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Closed-chain parallel robots play a vital role in industrial applications especially in 

automating production processes using end-effector robots. Understanding and optimizing 

these systems is essential to optimize manufacturing processes, enhance accuracy and 

reduce errors. This study delves into an automated system consisting of five planar joints, 

including kinematics, dynamics, path planning, electric motors, driving systems, and the 

use of algorithms to enhance location accuracy through automatic control using Matlab-

Simulink. Realistic computer simulations were also used to verify the validity of these 

methods within the studied system. The research also aims to develop this field by 

developing advanced control algorithms for motors, and also proposing simplified 

automatic control algorithms. It also aims to enhance position accuracy, taking into 

account evaluation metrics such as repeatability and positional error, all through discussing 

potential real-world applications or practical implications of the proposed control 

algorithms. and improved accuracy, such that this work contributes to the continued 

development of closed-chain parallel robots and their practical applications in industrial 

environments. 
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1. INTRODUCTION

Robotic systems are considered one of the most complex 

engineering systems because they include many 

interconnected systems that work simultaneously and in an 

integrated manner so that the robot can perform its work as 

required. The robot can be viewed as an overlay of a 

mechanical system represented by arms, joints, and other 

mechanical components to connect its physical parts to an 

electrical system. Electronic is represented by motors (mostly 

motors), driving circuits, sensors, control devices, and 

microprocessors. The integrated robot system also requires an 

in-depth and detailed study that includes all stages of its 

operation and work [1]. 

The study of any robot system of its various types can be 

discussed according to ordered steps that begin with studying 

the kinematics of the robot system, including the study of 

forward kinematics and the study of reverse kinematics, where 

through kinematics we can know and determine the 

generalized coordinates of the robot according to the degree of 

freedom of the robot. We do not overlook the importance of 

studying the movement of active joints and connections (i.e. 

those directly connected to the motors) because they transmit 

movement to the rest of the robot’s parts. In addition, through 

inverse kinematics, the generalized coordinates according to 

which joints must move to transfer the coordinates of the 

robot's end effector to new coordinates in space [2]. 

Later, the dynamic study of the robot is carried out based on 

the Newton-Euler equations or the Euler-Lagrange equations 

(most often). Moreover, the main goal of the dynamic study is 

to determine the torque required from the motors during the 

operation of the robot and thus the specifications of the motors 

required for the robot. In the next step, through path planning, 

the generalized coordinates of the end effector are determined 

over time by studying the path planning of the robot's end 

effector according to inverse kinematics [3, 4]. Path planning 

plays a crucial role in automatic control by serving as 

reference signals for the control system to achieve. 

Mentioning the sensors and drive systems of the motors in 

the control system is important, due to their importance in 

determining precise positions. Therefore, it is necessary to 

explain how these components, such as feedback sensors and 

motor drive systems, are specifically integrated into the 

control system of the five-bar planar robot and their impact on 

enhancing the accuracy and efficiency of position control [5]. 

Acronyms  

l0: (horizontal distance of the joint 4/1 from the origin) (m) 

l1: length of link No1 (m) 

l2: length of link No2 (m) 

l3: length of link No3 (m) 

l4: length of link No4 (m) 

lc1: the distance from the joint 1 to the center of mass of the 

link 1 (m) 
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lc2: the distance from the joint 1 to the center of mass of the 

link 2 (m) 

lc3: the distance from the joint 1 to the center of mass of the 

link 3 (m) 

lc4: the distance from the joint 1 to the center of mass of the 

link 4 (m) 

X: x coordinate of the end-effector (m) 

Y: y coordinate of the end-effector (m) 

θ1: the angular position of the joint 1 (rad) 

θ2: the angular position of the joint 2 (rad) 

θ3: the angular position of the joint 3 (rad) 

θ4: the angular position of the joint 4 (rad) 

𝜃1̇: the angular velocity of the joint 1 (
rad

s
)  

𝜃2̇: the angular velocity of the joint 2 (
rad

s
)  

𝜃3̇: the angular velocity of the joint 3 (
rad

s
)  

𝜃4̇: the angular velocity of the joint 4 (
rad

s
)  

𝜃1̈: the angular acceleration of the joint 1 (
rad

s2
)  

𝜃2̈: the angular acceleration of the joint 2 (
rad

s2
)  

𝜃3̈: the angular acceleration of the joint 3 (
rad

s2
)  

𝜃4̈: the angular acceleration of the joint 4 (
rad

s2
)  

i: gear ratio 

 

 

2. METHODOLOGY 

 

2.1 Kinematics 

 

Kinematics can be defined as the motion study of objects 

regardless of the impact of masses and moments of inertia on 

the system components [6]. For analyzing the forward 

kinematics of the manipulator system, the relationships 

between the active links’ angles (θ1 and θ4) and passive links’ 

angles (θ2 and θ3) must be determined. The position vector of 

the end effector 𝑃0
𝐸  allows determining the coordinates of the 

end effector for any given angles as clarified in the vectors 

shown in Eqs. (1) and (2). These relations are identified based 

on basic trigonometry and that can be shown with the help of 

Figure 1.  

 

𝑃0
𝐸 = [

𝑙0 + 𝑙1cos(𝜃1) + 𝑙2 cos (𝜃2)

𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃2)
0

] (1) 

 

𝑃0
𝐸 = [

𝑙0 + 𝑙4 cos(𝜃4) + 𝑙3 cos(𝜃3)

𝑙4 sin(𝜃4) + 𝑙3 sin(𝜃3)
0

] (2) 

 

The Eqs. (3)-(9) help determining the relations between the 

angles: 

 

𝐴𝐵 = 2𝑙0 + cos(𝜃4) ∗ 𝑙4 + cos(𝑡ℎ𝑒𝑡𝑎1) ∗ 𝑙1 (3) 

 

𝐵𝐶 = 𝑙4 ∗ sin(𝜃4) − (𝑙1 sin(𝜃1)) (4) 

 

𝐴𝐶 = √𝐴𝐵2 + 𝐵𝐶2 (5) 

 

𝛼 = arctan (
𝐵𝐶

𝐴𝐵
) (6) 

 

𝛽 = arccos (
𝐴𝐶

2 ∗ 𝑙2
) (7) 

 

𝜃3 = 𝛼 + 𝛽 (8) 

 

𝜃2 = 180° − (𝛽 − 𝛼) (9) 

 

 
 

Figure 1. Kinematics analysis of the mechanism 

 

Example: 

Let's consider a simple planar 2-link robotic arm where the 

length of both links is 1 unit. The forward kinematics 

equations for this system can be represented as: 

 

x=cos (θ1)+cos (θ1+θ2) 

y=sin (θ1)+sin (θ1+θ2) 

 

Now, let's evaluate the end effector position (x, y) for 

different common angles. Assume the following angles: 

 

θ1=30°  

θ2=45°  

 

Plugging these values into the equations, we get: 

 

x=cos (30)+cos (30+45)=0.866+0.383≈1.249 

y=sin (30)+sin (30+45)=0.5+0.574≈1.074 

 

Therefore, for the angles θ1=30° and θ2=45°, the end effector 

position is approximately (1.249, 1.074) units. 

You can repeat this process by changing the values of θ1 and 

θ2 to demonstrate how the end effector coordinates change 

with different angles. If you have specific equations or 

parameters you'd like to work with, feel free to share them so 

we can provide a more tailored example. 

 

2.2 Inverse kinematics 

 

Inverse kinematics revolves around finding the required 

generalized coordinates (either displacements, angles, or both) 

for attaining the desired end effector coordinates of the 

manipulator [7]. For a given end effector’s coordinates (𝑥, 𝑦) 

in the manipulator, the active links’ angles must be determined. 

Figure 2 clarifies the relationship between the active link 

angles and the end effector coordinates. 
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Figure 2. Inverse kinematics of the manipulator 

 

The Eqs. (10)-(15) express the inverse kinematics formulas 

of the mechanism. By using these equations, any coordinates 

of the end effector are achievable based on the correct 

calculation of the corresponding active links’ angles.  

 

𝛼1 = arctan (
𝑦

10 − 𝑥
) (10) 

 

𝛽1 =
arccos(𝑙2

2 − (𝑙1
2 + 𝑥2 + 𝑦2))

 −2𝑙1√𝑥2 + 𝑦2
 (11) 

 

𝜃1 = (𝜋 − real(𝛼1 + 𝛽1)) ∗
180

𝜋
 (12) 

 

𝛼2 = arctan (
𝑦

10 + 𝑥
) (13) 

 

𝛽2 =
arccos(𝑙3

2 − (𝑙4
2 + 𝑥2 + 𝑦2))

−2𝑙4√𝑥2 + 𝑦2
 (14) 

 

𝜃2 = (real(𝛼1 + 𝛽1)) ∗
180

𝜋
 (15) 

 

Example: 

Let's consider these equations and work through a numerical 

example to demonstrate how we can compute the active link 

angles θ1 and θ2 for a given end effector coordinates (x, y). 

Given: 

 

l1=5 units 

l1=7 units 

l1=6 units 

x=3 units 

y=4 units 

 

Using Eqs. (10)-(15), we can calculate the active link angles 

θ1 and θ2: 

 

α1 = arctan(y / (10 - x)) ≈ arctan(4 / (10 - 3)) ≈ arctan(4 / 7) ≈ 

29.74° β1 = arccos((72 - (25 + 9)) / (-2 × 5 × √(32 + 42))) ≈ 

arccos(38 / (-10 × 5)) ≈ arccos(-0.76) ≈ 141.04° θ1 = (π - 

(29.74 + 141.04)) × 180 / π ≈ (π - 170.78) × 180 / π ≈ 97.83° 

 

α2 = arctan(y / (10 + x)) ≈ arctan(4 / (10 + 3)) ≈ arctan(4 / 13) 

≈ 16.70° β2 = arccos((36 - (36 + 9)) / (-2 × 6 × √(32 + 42))) ≈ 

arccos(-9 / (-12 × 5)) ≈ arccos(0.15) ≈ 81.84° θ2 = (16.70 + 

81.84) × 180 / π ≈ 98.54° 

 

Therefore, for the given end effector coordinates x=3 units, 

y=4 units, the corresponding active link angles are 

approximately: θ1≈97.83°, θ2≈98.54°. 

By plugging these angles back into the forward kinematics 

equations, you should be able to validate that they indeed 

produce the desired end effector position of (3, 4) units. 

 

2.3 Dynamic 

 

Mathematical models of robot dynamics describe the 

motion of objects while external forces, torques, or both act on 

the robot system. Robotic dynamic equations are used in 

robotic control systems in order to achieve the desired 

behavior of the robot, which is to track and adhere to the 

planned path. Further, the system dynamics represent the 

equation of motion EOM of the system [8]. 

For many applications of robotic systems, there is a need to 

find the dynamic study of multi-body robots as follows: 

The positions of the centers of mass of each link are 

expressed as in Eqs. (16)-(19): 

 

𝑟𝑐1⃗⃗⃗⃗  ⃗ = [
𝑙0 + 𝑙𝑐1 cos(𝜃1)

𝑙𝑐1 sin(𝜃1)

0

] (16) 

 

𝑟𝑐2⃗⃗⃗⃗  ⃗ = [
𝑙0 + 𝑙1cos(𝜃1) + 𝑙𝑐2 cos (𝜃2)

𝑙1 sin(𝜃1) + 𝑙𝑐2 sin(𝜃2)
0

] (17) 

 

𝑟𝑐3⃗⃗⃗⃗  ⃗ = [
𝑙0 + 𝑙4 cos(𝜃4) + 𝑙𝑐3 cos(𝜃3)

𝑙4 sin(𝜃4) + 𝑙𝑐3 sin(𝜃3)

0

] (18) 

 

𝑟𝑐4⃗⃗⃗⃗  ⃗ = [
𝑙0 + 𝑙𝑐4 cos(𝜃4)

𝑙𝑐4 sin(𝜃4)

0

] (19) 

 

Therefore, the velocities of the centers of mass of each link 

can be calculated as in Eq. (20): 

 

𝑉𝑐1
⃗⃗ ⃗⃗  ⃗ =

𝑑(𝑟𝑐1)

𝑑𝑡
, 𝑉𝑐2
⃗⃗ ⃗⃗  ⃗ =

𝑑(𝑟𝑐2)

𝑑𝑡
, 

𝑉𝑐3
⃗⃗ ⃗⃗  ⃗ =

𝑑(𝑟𝑐3)

𝑑𝑡
, 𝑉𝑐4
⃗⃗ ⃗⃗  ⃗ =

𝑑(𝑟𝑐4)

𝑑𝑡
 

(20) 

 

Then: 

 

𝑉1 = [
−𝑙𝑐1sin(𝜃1) ∗ 𝜃1

′

𝑙𝑐1 cos(𝜃1) ∗ 𝜃1
′

0

] (21) 

 

𝑉2 = [
−𝑙1 sin(𝜃1) ∗ 𝜃1

′ − 𝑙𝑐2 sin(𝜃2) ∗ 𝜃2
′

𝑙1 cos(𝜃1) ∗ 𝜃1
′ + 𝑙𝑐2 cos(𝜃2) ∗ 𝜃2

′

0

] (22) 

 

𝑉3 = [
−𝑙4 sin(𝜃4) ∗ 𝜃4

′ − 𝑙𝑐3 sin(𝜃3) ∗ 𝜃3
′

𝑙4 cos(𝜃4) ∗ 𝜃4
′ + 𝑙𝑐3 cos(𝜃3) ∗ 𝜃3

′

0

] (23) 

 

𝑉4 = [
−𝑙𝑐4 sin(𝜃4) ∗ 𝜃4

′

𝑙4𝑐 cos(𝜃4) ∗ 𝜃4
′

0

] (24) 
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In the subsequent stage, the kinetic and potential energies of 

the system are determined. The kinetic energy of the 

mechanism is calculated as in Eq. (25): 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑘1 + 𝐸𝑘2 + 𝐸𝑘3 + 𝐸𝑘4 (25) 

 

However, the system motion is bound with the XY planar, 

which implies no motion along the Z axis. Hence, the potential 

energy of the system is considered zero: 

 

𝐸𝑃1,2,3,4
= 0 ⇔ (𝑍 = 0) (26) 

 

Nevertheless, the kinetic energies of the mechanism are the 

summation of the kinetic energy and rotational energy as in 

Eqs. (27)-(31): 

 

𝐸𝑘 = 𝐸𝐾𝑙𝑖𝑛𝑒𝑎𝑟
+ 𝐸𝐾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

 (27) 

 

𝐸𝑘1 = 0.5 𝑚1 (𝑉𝑐1
𝑇 . 𝑉𝑐1) + 0.5 𝐼1

𝑐
 (𝑤1

𝑇 . 𝑤1)  

= 0.5 𝑚1 ‖𝑉𝑐1‖
2 + 0.5 𝐼1

𝑐
 ‖𝑤1‖

2 

𝐸𝑘1 = 0.5 𝑚1 (𝑙𝑐1
2 ) 𝜃1

2̇ + 0.5  𝐼1
𝑐
 𝜃1̇ 

(28) 

 

Similarly: 

 

𝐸𝑘2 =
1

2
𝑚2 𝑉𝑐2

𝑇  𝑉𝑐2 +
1

2
𝐼2
𝑐
𝜃2

2̇ (29) 

 

𝐸𝑘3 =
1

2
𝐼3
𝑐
𝜃3

2̇ +
1

2
 𝑚3(𝑙4

2 𝜃4
2̇ + 𝑙3𝑐

2 𝜃3
2̇

+ 𝑙4𝑙3𝑐𝜃3̇𝜃4̇ cos(𝜃4 − 𝜃3)) 

(30) 

 

𝐸𝑘4 =
1

2
(𝐼4

𝑐
+ 𝑙𝑐4

2  𝑚4) 𝜃4̇ (31) 

 

Now the Lagrangian is identified as in Eq. (32): 

 

𝐿 = 𝐸𝐾𝑡𝑜𝑡𝑎𝑙
− 𝐸𝑃𝑡𝑜𝑡𝑎𝑙

= 𝐸𝑘1 + 𝐸𝑘2 + 𝐸𝑘3 + 𝐸𝑘4 (32) 

 

Through Lagrangian equations the torques applied to each 

joint can be determined as in Eqs. (33) and (34): 

 

𝜏1 =
𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃1̇

) −
𝑑𝐿

𝑑𝜃1

,     𝜏2 =
𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃2̇

) −
𝑑𝐿

𝑑𝜃2

 (33) 

 

𝜏3 =
𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃3̇

) −
𝑑𝐿

𝑑𝜃3

,      𝜏4 =
𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃4̇

) −
𝑑𝐿

𝑑𝜃4

 (34) 

 

Example: 

To demonstrate the applicability of the equations in 

determining the coordinates of the final effect, let's consider a 

numerical example with the following parameters: 

 

l0 = 2 units 

lc1 = 1 unit 

lc2 = 1.5 units 

lc3 = 1.8 units 

lc4 = 1.2 units 

m1 = 3 kg 

m2 = 2 kg 

m3 = 2.5 kg 

m4 = 1.5 kg 

I1/c = 0.5 kg.m2 

I2/c = 0.7 kg.m2 

I3/c = 1 kg.m2 

I4/c = 0.4 kg.m2 

θ1 = 30° 

θ2 = 45° 

θ3 = 60° 

θ4 = 15° 

 

Using the provided equations, we can calculate the kinetic 

energies Ek1, Ek2, Ek3, Ek4, and the Lagrangian L, and then 

determine the torques τ1, τ2, τ3, and τ4 applied to each joint. 

After these calculations, we can validate the results and see 

how they contribute to understanding the dynamics of the 

multi-body robot system with the given joint angles. It's a great 

way to showcase the practical application of these complex 

equations in robotics. 

 

2.4 Geared devices 

 

In general, electrical motors generate relatively small 

torques while spanning at elevated speeds [9]. 

(Power=torque×angular velocity). Consequently, it is 

necessary to employ adequate gearing for the electrical motors 

to make them capable of driving relatively large loads (that 

demand large torques) at decreased velocities. For instance, 

robot links are typically moved at reduced speeds, less than 60 

rpm, while it is required to provide maximum torques varying 

from a few newton meters to a couple hundred newton meters 

[10]. A load is driven by a motor through a gear train, which 

consists of two gears coupled together. The primary gear has 

N1 teeth and the secondary gear contains N2 teeth (In our 

proposed project scheme N1=… N2=…). θ1 and θ2 are the 

angular displacements of the shafts 1 and 2. The viscous 

friction and the moment of inertia of gear 1 are denoted by B1 

and J1 respectively, whilst B2 and J2 represent the viscous 

friction and the moment of inertia of gear 2 and load 

respectively. TM represents the developed torque by the motor, 

and the torque of disturbance on the load is denoted by Tw.  

Figure 3 shows the free-body diagram of the drive-train 

system. Since, T12 is the applied torque on gear 1 from the gear 

2, and the transmitted torque to gear 2 from gear 1. The 

equivalent Eqs. (35) and (36) are for this system [11]: 

 

𝐽1 𝜃1̈ + 𝐵1  𝜃1̇ + 𝑇21 = 𝑇𝑀 (35) 

 

For the load shaft, 

 

𝐽2 𝜃2̈ + 𝐵2 𝜃2̇ + 𝑇𝑤 = 𝑇21 (36) 

 

 
 

Figure 3. Free body diagrams of the drive train system 

 

The following relationship: 𝜃2 = (
𝑁1

𝑁2
) 𝜃1  expresses the 

idealized characteristics of the gear train. However, in real 

applications, a certain quantity of free play “backlash” 

between coupled gears occurs. Assuming r1 is the radius of 

gear 1 and the radius of gear 2 is r2. Knowing that the linear 

velocity transmitted from gear 1 to gear 2 is the same along 
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the coupled gears θ1r1=θ2r2. The Eq. (37) represents the 

dynamics of the drive-train system: 

 
𝑇12

𝑇21

=
𝑁1

𝑁2

=
𝜃2

𝜃1

 (37) 

 

By applying the differentiation to Eq. (37) twice, we obtain 

[12]: 

 

𝜃2̈

𝜃1̈

=
𝜃2̇

𝜃1̇

=
𝑁1

𝑁2

 (38) 

 

Based on Eqs. (37) and (38), it is observed from (N1/N2)<1 

that the gear train gives speed reduction and torque 

magnification by selecting 
𝑁1

𝑁2
 properly. By rearranging and 

simplifying the Eqs. (35) and (36) with the assistance of Eq. 

(38). It is obtained:  

 

𝐽1𝜃1̈ + 𝐵1𝜃1̇ +
𝑁1

𝑁2

(𝐽2𝜃2̈ + 𝐵2𝜃1̇ + 𝑇𝑤) = 𝑇𝑀 (39) 

 

With the help of Eq. (38) θ2 is eliminated from Eq. (39), and 

it yields: 

 

[𝐽1 + (
𝑁1

𝑁2

)
2

𝐽2] 𝜃1̈ + [𝐵1 + (
𝑁1

𝑁2

)
2

𝐵2] 𝜃1̇ +
𝑁1

𝑁2

𝑇𝑤

= 𝑇𝑀 

(40) 

 

The Eq. (40) can be expressed alternatively as follows: 

 

𝐽𝑒𝑞𝜃1̈ + 𝐵𝑒𝑞𝜃1̇ + 𝑇𝑤𝑒𝑞 = 𝑇𝑀 (41) 

 

Example: 

Understanding the dynamics of a drive-train system with 

gears and torque transmission is crucial for designing efficient 

robotic systems with motors. The equations provided describe 

the relationships between angular displacements, torques, 

moments of inertia, and friction in the system. 

To demonstrate the applicability of the equations in 

determining the coordinates of the final effect for different 

common angles, we can consider a numerical example with 

the following parameters: 

 

J1 = 0.8 kg.m2 

B1 = 0.1 N.m.s/rad 

J2 = 0.5 kg.m2 

B2 = 0.2 N.m.s/rad 

N1 = 20 (number of teeth on gear 1) 

N2 = 40 (number of teeth on gear 2) 

TM = 5 N.m (torque developed by the motor) 

Tw = 1 N.m (external torque disturbance on the load) 

 

Using the given Eqs. (35)-(41) and the provided parameters, 

we can solve for the angular displacement θ1, angular 

acceleration 𝜃1̈ , and other variables in the system to 

understand how the system behaves under these conditions. By 

substituting the values into the equations and performing the 

calculations, we can observe how the motor torque, gear ratios, 

inertia, and friction influence the motion of the system. 

After solving the equations numerically, we can analyze the 

results to gain insights into how the drive-train system 

responds to different angles, torques, and gear configurations. 

It's a practical way to illustrate the theoretical concepts in 

action and showcase the importance of these dynamics in 

designing efficient robotic systems. 

 

 

3. RESULTS AND DISCUSSION 

 

The positioning accuracy of the end-effector of the 2DOF 

five-bar robot was investigated in the study. This was 

accomplished by modeling a variety of goal locations as well 

as the actual ones attained by the robot. The results show that 

the positioning accuracy changes with distance from the base 

and end-effector orientation. When the end-effector is closer 

to the base, the accuracy improves.  

 

3.1 Trajectory planning 

 

In the first stage, a set of points expressed as coordinates (x, 

y, z) describe the end-effector's route in the three-dimensional 

setup. This path can be used in the inverse kinematics 

equations to compute the required path for each robot joint to 

obtain the desired end-effector coordinates. It can be 

represented as a function of the spatial coordinates (x, y, z). 

But in order to make these pathways more realistic, temporal 

and spatial elements must be included. Trajectory planning, 

which uses trajectory as a function of (x, y, z, t) to generate 

reference signals for the robot's control system, depends on 

this conversion from path to trajectory. 

When transferring the robotic arm and end-effector from an 

initial position to a desired position, a number of factors must 

be taken into account: 

(1) Remaining within the joint's maximum generalized 

coordinate values is important to maintain motion limitations. 

(2) Making sure the trajectory doesn't cause excessive 

vibrations that could cause mechanical problems. 

In a quantitative analysis, the links' positions are 

differentiated over time to determine the velocity as a function 

of time, and the velocity is further differentiated to determine 

the acceleration as a function of time. The active joint angles 

needed to move the robot's end effector from its initial position 

to the intended position are found using an inverse kinematics 

analysis. This data (see Figure 4) help determine the torque 

that the motors must produce in order to enable the movement. 

For example, using computational tools such as Matlab, 

appropriate angles for the active joints (θ1=84.4595° and 

θ4=83.0809°) are discovered in order to move the end effector 

from position A (0 cm, 25 cm) to position B (4 cm, 29 cm). 

Next, given a total motion period of 5 seconds, the movement 

of the end effector over time to reach the desired position is 

assessed based on trajectory planning equations, usually 

analyzed using software tools like Matlab (see Figure 5). 

A statistical study on the trajectories or joint coordinates 

could be carried out to provide quantitative support for the 

conclusions. This could entail calculating the standard 

deviation of joint angles, the mean departure from the intended 

path, or comparing the actual and expected values of joint 

angles. Furthermore, examining the acceleration profiles and 

contrasting them with predetermined boundaries may offer 

valuable perspectives on system functionality and substantiate 

the trajectory planning methodology. By doing statistical 

analysis, the study's credibility and relevance in robotic system 

design and control would be further strengthened, providing a 

more solid validation of the findings. 
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(a)                                                    (b)                                                  (c) 

 

Figure 4. Position (a), speed (b) and acceleration (c) of the end-effector over time 

 

 
(a)                                                    (b)                                                  (c)  

 
(d)                                                    (e)                                                  (f) 

 

Figure 5. θ1(a), θ4(b), 𝜃1̇(c), 𝜃4̇(d), 𝜃1̈(e), and 𝜃4̈(f) according to the trajectory 

 

The motors are expected to generate a velocity output four 

times higher than the stipulated velocity in order to meet the 

system requirements. The gearing arrangement in use, which 

multiplies the motor speed by four, makes this necessary. 

Then, the generalized coordinates of the active joints are 

integrated into the robot's dynamic equations to calculate the 

torque that the motors must produce in order to carry out the 

intended trajectory. The gear ratio—a term used to describe 

how much the gearing system increases the applied torques 

from the motors—is four. 

After this investigation, Figure 6(a) shows the calculated 

torque required from motor 1 using computational tools such 

as Matlab. Similarly, Figure 6(b) shows the torque needed 

from the second motor in order to drive joint 4. The torque 

demands made on the motors during the motion execution 

process are made clear by these graphic representations. 

The torque profiles of the motors could be assessed 

statistically in order to offer more robust quantitative support. 

Metrics like peak torque values, torque fluctuations, or a 

comparison between theoretical calculations and real torque 

requirements could be used in this. Furthermore, statistical 

metrics such as variance in torque demands or examination of 

torque distribution across various joints may provide more 

comprehensive understanding of the system’s functioning and 

support the torque estimates obtained from the dynamics 

equations. 

Through the implementation of quantitative analyses, 

researchers are able to get a more thorough comprehension of 

the torque requirements for the motor and determine whether 

the amplification of the gearing system is in line with the 

anticipated torque demands. These statistical analyses 

strengthen the conclusions’ robustness and support a more 

evidence-based strategy for maximizing the effectiveness and 

performance of the robotic system. 

 

 
(a) 
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(b) 

 

Figure 6. Required torque applied from motor 1 (a) and 

motor 2 (b) 

 

3.2 Actuators and control systems 

 

The role of the actuators is to move and reposition a joint or 

arm. The role of the feedback control systems is to ensure that 

the planned trajectory is satisfactorily achieved. In general, a 

control system whose role is to control the position of a system 

and track its movements is called a servomechanism [13]. 

Figure 7 shows a simplified depiction of a robot control system: 

 

 
 

Figure 7. Simplified diagram of robot control system 

 

As previously explained, the joint values and variables 

(position, velocity, acceleration, forces, and torques) are 

calculated based on kinematic, dynamic, and trajectory 

analysis. These values and variables are sent to the controller 

so that the controller, in return, applies stimulus (operating) 

signals to actuators (e.g., motors) to move and operate the 

joints to their desired destination in a controlled manner. 

Sensors measure the outputs and send signals back to the 

controller, which in turn controls the operational signals. For 

a multi-joint robot (MIMO system), in most cases, the robot is 

controlled by controlling each joint independently from the 

rest of the joints in a way called "controlling each joint 

separately" and considering each joint as one with a single 

input and a single output. The effects of overlapping 

connections by other joints are often treated as noise and 

handled by the controller. Moreover, robot dynamic equations 

have highly non-linear behavior, which in turn requires more 

complex control systems [14]. 

On the other hand, actuators are the muscles of the robot. 

Since the joints and connections are the skeleton of the robot, 

the actuators are the muscles that move or rotate the 

connections to change the structure of the robot. The actuators 

must have sufficient capacity to speed up or lighten the joints 

and to carry loads effectively. There are many types of triggers, 

including electric motors, servomotors, stepper motors, 

hydraulic actuators, pneumatic actuators, and novelty 

actuators [15].  

Electric motors, especially servomotors, are the most 

common actuators in robotics applications. Hydraulic 

actuators were very popular in the past, but nowadays they are 

less used, except for large applications. Pneumatic actuators 

are used in pneumatic robots that have a half degree of 

freedom and on/off joints. The novel actuators, which may 

include direct drive actuators, cable-muscle actuators, and 

others, are often used in research centers and for development 

objectives.  

The differences between the reference signals (represented 

by required θ1 and θ4 based on planned trajectory) and the 

robot joints’ response (dynamics) are calculated, and that 

expresses the error in the closed-loop system.  

The dynamic responses of the manipulator and the active 

joints are depicted in Figure 8 (a) and (b). 

 

 
(a) 

 
(b) 

 

Figure 8. The dynamic response of the active joint 1 (a) and 

2 (b) 

 

Error correction that resulted from the differences between 

the reference signals and dynamics response is conducted 

through the PID controller in the SIMULINK environment, as 

illustrated in Figure 9. 

For a robotic arm or joint to move and position more easily, 

actuators are essential. However, in order to guarantee that 

planned trajectories are executed accurately, feedback control 

systems are necessary. A servomechanism is a control system 

used in robotics that is mainly responsible for tracking 

movement and adjusting system position. Kinematic, dynamic, 

and trajectory analyses provide the means by which the system 

can regulate joint values such as position, velocity, 

acceleration, forces, and torques. 
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Figure 9. Correction of the error caused by the differences 

between the reference signal and the dynamical response by 

the controllers 

 

Every joint of a multi-joint robot is usually controlled 

separately, as if it were a single input-single-output system. In 

order to preserve accuracy and stability, the controller often 

handles the joint interaction effects as disturbances. Robust 

control systems are necessary for efficient operation due to the 

non-linear nature of robot dynamic equations. 

Actuators are the "muscles" of the robot; they move or 

rotate connections to change the structure of the robot. To 

drive movements, support loads, and accelerate joints, they 

must have sufficient power. Actuators come in a variety of 

forms: electric motors (particularly servomotors, which are 

extensively utilized in robotics) to hydraulic and pneumatic 

actuators, as well as newer choices such cable-muscle and 

direct drive actuators. 

Robotic systems typically use certain control methods, such 

Proportional-Integral-Derivative (PID) control, to manage 

performance. PID controllers have benefits in terms of 

robustness, simplicity, and tuning ease. On the other hand, 

their ability to manage intricate, non-linear dynamics may be 

limited, and they may not perform well in situations when 

exact trajectory tracking or disturbance rejection are necessary. 

The controller creates signals during the control process 

based on the variations between reference signals (such as 

intended joint angles) and the real joint responses. The goal of 

this feedback loop is to reduce errors and guarantee precise 

motion along predetermined paths. Actuators' activities are 

influenced by control signals, which in turn affect the end-

effector's mobility and location within the operational space. 

Accurate and smooth trajectory tracking of end-effector 

movement depends critically on the timing and precision of 

the control signal. PID control algorithms are essential for 

fine-tuning the actuators' actions to efficiently perform desired 

movements. It is crucial to comprehend how actuator 

dynamics, control algorithms, and end-effector behavior 

interact in order to maximize robotic system performance and 

improve job execution capabilities. 

The control signals that are generated by the controllers are 

needed to move the end-effector to the desired coordinates, as 

shown in Figure 10 (a) and (b). 

The study investigated the end effector positioning accuracy 

of a five-bar robot with 2 degrees of freedom (DOF), 

highlighting how accuracy varies with distance from the base 

and direction of the end effector. The research involved 

modeling the locations of different targets and comparing 

them to the actual locations achieved by the robot. It is worth 

noting that it was noted that the positioning accuracy improves 

as the end effector approaches the base. 

 

 
(a) 

 
(b) 

 

Figure 10. The control signal U1 which affect the motor 1 

(a) and the control signal U2 which affect the motor 2 (b) 

 

With regard to path planning, the study emphasized the 

importance of determining the path of the final effector in a 

three-dimensional setting as a function of the coordinate axes 

(x, y, z). The path required for each joint of the robot was also 

determined to reach the required final effector coordinates, as 

moving from paths to paths required taking into account 

variables. Temporal and spatial, and by incorporating this path 

function into the inverse kinematics equations, which led to 

enhancing the realism of the planned paths. 

The need to ensure that the robotic arm moves smoothly 

from its initial position to the desired location was also 

highlighted, as this includes factors such as staying within the 

limits of joint motion, avoiding excessive vibrations that may 

compromise mechanical integrity, and achieving the desired 

speed outputs by taking into account the gear system. 

Furthermore, the discussion touched on the role of operators 

in facilitating joint movement and the importance of feedback 

control systems in monitoring and achieving the desired path. 

The study emphasized the importance of the servo mechanism 

in controlling the system's position and tracking its movements 

effectively. 

The use of actuators, such as electric motors and servo 

motors, has been emphasized as essential for executing 

intended movements, and the use of sophisticated control 

systems, such as proportional and integral derivative (PID) 

controllers, has been shown to be instrumental in correcting 

errors between the planned path and the actual dynamic 

response. 

To understand the implications of the findings on improving 

robotic system accuracy and investigating possible 
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applications, a thorough analysis and interpretation of the data 

are required. Some of the areas that could benefit from further 

research include optimizing trajectory planning algorithms, 

improving control strategies for better system performance, 

and investigating novel actuator technologies for robotic 

applications. These directions could lead to advancements in 

the design and operation of robotic systems. 

In conclusion, research on the 2DOF five-bar robot's end-

effector positioning precision has shed light on the complex 

dynamics of robotic systems. The results highlight the 

importance of end-effector orientation and distance from the 

base in determining positioning accuracy, highlighting the 

requirement for accuracy in trajectory planning and control 

systems. 

The results show improvements in our knowledge of end-

effector movement and control processes in robotic systems 

when compared to previous research. The inquiry has clarified 

the significance of trajectory planning, joint dynamics, and 

feedback control systems in obtaining precise and effective 

movements. The study enhances the reliability and 

performance of robotic systems by highlighting the 

significance of actuators and control algorithms. 

It is imperative to recognize the possible constraints of the 

research, though. In various contexts, the robustness of control 

algorithms may be affected by variations in real-world 

conditions, environmental influences, and unforeseen 

disturbances. In order to guarantee optimal performance and 

dependability in real-world applications, more investigation is 

necessary into the adaptability of control techniques in 

dynamic and uncertain situations. 

In order to improve the agility and efficacy of robotic 

systems, future research could concentrate on improving 

trajectory planning algorithms, improving control techniques 

for a range of operational circumstances, and investigating 

novel actuator technologies. We can keep advancing the 

design and application of complex robotic platforms with 

greater precision and adaptability by tackling these issues and 

utilizing developments in control theory and robotics. 

 

 

4. CONCLUSIONS 

 

From the above, we find that we have provided a 

comprehensive overview of the study on the closed-chain 

parallel robot system, identifying various aspects such as 

kinematics, dynamics, path planning, motor control systems, 

and gear mechanisms to enhance accuracy and efficiency. The 

Methodology section details the step-by-step process involved 

in analyzing and improving an automated system. 

We also find that the results and discussion section 

highlights the results related to the accuracy of determining the 

position of the final effector, path planning, engine torque 

analysis, and the role of motors and control systems, as these 

results highlight the importance of precise control and efficient 

movement in robotic systems, especially in industrial 

applications where it is Accuracy and reliability are crucial. 

The equations and practical application examples presented 

by the research also review theoretical concepts in the field of 

robotics, demonstrating how different parameters and 

dynamics affect the behavior of the robotic system. The 

Matlab-Simulink integration of path planning and control 

algorithms adds a practical dimension to the study, enabling 

effective control and optimization of the automated system. 

In conclusion of the summary, we can emphasize the 

importance of this study in developing the field of closed-

chain parallel robots, improving manufacturing processes, and 

improving industrial automation. We can also mention the 

potential implications of the research results in real-world 

applications and the development of advanced control 

algorithms to enhance accuracy and efficiency. 

Ultimately, we expect that this study covers the 

fundamental aspects of automated system analysis and 

optimization, and the integration of mathematical models, 

simulations, and practical examples adds depth to the research, 

and effectively presents the methodology and results. 

 

 

REFERENCES  

 

[1] Nzue, R.M.A., Brethé, J.F., Vasselin, E., Lefebvre, D., 

Comparison of serial and parallel robot repeatability 

based on different performance criteria. Mechanism and 

Machine Theory, 61: 136-155. 

https://doi.org/10.1016/j.mechmachtheory.2012.10.004 

[2] Gutierrez, M.N.C. Dimensional synthesis of 3RRR 

planar parallel robots for well-conditioned workspace. 

IEEE Latin America Transactions, 13(2): 409-415. 

https://doi.org/10.1109/TLA.2015.7055557 

[3] Murphy, M.A., Sunnerhagen, K.S., Johnels, B., Willén, 

C. (2006). Three-dimensional kinematic motion analysis 

of a daily activity drinking from a glass: A pilot study. 

Journal of Neuroengineering and Rehabilitation, 3: 1-11. 

https://doi.org/10.1186/1743-0003-3-18 

[4] Ivanovic, A., Car, M., Orsag, M., Bogdan, S. (2020). 

Exploiting null space in aerial manipulation through 

model-in-the-loop motion planning. In 2020 

International Conference on Unmanned Aircraft Systems 

(ICUAS), Athens, Greece, pp. 686-693. 

https://doi.org/10.1109/ICUAS48674.2020.9213914 

[5] Schoenenberger, L., Schmid, A., Tanase, R., Beck, M., 

& Schwaninger, M. (2021). Structural analysis of system 

dynamics models. Simulation Modelling Practice and 

Theory, 110: 102333. 

https://doi.org/10.1016/j.simpat.2021.102333 

[6] Li, S., Li, Y., Choi, W., Sarlioglu, B. (2016). High-speed 

electric machines: Challenges and design considerations. 

IEEE Transactions on Transportation Electrification, 

2(1): 2-13. https://doi.org/10.1109/TTE.2016.2523879 

[7] Giberti, H., La Mura, F., Resmini, G., Parmeggiani, M. 

(2018). Fully mechatronical design of an hil system for 

floating devices. Robotics, 7(3): 39. 

https://doi.org/10.3390/robotics7030039 

[8] Cao, F., Jiang, H. (2021). Trajectory planning and 

tracking control of unmanned ground vehicle leading by 

motion virtual leader on expressway. IET Intelligent 

Transport Systems, 15(2): 187-199. 

https://doi.org/10.1049/itr2.12013 

[9] Badreddine, E.L., Houidi, A., Affi, Z., Romdhane, L. 

(2013). Application of multi-objective genetic 

algorithms to the mechatronic design of a four bar system 

with continuous and discrete variables. Mechanism and 

Machine Theory, 61: 68-83. 

https://doi.org/10.1016/j.mechmachtheory.2012.11.002 

[10] Cao, F., Liu, J. (2018). Optimal trajectory control for a 

two-link rigid-flexible manipulator with ODE-PDE 

model. Optimal Control Applications and Methods, 

39(4): 1515-1529. https://doi.org/10.1002/oca.2423 

343



 

[11] Dixit, S., Fallah, S., Montanaro, U., Dianati, M., Stevens, 

A., Mccullough, F., Mouzakitis, A. (2018). Trajectory 

planning and tracking for autonomous overtaking: State-

of-the-art and future prospects. Annual Reviews in 

Control, 45: 76-86. 

https://doi.org/10.1016/j.arcontrol.2018.02.001 

[12] Liu, G.F., Li, H.W. (2016). Design of stepper motor 

position control system based on DSP. In 2017 2nd 

International Conference on Machinery, Electronics and 

Control Simulation (MECS 2017), Taiyuan, China, pp. 

207-211. https://doi.org/10.2991/mecs-17.2017.38 

[13] Iqbal, J., Ullah, M., Khan, S.G., Khelifa, B., Ćuković, S. 

(2017). Nonlinear control systems-A brief overview of 

historical and recent advances. Nonlinear Engineering, 

6(4): 301-312. https://doi.org/10.1515/nleng-2016-0077 

[14] Bobrow, J.E., Dubowsky, S., Gibson, J. S. (1985). Time-

optimal control of robotic manipulators along specified 

paths. The International Journal of Robotics Research, 

4(3): 3-17. 

https://doi.org/10.1177/027836498500400301 

[15] Wan, E.A., Van Der Merwe, R. (2000). The unscented 

Kalman filter for nonlinear estimation. In Proceedings of 

the IEEE 2000 Adaptive Systems for Signal Processing, 

Communications, and Control Symposium (Cat. No. 

00EX373), Lake Louise, AB, Canada, pp. 153-158. 

https://doi.org/10.1109/ASSPCC.2000.882463  

344




