 

payload 1, m 

𝑚2  Mass of payload 2, kg 

𝑙2  Cable length between the center of the cart and the 

payload 2, m 

𝑔  Gravitational constant, m/s2 

𝔢  The input vector of the neural network 

𝑖  Represents the number of input layer neurons 

𝑗  Represents the number of hidden layer neurons 

ℎ  Represents the output of the hidden layer 

𝑐𝑖𝑗   Represents the coordinate vector of the center point 

of the Gaussian basis function 

𝑏𝑗  Represents the width of the Gaussian function 

𝑊  The weight value of the neural network 

𝑋  State space variables 

 

Greek symbols 

 

𝜑1  Payload 1 swing angle, rad 

𝜑2  Payload 2 swing angle, rad 

𝜀  The approximation error of the neural network 

 

Subscripts 

 

ref reference 
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