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The control of systems like: bipedal locomotion robots, space launch vehicle, offshore
wind turbines, and active vibration control systems in buildings and bridges, have to
ensure, besides stability and accuracy, the system's insensitivity to parameters'
uncertainties, unmodeled dynamics, external disturbances, and measurements noise. In
such systems analysis and controller design, a triple inverted pendulum can be used as a
benchmark to mimic systems characteristics and effect of different sources of uncertainty.
p-synthesis is a robust control method which seeks a controller that minimizes the robust
H-infinity performance of the closed-loop system through D-K iteration. The D-K iteration
is not guaranteed to converge to a global, or even local minimum. Hence this paper
proposes the enhancement of controller design by applying gazelle optimization technique
to shape the fictitious output by determining the parameters of the performance weighting
matrix. The incorporation of optimization with controller design allows avoiding getting
unnecessarily conservative system at the expense of performance. The developed control
system is simulated using Matlab R2023b for different scenarios of system uncertainty.
The results show that the requirements of robustness and performance can be balanced
through the right choice of cost function. The robust performance measure obtained is
0.6432 which leads to good response for both stabilization and tracking in the presence of
uncertainty. The results also show that even the baseline p-synthesis design achieves
higher robust stability margin about 2.818, the proposed optimized method stabilizes the
system with overshoot been reduced by 67.65% and steady state error reduced by 5.69%
without sacrificing robustness.

1. INTRODUCTION

The applications of triple inverted pendulum system in
robotics, biomedicine, aerospace, building and construction
fields have raised the need of continuously improving control
methods for such systems that handle the inevitable presence
of uncertainties. In order to provide control solutions for such
system, special control methods should be developed, tested,
and improved using suitable benchmark. The triple inverted
pendulum system captures the essence of these complex
control problems. For instance, balancing the humanoid robot
Advanced Step in Innovative Mobility (ASIMO) navigating
uneven terrain involves controlling a triple inverted pendulum
system. Also, developing a controller for a triple pendulum
helps in improving prosthetics or rehabilitation techniques in
biomedicine. Furthermore, the system can be used to improve
stabilization and guidance of launch vehicles and rockets and
improve building stability like skyscrapers that are prone to
sway due to wind or seismic activity.

The control of triple inverted pendulum system faces
challenges of nonlinearities, under actuation, and system
perturbation (parametric uncertainty of moments of inertia and
friction coefficients, unmodeled actuator dynamics, external
torque disturbance, and noise in potentiometer readings) [1].
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Different studies have been made regarding the control of
triple inverted pendulum system. The researches [2-6] used
adaptive optimal control, fuzzy logic, Linear Quadratic
Regulator (LQR), LQR with Genetic Algorithm, fuzzy LOR
optimized by Particle Swarm Optimization (PSO), and interval
type-2 fuzzy logic control (IT2FLC) with PSO methods but
applied it to the linearized model which doesn't show the real
nonlinear system response.

Huang et al. [7] applied optimal LQR based on motion
vision to stabilize the triple inverted pendulum, Banijamali et
al. [8] proposed a model for learning robust locally-linear
controllable embedding (RCE) for prediction and planning,
Masrom et al. [9] applied IT2FLC based on PSO to control the
motion of the triple inverted pendulum. All of these researches
focused on noise effect on the system only. While the studies
[10-12] considered the disturbance effect only. Gupta et al. [13]
derived a robust state feedback control law to overcome
nonlinearities, disturbances, and noise hence, didn't consider
the effect of unmodeled dynamics of actuators at high
frequencies.

Type-1 fuzzy logic, IT2FLC, and adaptive neural fuzzy
inference system (ANFIS) PID control strategies were applied
to the triple inverted pendulum without testing system's
robustness [14-16]. More recently published studies did not
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investigate the robustness of the proposed control system
neither [17-21].

Robust control has been used to stabilize systems with
guaranteed performance [22-26]. The control problem must be
expressed as a mathematical optimization problem then the
controller that solves this optimization problem is then found.
These robust techniques can be readily applied to problems
involving multivariable systems.

The studies [27, 28] proposed the strategy of using swarm
optimization in the robust control design for congestion
avoidance in computer networks and blood glucose control in
diabetic patients; respectively. The proposed approach opens
the doors for the use of optimization in robust control design
for different systems.

The literature review concludes that so far, either the control
system development focuses on improving system's
robustness (which mostly results in conservative system with
low performance characteristics) or focuses on improving
system's performance for the nominal system (which usually
doesn't hold for the perturbed system)

The control objective of this paper is to develop a robust
controller for the triple inverted pendulum system that handles
all uncertainties with satisfactory performance. To achieve this
goal, a p-synthesis controller is developed enhanced by gazelle
optimization of the performance weighting matrix according
to a multi-objective cost function that balances robustness and
performance requirements through the right selection of each
objective's weight.

This paper is organized as the following: Section 2 describes
the mathematical model of the triple inverted pendulum
system. Section 3 explains the p-synthesis controller
development and the application of gazelle optimization
technique to the control system design. The settings of
optimization parameters and the resultant performance
weighting transfer matrix are given in section 4. Robustness
analysis is made in section 5. Different scenarios of
uncertainty are simulated and discussed in section 6. Finally,
conclusions about controller effectiveness are stated in section
7.

2. TRIPLE INVERTED PENDULUM SYSTEM MODEL

The experimental Furuta triple inverted pendulum consists
of three links, two DC motors, two timing belts, three
horizontal bar, three potentiometers, and ball bearings as
shown in Figure 1 [1].
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Figure 1. Triple inverted pendulum [1]
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The three arms are connected by ball bearings to reduce
friction and to allow smooth rotation in the vertical plane. The
DC motors are mounted on the first and third links to supply
torque to the two upper hinges through timing belts. A
horizontal bar is attached to each arm to make it easier to
control by increasing the moment of inertia. The
potentiometers are attached to the hinges to measure the angles
01, 02, and 0s.

To derive the equations of motion for the system,
Lagrange’s equations are used. They relate the partial
derivatives of the Lagrangian (difference between the kinetic
and potential energies of the system) with respect to the
generalized coordinates (angles and velocities) for each
pendulum link.

The nonlinear differential equations of motion are:

6, 6,
M) |6, |+ N, |6, | + qz +G[t ] T[ l
0 63

where, 6=[601 8, 85)]" is the vector of angles of each arm from
the vertical line (as shown in Figure 1), ty; is the control torque
of the j motor, d; is the disturbance torque to the i arm:
—03)
63) - Ipz

M(0) =
Ji+ I ly Mycos(8, — 6;) — I, 1, M5 cos(8,
ly Mycos(8, — 6;) — I, Jo+ 1y + 1y, l, M5 cos(0, —
l; M5 cos(6; — 65) I, My cos(0, — 03) — Iy, I3+ I,
Cy + C+Cpy —C; —Cpy 0
N,=| =Co=Cpy  Cpi+Cpp+Cy+Cs —C5—Cpy
0 —C5 — Cpy C3+ Gy
q1 = LM, sin(0; — 6,) 63 + 1, M, sin(6, — 65) 62
— M, gsin(6;)
q, = UM, sin(8; — 0,) 62 + 1,M, sin(6, — 65) 62
— Myg sin(6,)

q3 = l1M3 Sln(91 - 93) (9.12 - 29193) + l2M3 Sln(92 -
03) (63 — 26,03) — M3g sin (65)

g is acceleration of gravity,

K, 0 1 -1 0
G = _K1 Kz ,T = [0 1 —1],
0 -K, 0 0 1

Cpi = C l + K-ZCmL-,
i = Ly + K? Iml,Ml
MZ m2h2 + m3lz, M3 = m3h3,
_]1 = 11 + mlh% + mzl% + m3l%,]2 = 12 + mzh% + m3l2,
Js =I5 +mg h3,

myhy + myly + myly,

where, liis the length of the i arm, h; is the distance from the
bottom to the center of gravity of the i™ arm, m;is the mass of
the i arm, o is the gain of the i potentiometer, In; is the
moment of inertia of the j™ motor, C, is the viscous friction

coefficient of the belt—pulley system of the it hinge, Ip{ is the

moment of inertia of the belt—pulley system of the i hinge, K;
is the ratio of teeth of belt—pulley system of the i hinge, Iiis
the moment of inertia of the i arm around the center of gravity,
Ciis the viscous friction coefficient of the i hinge, Cn is the
viscous friction coefficient of j" motor. The values of system's
parameters are listed in [1].

Since p-synthesis design involves solving optimization
problems with many variables, then employing a linearized



model for controller synthesis leads to higher calculations
efficiency. Yet, the developed controller is applied to the
original nonlinear system. Since the basic requirement in triple
inverted pendulum system is its stabilization, small deviation
is considered to linearize the model around the operating point
(0,0,0) which represents the upright position. However, for
large deviations from this point, a nonlinear control approach

might be applied. The resulting linearized model equations are:

6, 6,
M, |6,| + N, |6,| + P, 92+G[t ] T @)
0 65
Ji+ 16, LM, — I,y lM;
where, M; = | UMy — Iy Jo + s + 1, M3 — I, |, and
liM; L,M3 — I, Js + L,
~M,g 0 0
P=| 0 —Myg ©
0 0 _M3g
The measured output vector yp is:
61
Yp = Cp |:HZl (3)
63

aq 0 0
where, C, = [—az a, Ol and o; is the gain of the it"
0 _a3 a3

potentiometer.
The actuators are modeled as first order transfer functions
given by:

m]( )_ (4)

+1

The nominal values of the actuator gains Km and K, are
1.08 and 0.335; respectively, and for time constants Tn1 and
Tmz are 0.005 and 0.002; respectively [1]. To test the effect of
the unmodeled dynamics of actuators, that are usually gets
excited by high frequencies, on the system, the actuators gains
are assumed to be 10% uncertain parameters while the time
constants have 20% uncertainty. Input multiplicative
uncertainty representation is used to describe the unmodeled
actuators dynamics as:

Gmj(5) = (1 + Wi ()8 (5)) Grmj (5) 5)
where, Wrj(s) is the j" actuator uncertainty weight transfer
function, Jmj(s) represents the j™ actuator unmodeled dynamics
by uncertain linear time-invariant dynamics with frequency
response gain no larger than one, and G,,;(s) is the nominal
transfer function of the j™ motor. By fitting the upper bound of
relative error magnitude of the actuator model frequency
response to a first order transfer function, the actuator
uncertainty weight diagonal transfer matrix Wi(s) is found to
be:

0.3877s+25.6011

0
_ | s+2463606
Wn(s) = 0 0.38035+60.8973
5+599.5829
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3. CONTROLLER DEVELOPMENT

The p-synthesis controller design makes use of the
linearized model obtained in section 2 to represent the system
in linear fractional transformation form. In the same section,
the uncertainty sources of the system were characterized. In
this section, the control problem is formulated then solved by
D-K iteration. The performance weighting transfer matrix is
optimized by Gazelle optimization technique as a part of
controller design.

3.1 p-synthesis controller design

The suggested triple inverted pendulum control system is
depicted in Figure 2. In this figure, r represents the reference
input vector, u represents the control action vector, d and T
represent the input disturbance and its model; respectively, y
represents the output vector, 7 represents the added
measurement noise vector, y. represents the measured output
vector with noise added, and K represents the two degrees of
freedom controller.

Figure 2. Triple inverted pendulum control system

The control signal u(s) represents the input voltage to the
DC motors described by:

u(s) = K(s) [CZ r(g)

(6)
The control weighting transfer matrix Wy(s)is set to a 2>

diagonal matrix with diagonal elements 1076 **1_ The
0.001s+1

noise weighting Wn(s) is used to shape the noise spectral
density for the potentiometers, it is set to a 3>3 diagonal matrix

with diagonal transfer functions 2 x 10‘5w Since the

links have different dynamics speeds (the flrst I|nk has the
slowest dynamics and the third link has the fastest;
respectively), the matching model is chosen as [1]:

1

100s2+14s+1 0 0
_ 1
Wina(s) = 0 BTt 0
1
0 0 9s24+42s+1

such that the dynamics of the three links have an 0.7 damping
ratio and different natural frequencies (0.1, 0.2, and 0.333
rad/sec for the first, second, and third link; respectively). In
this way, the time constant of the first link is 10 sec, for the
second link is 5 sec, and for the third link is 3 sec.



The performance weighting transfer matrix Wp(s) is left to
be determined during the optimization of controller design in
subsection 3.2.

To apply p-synthesis design, the control system in Figure 2
is transformed to the generalized control configuration shown
in Figure 3.

uA A < yA
W P P L »
u K v

Figure 3. Generalized control configuration

where, P represents the generalized plant model that includes
the system model and the interconnection structure between
the plant and the controller, and weighting functions. The
model uncertainty is pulled out into a block-diagonal matrix
(A), u represents the control signals, w represents the weighted
exogenous signals (d, r, and 7), z represents the weighted error
signals of interest (e, and ey), v represents the input signals to
the controller (yc and Cpr), UA represents the perturbed input,
and ya represents the perturbed output.

The design objective is to find a stabilizing controller K,
such that for all perturbations satisfying the condition for the
upper singular value & [29].

max d [4Gw)]<1 7)
the closed-loop system is stable and satisfies:

where, E,(P,A) 2 Py, + Py A(I — P11 4)71P;, ,
Fl(Fu(P'A)' K) = Fu(P'A)ll + Fu(PlA)12 K (1 -
E,(P,A),, K)_l E,(P,A),,, and P11, P1z, P21, and Py, are the
partitions of P in compatibility with the dimensions of K and
A.

Given any K, the structured singular value pa can be used to
test the robust performance objective by checking the
condition:

max ,uA((Fl(P, K)(]'W)) <1 9)

The goal of p-synthesis is to minimize over all stabilizing
controllers K, the peak value of p, of the closed-loop transfer
function (F(P,K)).

min - max s ((F, (P, K)(jw)) (10)
stabilizing

D-scaling can be used to steer the p-synthesis algorithm

towards solutions that exhibit robust performance across

diverse frequency bands by strategically modifying frequency-

dependent scales D(jw). In terms of the scaled singular value:
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min(min |DF, (P, K)D™*l..) (11)
DeD

where, D is the set of matrices D which commute with 4.

The optimization problem (11) is to be solved by D-K
iteration approach which combines H-infinity and p-analysis.
In K-step (D(s) is fixed), an H-infinity controller is
synthesized for the scaled problem,

min|D F,(P, K)D ™| (12)
In D-step: (K is fixed), D(jw) that minimizes:
g (DGw)F,(P,K)D~*(jw)) (13)

at each frequency is obtained. The magnitude of each element
of D (jw) is to be fitted to a stable and minimum phase transfer
function D (s). The steps iterate until satisfactory performance
is achieved or the H-infinity norm in (12) no longer decreases.

3.2 Incorporating optimization to the controller design

The optimization problems of Egs. (12) and (13) are convex
each, but joint convexity is not guaranteed which may lead to
getting trapped by local minimum. To avoid this problem,
metaheuristic optimization can be used in determining the
gains, numerators' coefficients, and denominators' coefficients
of the elements of the performance weighting transfer matrix
Wjp(s) which is embedded in the generalized plant model P.

Gazelle optimization algorithm is a new nature-inspired
population-based metaheuristic algorithm proposed by
Agushaka et al. [30]. The optimization procedure of the
algorithm comprises of two phases: exploration (searching in
large areas with fewer steps) and exploitation (searching
effectively in neighborhood areas of promising solutions).
Their balance is adjusted dynamically based on the progress of
the search. So, this algorithm achieves a good balance between
exploration and exploitation due to the way it switches
between these phases based on a predator presence.

Both prey and predator are considered search agents. In
exploration phase (mimics the chasing of gazelles by
predators), the pery solution (major part of population) is
updated according to Eq. (14) while the predator solution
(minor part of population) is updated according to Eq. (15)
[30]:

gazelle;,; = gazelle; + S Xy X R X R; X (Elite;

— R, X gazelle;) (14)
gazelle; ., = gazelle;
+ S Xy X CF X Rg x (Elite; (15)

— R, X gazelle;)

where, gazelleis; and gazelle; represent the solution vectors of
the next and current iteration; respectively, S represents the top
speed of gazelle (constant=88 km/h), y" represents the sudden
change of direction (constant=+1 or -1), R is a vector of
uniform random numbers in [0,1], Ry is a vector of random
numbers drawn from power law tail distribution to represent
the Lévy flight which is a type of random walk characterized
by short steps and long jumps, Elite; is the vector of the fittest
solution, CF is the weight that decreases gradually through
iterations according to:

current iteration index )
maximum number of iterations.

(16)

current iteration index (2
cr=(1-— oex )
maximum number of iterations



to determine the transition from Brownian motion to Lévy
flight for predators in exploration phase, Rg is a vector of
random numbers drawn from Gaussian probability distribution
with zero mean and unit variance to represent the Brownian
motion characterized by uniform and controlled steps.

In exploitation phase (mimics gazelles grazing in the
absence of a predator), the population is updated according to
[30]:

gazelle;,, = gazelle; + s X R X Rz X (Elite; — (17)
Ry X gazelle;)
where, s is drawn from the standard uniform distribution on
the open interval (0,1) to represent grazing speed of gazelles.
Gazelles have a 66% chance of surviving each year, which
means predators only catch them 34% of the time, the
algorithm utilizes the fact that predator success rate is 0.34 to
prevent getting stuck in suboptimal solutions.

)

| Constract the uncertain model |

| Apply system connections in the gensralized control form in Figure 3 |

Set the control problam

i

| Zet the parameters of the optimization problem |

Fatum the
bast solution
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U

Apply the candidste zolutions to the comesponding
coefficient: of the performance weightine transfar matrix

Solve the D-E iteration

I.F
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mumbar by 1

| Apply the cantraller to the system |

|

Find the errors of angles (Eq. (19) and robust
perfonmance mazzure (fom D-K iteraticn)

}

| btain the cost fanction (Eq. 13 |

| Calculats the fimess of gazelles |

Apply predator
S1CCEss Tate
affact

Update population
acoarding to Eq. (17)

TUpdate population
according to Eq. {14)

TUpdate population
sccording to Eq. (15)

Figure 4. The proposed controller design steps

Besides having relatively fast convergence, this
optimization algorithm has a simpler structure with fewer
parameters to adjust compared to other metaheuristic
techniques that require careful selection of multiple
parameters.
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In order to fulfil balancing the robustness and performance
of the control system, the cost function is suggested to be
comprised of the errors of the three links angles and the robust
performance measure pa obtained from D-K iteration:

Cost function=0.2 x ITAE; + 0.15 x ITAE, + (18)
0.15 x ITAE; + 0.5 X

where,

ITAE;=[|e;(t)| X tdt (19)
and e; represents the error of the i link. Properly weighting
each term in the cost function is very crucial to achieve the
desired level of balance between system's robustness and
performance. The proposed incorporation of optimization in
controller design is illustrated in Figure 4.

4. OPTIMIZATION SETTINGS AND RESULT

The number of search agents used to form the population is
10 initialized randomly within the search space bounded by
0.001 and 20. The maximum number of iterations is 30. The
diagonal elements of frequency-dependent 3>3 diagonal
performance weighting transfer matrix are to be second order
transfer functions; thus the dimension of optimization problem
is 21. The resultant performance weighting transfer matrix
obtained by optimization is given by:

W, (s)
3.733s% + 0.001s + 0.001
[0' 0015 001s? + 2.4895 + 20 0 0 l
_ 0.195s% + 6.933s + 1.554
| 0 7286 g + 1. 4115+ 0,057 0 |
l 0.001 52 +1.913s + 8.45 J
0 0 2587 e 54s? 1 16.662s + 0.001

It is worth to explain that the selected algorithm settings
were sufficient for obtaining the performance weighting
transfer matrix parameters that achieve minimum value of Eq.
(18), increasing the number of iterations wouldn't minimize
the cost function any more. The run time of one iteration with
10 search agents takes 20 minutes using 16 GB RAM core i7
SSD laptop, the computational complexity rises from the fact
that the D-K iteration is an iterative procedure by its self.
Anyway, this is not a problem since the optimization is applied
offline during the design process.

5. ROBUSTNESS ANALYSIS

Utilizing the optimal Wp(s) above, the D-K iteration
progresses as shown in Table 1. The robust performance
measure ua keeps decreasing through the iterations to 0.6432.
The structured singular value is usually hard to compute,
instead its upper and lower bounds (which are close to each
other) are calculated and their peak value must be less than 1
to achieve robust performance. The bounds of robust
performance measure of the developed closed loop control
system over frequency range [10%, 10%] are shown in Figure 5.

The stability margin is the reciprocal of p, so the stability
margin regarding robust performance falls within the interval
[1.5583, 1.5649] which means the tradeoff of model
uncertainty and system gain is balanced at a level of 156% of
the modeled uncertainty. The critical frequency is 0.1 rad/sec.
As for the baseline p-synthesis control system, the stability



margin regarding robust performance falls within the interval
[2.4592, 2.4691].

Table 1. D-K iteration progress

D-K Iteration Peak pa D-Order
1 2.573 28
2 1.246 28
3 0.9986 24
4 0.8976 40
5 0.8548 36
6 0.7855 36
7 0.7365 36
8 0.6997 40
9 0.6713 48
10 0.6432 50
1 -
----p-upper bound
- r-lower bound
08r
06 Y i
. 1 I
= 1 1
i "
04t \ N
| [\ 27N
!\ il "l ,(—/ i \\
02+ .?;\ 1*, E\\“/,'/ \\\
O 1 1 ! i
107" 10° 10 10° 10°
Frequency (rad/s)

Figure 5. Bounds of robust performance

Figure 6 shows the bounds of robust stability of the
developed closed loop control system. The stability margin
regarding robust stability falls within the interval [1.635, 1.643]
so the uncertain system can tolerate up to 164% of the modeled
uncertainty. The destabilizing frequency is 10.476 rad/sec and
the system is highly robustly stable at frequencies outside the
range [6.579, 170.735] rad/sec. As for the baseline p-synthesis
control system, the stability margin regarding robust stability
falls within the interval [2.8177, 2.8199].

———p-upper bound
08! - =~ u-lower bound
06
3 'IE
04+ n
/"
i\ —~
i l‘\‘ < ! \\
02} PN_ S
AT f,’-’r ‘\ JJ Swo
0 1 L L 1
107 10° 10" 102 10°
Frequency (rad/s)

Figure 6. Bounds of robust stability

448

The sensitivity of stability margin regarding robust
performance and robust stability to variations in each
uncertain parameter is given in Table 2. The most influent
variation on stability margin is the variation in moment of
inertia of the third arm. The least influencers are the variations
in hinges' and motors' friction coefficients and moment of
inertia of the second arm. Uncertainty in actuators' dynamics
has a much greater impact on the system's robust stability than
on the system's robust performance.

Table 2. Stability margin sensitivity

Sensitivity Sensitivity
Regarding Regarding
Parameter Robust Robust
Performance Stability
first actuator uncertain
0, 0,
dynamics (&) 2% 21%
second actua_tor uncertain 4% 56%
dynamics (&)
viscous friction coefficient of o o
the first hinge (C1) 2% %
viscous friction coefficient of 0 0
the second hinge (C2) 0% 0%
viscous friction coefficient of 0 0
the third hinge (Ca) 0% 0%
viscous friction coefficient of o o
the first motor (Cmz) 0% 4%
viscous friction coefficient of o 0
the second motor (Cmz) 0% 6%
moment of inertia of the first
arm around the center of 28% 28%
gravity (I1)
moment of inertia of the
second arm around the center 0% 1%
of gravity (I2)
moment of inertia of the third
arm around the center of 65% 66%

gravity (I3)

6. SIMULATION RESULTS

The developed controller in section 3 has to be validated
through simulations of different scenarios of uncertainty. To
do so, the stabilization and tracking are considered.

6.1 Case 1 (Stabilization)

The pendulum is to be stabilized in the upright position in
the presence of disturbance and variations in uncertain
parameters. The reference, external torque disturbance, and
measurement noise vectors are: [0 0 0]" deg, [0.10.10.1]" N.m,
and [0 0 0]7 V; respectively. Figure 7 shows the closed-loop
system response.

It is shown that 50 samples of the perturbed set have the
same behavior which means the system is robust against
uncertainty. The second link angle is not affected by applying
disturbances, the third link angle overshoots to 2.746 deg then
rejects disturbances completely within 5 seconds, the first link
settles with unrecognizable steady state error=0.182 deg. As
for the baseline p-synthesis control system, the third link angle
overshoots to 8.489 deg then rejects disturbances completely
within 10 seconds, the first link settles with unrecognizable
steady state error=0.193 deg. The response is obtained by
means of the control action shown in Figure 8.



0, 0, 0, (deg)
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Time (sec.)
Figure 7. Closed-loop response (case 1)
0.04
. u1
0.02 —oly
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=
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Figure 8. Control action (case 1)
6.2 Case 2 (Stabilization and disturbance rejection)

In order to examine the controller behavior to reject
disturbance, only one sample of the nonlinear model is
simulated through which the disturbances are applied to each
link at different times (d; is applied at t>0 seconds, d, at t>10
seconds, and ds at t>20 seconds). The closed loop system
response shown in Figure 9 follows the same manner of the 50
samples in Figure 7 with very slight differences. Also, as for
the baseline p-synthesis control system, the third link angle
overshoots to 8.54 deg. (much higher than in the proposed
control system). Besides that, the disturbance rejection of the
baseline p-synthesis control system in this case is not at the
same level of smoothness obtained by the proposed control
system.

3-

0,.60,,0, (deg)

15 20 25 30
Time (sec.)

10

Figure 9. Closed-loop response (case 2)
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The sudden drops in control action at t=0, 10, and 20
seconds shown in Figure 10 aim to counter the effect of
disturbances and allow the angles of the links to respond
smoothly.

005

0025

uy,u, (V)

00251 !

0.05 L 1 L L L )
15

Time (sec.)

Figure 10. Control action (case 2)

6.3 Case 3 (Tracking of step input)

15

0,. 0,. 0, (deg)

-10 : : ' '
15 20 25 30
Time (sec.)

10
Figure 11. Closed-loop response (case 3)

0.5

-0.5 .

10 15

Time (sec.)

20 25 30

Figure 12. Control action (case 3)

The pendulum is to track the reference [0 -5 10]" deg in the
presence of measurement noise [7: 72 73]" V where 7 is
random signal with amplitude range [-0.1, +0.1], and
variations in uncertain parameters. The external torque
disturbance is [0 0 0]" N.m. the closed-loop system response
is shown in Figure 11. All 50 samples respond in the same
manner which indicates system's robustness to parametric



uncertainties and unmodeled dynamics of actuators. The
steady state error of 61, 8-, and 65 are 0.23, 0.1, and 0.12 deg;
respectively. As for the baseline p-synthesis control system,
the steady state error of 61, 6>, and 63 are 0.247, 0.026, and
0.079 deg; respectively. The control action fluctuates as
shown in Figure 12 to counter the effect of the applied noise.

6.4 Case 4 (Tracking of multi-step input)

The pendulum is to track a multi-step reference [61d 6.d
05d]" deg, in the presence of measurement noise [71 72 73] V,
and disturbance [0 0.1 0]" N.m (applied at t>25 sec.), where,

0 deg for 0<t<5
5 deg for 5<t<35
0 deg fort > 35 sec.
0 deg for 0<t<5
0,d={ —10 deg for 5< t<40 ¢, and
0 deg for t = 40 sec.

0 deg for 0<t<15
6;d=4 —5 deg for 15<t<35 }.
0 deg for t > 35 sec.

Figure 13 shows the tracking of the three links to their
corresponding reference signals in spite of disturbance and
noise. The third link tracks its reference faster than the first
two links. The control action of this case is shown in Figure
14.

15 -—-8,
S (lz
10 _03
0,d
> -0,d
=
3 - !)3 d
Q“N 4
-0+ SRR
15 . ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60
Time (sec.)
Figure 13. Closed-loop response (case 4)
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= 0251,
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Figure 14. Control action (case 4)

An intuitive insight of the results show that the ability of
manipulating the performance weighting function by
optimization based on the structured singular value and
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tracking errors provides the potency of balancing robustness
and performance requirements for control systems.

7. CONCLUSIONS

The problem of controlling uncertain nonlinear under
actuated triple inverted pendulum system was investigated. A
new twist to p-synthesis robust control design was made by
incorporating the optimization in performance weighting
determination. The incorporation of gazelle optimization
technique allowed to balance the aspects of robustness and
performance by including the robust performance measure and
output errors in its cost function. The designer can set the
weights of the cost function according to his/her control
problem to achieve the desired compromise. Although the
linearized model around the point (0, 0, 0) was used to develop
the controller, the effectiveness of the developed control
strategy was tested for both stabilization and tracking
problems of the nonlinear system under different scenarios of
uncertainty. The developed controller could successfully:
manage the nonlinear system uncertainty, reject disturbance,
counteract the measurement noise effect, and maintain good
performance. Correlating the robustness analysis in section 5
and the results in section 6 shows that the baseline p-synthesis
control system focuses on achieving higher robustness on the
expense of system performance, while the proposed controller
balances both robustness and performance aspects for the
system.

Upon these findings, it is interesting to apply the proposed
method to other control systems in future work. A still existing
open issue for p-synthesis controllers is that their design
process and computational demands can significantly increase
and become challenging to design for very high-order systems.
A promising improvement of p-synthesis controllers design
would be made through merging machine learning techniques
for uncertainty quantification and controller adaptation by
incorporating data from system operation into the control
design process.
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NOMENCLATURE

Ci viscous friction coefficient of the first hinge,
N.m.s

C> viscous friction coefficient of the second hinge,
N.m.s

Cs viscous friction coefficient of the third hinge,
N.m.s

Cm1 viscous friction coefficient of the first motor,
N.m.s

Cm2 viscous friction coefficient of the second motor,
N.m.s

Cpt viscous friction coefficient of the belt—pulley system
of the first hinge, N. m. s

Cps viscous friction coefficient of the belt—pulley system
of the second hinge, N. m. s

h: the distance from the bottom to the center of gravity
of the first arm, m

h, the distance from the bottom to the center of gravity
of the second arm, m

hs the distance from the bottom to the center of gravity

of the third arm, m

moment of inertia of the first arm around the center
of gravity, kg. m?

moment of inertia of the second arm around the
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center of gravity, kg. m?

moment of inertia of the third arm around the center

of gravity, kg. m?

moment of inertia of the first motor, kg. m?

moment of inertia of the second motor, kg. m?

moment of inertia of the belt—pulley system of the
first hinge, kg. m?

moment of inertia of the belt—pulley system of the
second hinge, kg. m?

dimentionless ratio of teeth of belt—pulley system of
the first hinge

dimentionless ratio of teeth of belt—pulley system of
the second, hinge

length of the first arm, m

length of the second arm, m

mass of the first arm, kg

mass of the second arm, kg

mass of the third arm, kg

gain of the first potentiometer, V. rad™!

gain of the second potentiometer, V. rad"!

gain of the third potentiometer, V. rad"!
dimentionless structured singular value





