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This paper presents an approach that combines Lyapunov theorem and particle swarm 

optimization (PSO). The combination tackles the optimization and stability concerns, in 

controlling permanent magnet synchronous motors (PMSMs). This approach ensures that 

the exploration is maintained within the search space region, enhances convergence 

properties, and reduces the risk of divergence or oscillations. This concept is utilized to 

optimize the field oriented controller (FOC) of PMSM using Matlab Simulink. Each 

proportional integral (PI) controller in the FOC system is individually optimized using the 

proposed technique. Simulation results confirm the effectiveness of the proposed method 

that gave a rise time of 0.71s, an overshoot of 0.04%, and a steady-state time of 0.725s as 

conjunction to traditional optimization methods. This provides more reliable and efficient 

frameworks, for solving complicated optimization problems. 
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1. INTRODUCTION

Control Lyapunov functions play a role, in studying the 

stability and controllability of nonlinear control systems. They 

can be used to design feedback laws that stabilize the system 

and also serve as a guarantee for achieving null-controllability 

as demonstrated by Sontag [1]. Since there is no formulation 

for a control Lyapunov function in general we have to rely on 

numerical methods. However common numerical techniques 

suffer from the curse of dimensionality, which refers to the 

increase in work as the state dimension grows. In other words, 

preserving a control Lyapunov function becomes increasingly 

challenging as the state space dimension increases. 

Consequently, these techniques are typically limited to low-

dimension problems. 

The integration of the Lyapunov theorem and the particle 

swarm optimization (PSO) algorithm represents a dynamic 

field that has garnered increasing attention in recent years. The 

roots of Lyapunov-based optimization lie in Aleksandr 

Lyapunov pioneering work in stability theory during the late 

19th century. His theorem, which established criteria for the 

stability of equilibrium points in dynamical systems, laid the 

groundwork for stability analysis. Early works like Khalil's 

"Nonlinear Systems" [2] provided an important connection 

between stability theory and optimization, setting the stage for 

subsequent developments. The convergence of the Lyapunov 

theorem and optimization techniques gained momentum with 

the emergence of particle swarm optimization. Kennedy and 

Eberhart's seminal work on PSO [3] marked a significant 

turning point in the field of optimization, introducing a novel 

algorithm inspired by social behaviour. As researchers 

recognized the potential benefits of coupling Lyapunov 

stability analysis with PSO, a series of theoretical 

advancements emerged. Sharma et al. [4] proposed a hybrid 

Lyapunov-fuzzy controller for nonlinear constrained 

optimization, three variants of the hybrid controller are 

proposed which are implemented for benchmark simulation 

and real-life experimentation, the results demonstrate the 

usefulness of the proposed approach. Lo and Lin [5] present A 

homogeneously Lyapunov function for an observed-state 

feedback polynomial fuzzy control system. To verify the 

proposed method, four examples are demonstrated to show the 

promising features of the approach adduced. Bhattacharya et 

al. [6] proposes three alternative extensions to the classical 

global-best PSO dynamics. Simulation results reveal that the 

proposed extensions outperform of the classical in terms of 

convergence speed and accuracy. Cheng et al. [7] proposed an 

improved sliding mode extremely seeking virtual sensors for 

the freight train issue of acquiring the optimal creep-speed in 

real-time, a particle swarm algorithm PSO-based estimation 

method was presented for the issue of uncertain resistance 

parameters. 

Recent developments in literature have shown a growing 

interest in approaches that combine PSO with optimization 

techniques, such as integrating PSO, with Kharitonov’s 

theorem according to Hasan et al. [8] also merging PSO with 

Routh Hurwitz’s theory as suggested by Hasan et al. [9]. These 

combinations show a superior enhancing of the performances 

of the optimization techniques, in term of computation time, 

accuracy, and stability. The use of permanent magnet 

machines shows promise, in achieving high performance. 

These machines have features such as being lightweight and 

having power density. One significant advantage is that they 

produce low levels of noise and vibration compared to 

machines. This makes them particularly suitable for 

integration into cars whether it's for in-wheel or in-line 
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configurations [10]. 

In the field of automation close movement control systems 

have evolved with controlled motors playing a vital role as 

core components. As a result, high duty machine control 

systems are widely used to optimize efficiency in automated 

manufacturing sectors improving output rates and product 

quality. However, meeting the criteria for machine speed, 

efficiency, accuracy, and smoothness largely depends on the 

motor control techniques.  

The robust control of the PMSM is crucial for many 

operational reasons such as [11, 12]: 

 

• Dynamic and steady-state performance optimization 

against machine parameter variations caused by changing 

load, temperature, or supply voltage.  

• Ensuring stability and reliability, which prevent the 

motor from oscillations, instability, or vibration.  

• Improving fault tolerance to enhance the ability to 

withstand faults or disturbances, such as sudden changes 

in load or voltage spikes. 

• Energy efficiency, in some cases robust control 

contributes to higher energy efficiency, by reducing 

energy consumption due to various operating modes. 

 

Therefore, numerous developed control techniques have 

been conceived recently to improve the speed control 

performance of PMSM in various applications. These methods 

include automatic disturbance rejection control [13], wavelet 

fuzzy logic control [14], predictive control [15], artificial 

intelligence-incorporated control [16], sliding mode control 

[17], and disturbance observer [18]. Furthermore, as an 

alternative to the traditional PI control, H ∞  control is in 

operational use. In H ∞  control, exterior disruptions are 

considered uncertainty parameters within limited boundaries 

[19]. A robust controller based on hybrid sensitivity can 

advance the controller for each model in PMSM systems, as in 

the study [20]. Other efforts have focused on the optimization 

of the PI controllers with intelligent networks by tuning 

facilitated to overcome the nonlinear problems [11, 12]. 

Despite the high performance provided by these methods, 

they often do not give satisfactory responses in nonlinear 

systems. The PMSM is considered a highly nonlinear system, 

as the parameters of the motor and controller are varied with 

changes in operating conditions, such as temperature, load 

torque, supplied voltage, etc. Therefore, the proposed method 

is considered very suitable for controlling nonlinear systems 

such as PMSM. By leveraging the advantage of the nonlinear 

optimization capabilities of PSO and stability analysis 

provided by the Lyapunov theorem, the control method can 

deal with the inherent nonlinearity of PMSM systems more 

effectively. In this work, we explore the combination of 

Lyapunov based stability analysis and particle swarm 

optimization (PSO) to develop a vector controller, for the 

permanent magnet synchronous motor (PMSM). Our main 

focus is on finding values for the parameters of a proportional 

integral (PI) controller. What sets our approach apart is the use 

of an objective cost function (CF) that takes into account both 

dynamic and steady state behaviors. This unique cost function 

is the contribution of this work, which is characterized by 

simplicity compared to the complex and sophisticated cost 

functions presented in previous works. This comprehensive 

cost function assesses system response by considering 

constraints for achieving performance. The paper is organized 

as follows; Section 2 presents an overview of the PMSM while 

Section 3 provides an introduction to the FOC technique. The 

optimization algorithm and the chosen cost function are 

discussed in Sections 4 to 6. We then proceed to present 

simulation results engage in discussions and draw conclusions. 

 

 

2. MATHEMATICAL REPRESENTATION OF PMSM 

 

The Permanent Magnet Motor (PMSM) has only a stator 

circuit that can be modeled and works within the d-q reference 

frame. Choosing the rotor reference frame is crucial because it 

determines the generation of force, stator voltage, and rotor 

torque, in the machine [21-23]. 

Before establishing the model we make the assumptions; 

 

• The magnetic field has a sinusoidal distribution. 

• Harmonics components in gaps are negligible. 

• The back electromotive force (emf) is sinusoidal in 

nature. 

• The iron losses are negligible. 

 

These assumptions are essential to eliminate or reduce the 

complexity associated with certain aspects of the motor, such 

as magnetic saturation, rotor saliency, or nonlinearities. This 

reduction in complexity can lead to faster computation times 

and more straightforward control design. Besides, 

assumptions can make the mathematical model more efficient 

in terms of memory and computational resources. 

The equations for motor voltage, within the dq model are 

formulated as follows: 

 

𝑣𝑞 = 𝑅𝑖𝑞 + 𝑝𝜓𝑞 + 𝜔𝑟𝜓𝑑 (1) 

 

𝑣𝑑 = 𝑅𝑖𝑑 + 𝑝𝜓𝑑 − 𝜔𝑟𝜓𝑞  (2) 

 

where, 𝑝  represents the differentiation operator, 𝑅 is stator 

resistance, 𝑖𝑑  signifies the current in the d-direction current, 

𝜓𝑑 denotes flux in the d-axis, 𝜓𝑞  represents the flux in the q-

axis, 𝑖𝑞  symbolizes the current in the q-direction current, and 

𝜔𝑟 signifies rotor angular speed. 

The flux linkage is represented as: 

 

𝜓𝑞 = 𝐿𝑞𝑖𝑞 + 𝐿𝑚𝑖𝑞𝑟 (3) 

 

𝜓𝑑 = 𝐿𝑑𝑖𝑑 + 𝐿𝑚𝑖𝑑𝑟  (4) 

 

Since the permanent magnet rotor's flux is aligned along the 

d-axis, the current of the d-axis rotor (𝑖𝑑𝑟) remains constant. 

Simultaneously, the current of the q-axis rotor ( 𝑖𝑞𝑟 ) is 

considered negligible due to the absence of rotor flux along 

this axis. 

 

𝜓𝑞 = 𝐿𝑞𝑖𝑞 (5) 

 

𝜓𝑑 = 𝐿𝑑𝑖𝑑 + 𝐿𝑚𝑖𝑑𝑟  (6) 

 

The linkage flux 𝜓𝑚 generated by permanent magnets that 

link the stator is described as: 

 

𝜓𝑚 = 𝐿𝑚𝑖𝑑𝑟  (7) 

 

The electrical torque is expressed as: 
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𝑇𝑒 =
3

2
∗

𝑃

2
∗ [𝜓𝑚 ∗ 𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑞𝑖𝑑] (8) 

 

where, 𝐿𝑑  and 𝐿𝑞  represent d-q inductances, and P signifies 

the poles number. Both terms in this equation possess physics-

based definitions. The "magnet" term of torque is independent 

of 𝑖𝑑  but is directly proportional to  𝑖𝑞 . This equation 

underscores that torque hinges on rotor type, inductance values 

( 𝐿𝑑 , 𝐿𝑞 ), and rotor permanent magnets. For the PMSM, 

surface-mounted rotor magnets render the reluctance term 

irrelevant, as 𝐿𝑑  equal 𝐿𝑞. On the other hand, when permanent 

magnets are placed in the inner side, the rotor's saliency leads 

to a disparity between 𝐿𝑑 and 𝐿𝑞 [21]. 

The electromagnetic torque is formulated as: 

 

𝑇𝑒 =
3

2
∗

𝑃

2
∗ 𝜓𝑚 ∗ 𝑖𝑞  (9) 

 

Given that magnetic flux linkage remains constant, torque 

is directly proportional to the q-axis current. 

The electromagnetic torque equation can be represented as: 

 

𝑇𝑒 = 𝑇𝐿 + 𝐵𝜔𝑟 + 𝐽
𝑑𝜔𝑟

𝑑𝑡
 (10) 

 

In this equation, 𝑇𝐿  signifies the load torque, B represents 

the viscous friction coefficient, 𝜔𝑟 is the rotor angular speed, 

and J is the rotor's moment of inertia. 

 

 

3. FIELD ORIENTED CONTROL 

 

Field oriented control, also known as "decoupling control" 

divides the stator current of a three phase motor into two 

components. One component generates the flux while the 

other produces torque. This approach enables control over 

both flux and torque making it possible to compare magnet 

synchronous motors (PMSMs) with separately excited DC 

machines. By employing FOC, as shown in Figure 1, which 

laniaries the PMSM model due, to the nonlinear relationships, 

between flux linkages, inductor currents and rotor angle we 

can effectively mitigate any nonlinearity.  

 

 
 

Figure 1. Block diagram of the field oriented control 

 

FOC is widely used in PMSM drive systems where a 

modulation current is injected into the motor windings to 

induce a rotating flux that propels the rotor. The vector control 

technique is implemented within a rotating reference frame. 

Field oriented control can be implemented using either a direct 

or an indirect approach. 

In PMSM systems the vector control technique is preferred 

for its simplicity, implementation, operational robustness and 

clear guidelines compared to PI controller strategies. 

Moreover, field oriented control provides benefits including 

responsiveness, minimal fluctuation, in torque and 

straightforward integration. In practice the PI controller is 

commonly employed for computing flux, torque and speed [23, 

24]. 

 

 

4. PARTICLE SWARM OPTIMIZATION  

 

Particle swarm optimization (PSO) is an optimization 

technique inspired by the movement patterns of birds and fish. 

It was first introduced in 1995 by Kennedy and Eberhart. PSO 

involves particles moving within a population guided by their 

best positions (𝑝𝑏𝑒𝑠𝑡) and the most favorable global position, 

in the current generation (𝑔𝑏𝑒𝑠𝑡) [3]. Mathematically, we can 

represent the speed and location of a particle as follows: 

 

�̂�𝑗(𝑘) = 𝑊. �̂�𝑗(𝑘 − 1) 

+𝛽1. ℝ1. (𝑝𝑏𝑒𝑠𝑡𝑗
(𝑘) − �̅�𝑗(𝑘 − 1)) 

+𝛽2. ℝ2. (𝑔𝑏𝑒𝑠𝑡𝑗(𝑘) − �̅�𝑗(𝑘 − 1)) 

(11) 

 

�̅�𝑗(𝑘) = �̅�𝑗(𝑘 − 1) + �̂�𝑗(𝑘) (12) 

 

where, 

�̂�𝑗(𝑘) = [�̂�𝑗1(𝑘)�̂�𝑗2(𝑘) … �̂�𝑗𝑛(𝑘)] is an n-dimensional speed 

vector at iteration k.  

�̅�𝑗(𝑘) = [�̅�𝑗1(𝑘) �̅�𝑗2(𝑘) … �̅�𝑗𝑛(𝑘)] is an n-dimensional the 

location vector at iteration k.  

𝑝𝑏𝑒𝑠𝑡𝑗(𝑘) = [𝑝𝑏𝑒𝑠𝑡𝑗1(𝑘)𝑝𝑏𝑒𝑠𝑡𝑗2(𝑘) … 𝑝𝑏𝑒𝑠𝑡𝑗𝑛(𝑘)]  is an n-

dimensional vector of the local best position at iteration k. 

𝑔𝑏𝑒𝑠𝑡𝑗(𝑘) = [𝑔𝑏𝑒𝑠𝑡𝑗1(𝑘)𝑔𝑏𝑒𝑠𝑡𝑗2(𝑘) … 𝑔𝑏𝑒𝑠𝑡𝑗𝑛(𝑘)]  is an n-

dimensional vector of the global best position at iteration k. 

𝛽1  stands for capabilitys learning swiftness, 𝛽2  denotes 

effect and [ℝ1, ℝ2] are random values, within the range of [0, 

1], W refers to the learning weighted coefficient.  

The optimization steps can be summarized in the following 

algorithm:  

Begin 

Initializing parameters; 

While iteration not reaches end Do 

{ 

For j = 1 to no. of particles 

{ 

Estimate cost function CF(j)of particle j; 

If CF(�̅�𝑗)<CF(𝑝𝑏𝑒𝑠𝑡𝑗) Then Update local location; 

}; // End for 

Update global location; // by Min.(CF(all best locals) 

Update speed (Eq.11); 

Update locations (Eq. 12); 

}; //End while; 

End 

 

 

5. LYAPUNOV THEOREM 

 

Lyapunov theory handles the stability of equilibrium points 

in dynamic systems. The stability threshold is a condition at 
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which the system stays unaffected over time. The technique 

concentrates on deciding whether the equilibrium point is 

stable or unstable and whether the system converges to a 

precise state as time progresses. 

 

5.1 Formal statement of Lyapunov theorem 

 

Lyapunov theorem can be stated as follows:  

Consider a system described by the differential equation 

 

�̇� = 𝐺(𝑥) = 𝑔(𝑥, 𝑟(𝑥)) 

𝑥 ∈ ℛ𝑛;  𝑟 ∈ ℛ𝑚 

�̇�(0) = 𝐺(0) = 𝑔(0, 𝑟(0)) = 0 

(13) 

 

where, x represents the state variables and 𝑥 ̇ denotes their 

derivatives with respect to time. If there exists a continuously 

differentiable function 𝐺(𝑥), known as a Lyapunov function. 

The process of finding Lyapunov functions lacks a 

standardized approach; sometimes, they emerge as natural 

energy functions for mechanical or electrical systems, while 

other times, their discovery relies on a process of trial and error 

[2]. Converse Lyapunov theorems establish that the presence 

of a Lyapunov function is synonymous with asymptotic 

stability [25]. 

The function ℋ(𝑥) is deemed a Lyapunov function if there 

is a region in the vicinity of the origin where: 

1. ℋ(𝑥) is positive definite (i.e., ℋ(𝑥) > 0 for all x except 

at the equilibrium point itself). 

2. The time derivative of ℋ̇(𝑥) along the trajectories of the 

system, ℋ̇(𝑥) =
𝜕ℋ(𝑥) 

𝜕𝑡
, is negative definite (i.e., ℋ̇(𝑥) < 0 for 

all x except at the equilibrium point). 

3. Also, ℋ(𝑥)ℋ̇(𝑥)  < 0 

This area is referred to as the region of attraction. 

 

ℋ̇(𝑥) = ∇ℋ(𝑥)𝐺(𝑥) = ∑
𝜕ℋ

𝜕𝑥𝑖

𝑔𝑖(𝑥)

𝑛

𝑖=1

 (14) 

 

where, 

 

∇ℋ(𝑥) = [
𝜕ℋ(𝑥)

𝜕𝑥1

,
𝜕ℋ(𝑥)

𝜕𝑥2

, … ,
𝜕ℋ(𝑥)

𝜕𝑥𝑛

] (15) 

 

The Lyapunov stability theorem asserts that if 𝑥 ̇  possesses 

the origin as an equilibrium point and there exists a suitable 

Lyapunov function ℋ(𝑥)  satisfying ℋ(0) = 0 and ℋ(𝑥) >
0 for all 𝑥 ≠ 0, as well as ℋ̇(𝑥)  ≥ 0 for all x, then the origin 

is stable. Furthermore, if ℋ(𝑥) < 0 for all 𝑥 ≠ 0, the origin is 

globally asymptotically stable [2]. The choice of a Candidate 

Lyapunov Function is such that ℋ(𝑥)  is continuously 

differentiable and positive definite. Stability is ensured if 

ℋ(𝑥) is positive definite and ℋ̇(𝑥) is negative definite for all 

𝑥 ∈ ℛ𝑛 [2, 21]. 

 

5.2 Lyapunov function of the PMSM 

 

The primary control objective is torque control. 

Consequently, it is imperative to minimize both the 𝑖𝑑 and 

𝑖𝑞 errors, in addition to the speed error, down to zero. Upon 

examining the small-scale dynamic model, it becomes evident 

that the load torque term in Eq. (10) is nullified. The Lyapunov 

function can be extracted from Eq. (1), Eq. (2) and Eq. (10) as 

follows: 

By setting: 

 

[

𝑥1

𝑥2

𝑥3

] = [
𝑖𝑑

𝑖𝑞

𝜔𝑟

];[

𝑢1

𝑢2

𝑢3

] = [

𝑣𝑑

𝑣𝑞

𝑇𝑒

] 

 

Then 

 

𝑥1̇ = −
𝑅

𝐿𝑑(𝑥1)
𝑥1 + 𝑃

𝐿𝑞(𝑥2)

𝐿𝑑(𝑥1)
𝑥2𝑥3 + 𝑢1

1

𝐿𝑑(𝑥1)
 (16) 

 

𝑥2̇ = −
𝑅

𝐿𝑞(𝑥2)
𝑥2 − 𝑃

𝐿𝑑(𝑥1)

𝐿𝑞(𝑥2)
𝑥1𝑥3 

−𝑃
𝜓𝑚

𝐿𝑞(𝑥2)
𝑥3 + 𝑢2

1

𝐿𝑞(𝑥2)
 

(17) 

 

𝑥3̇ = −
𝐵

𝐽
𝑥3 −

𝑇𝐿

𝐽
+ 𝑢3

1

𝐽
 (18) 

 

where, 𝑥1,  𝑥2, 𝑎𝑛𝑑 𝑥3  are the state variables and 

𝑢1, 𝑢2, 𝑎𝑛𝑑 𝑢3 are the control signals. 

Considering the electromagnetic torque expression given in 

Eq. (8), it becomes evident that achieving torque control is 

attainable through the closed-loop regulation of 𝑖𝑑  and 

𝑖𝑞  currents. In the case of motors with surface magnets, the 

relationship between torque and 𝑖𝑑  is straightforward. 

However, for motors with interior magnets, this connection 

involves both 𝑖𝑑  and  𝑖𝑞 , rendering it more intricate. The 

designed control system is tailored to accomplish the objective 

of torque tracking. The input voltages are devised in a manner 

that ensures the convergence of (𝑖𝑑  and 𝑖𝑞 ) to their desired 

trajectory ( 𝑖𝑑
∗  and 𝑖𝑞

∗ ). Given that  𝑖𝑑
∗ = 0 , the desired 

electromagnetic torque is directly proportional to the desired 

current 𝑖𝑞
∗ . 

In pursuit of the currents tracking objective, the tracking 

errors are defined as: 

 

𝜀𝑑 = 𝑖𝑑
∗ − 𝑖𝑑 = 𝑥1

∗ − 𝑥1 = −𝑥1 

𝜀𝑞 = 𝑖𝑞
∗ − 𝑖𝑞 = 𝑥2

∗ − 𝑥2 

𝜀𝜔 = 𝜔𝑟
∗ − 𝜔𝑟 = 𝑥3

∗ − 𝑥3 

(19) 

 

Then the dynamic change in errors can by driven from Eq. 

(16), Eq. (17) and Eq. (18) as: 

 

𝜀�̇� = −
𝑢1

𝐿𝑑

+
𝑅

𝐿𝑑

𝑥1 −
𝐿𝑞

𝐿𝑑

𝑥2𝑥3 

𝜀�̇� = −
𝑢2

𝐿𝑞

+
𝑅

𝐿𝑞

𝑥2 −
𝐿𝑑

𝐿𝑞

𝑥1𝑥3 +
𝜓𝑚

𝐿𝑞

𝑥3 

𝜀�̇� = −
𝑢3

𝐽
+

𝑇𝐿

𝐽
+

𝐵

𝐽
𝑥3 

(20) 

 

To guarantee the convergence of the tracking errors towards 

zero, the selected Lyapunov function is formulated as: 

 

ℋ(𝑥) =
1

2
𝛿1𝛩𝑑

2 +
1

2
𝜀𝑑

2 +
1

2
𝛿2𝛩𝑞

2 +
1

2
𝜀𝑞

2 

+
1

2
𝛿3𝛩𝜔

2 +
1

2
𝜀𝜔

2  

(21) 

 

where, Θ𝑑 = ∫ 𝜀𝑑(𝜏)𝑑𝜏
𝑡

0
, Θ𝑞 = ∫ 𝜀𝑞(𝜏)𝑑𝜏

𝑡

0
, and Θ𝜔 =

∫ 𝜀𝜔(𝜏)𝑑𝜏
𝑡

0
 are the integral time error (ITE) of the dq-currents 
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and speed, 𝛿1 , 𝛿2 , and 𝛿3 are positive real constants. 

Incorporating these integral actions into the Lyapunov 

function ensures the achievement of tracking error 

convergence to zero, even in the presence of system 

disturbances and model uncertainties. Utilizing Eq. (14) and 

Eq. (15), the derivative of the Lyapunov function can be 

computed as follows: 

 

ℋ̇(𝑥) = 𝜀𝑑 (𝛿1Θ𝑑 −
𝑢1

𝐿𝑑

+
𝑅

𝐿𝑑

𝑥1 −
𝐿𝑞

𝐿𝑑

𝑥2𝑥3) 

+𝜀𝑞 (𝛿2Θ𝑞 −
𝑢2

𝐿𝑞

+
𝑅

𝐿𝑞

𝑥2 +
𝐿𝑑

𝐿𝑞

𝑥1𝑥3 +
𝜓𝑚

𝐿𝑞

𝑥3) 

+𝜀𝜔 (𝛿𝜔Θ𝜔 −
𝑢3

𝐽
+

𝑇𝐿

𝐽
+

𝐵

𝐽
𝑥3) 

(22) 

 

Now, based on Eq. (22), the stability of the system can be 

proved as following: 

 

• If ℋ̇(x) is proven to be negative definite, then the 

controlling system is globally asymptotically stable, 

meaning it converges to a stable equilibrium point 

regardless of initial conditions. 

• If ℋ̇(x) is proven to be negative semi-definite, the 

system is stable, but you may need additional analysis to 

determine if there are limit cycles or boundary behaviors. 

• If ℋ̇(x) is positive definite, then the system is unstable, 

indicating that the control system is not able to stabilize 

the plant dynamics. 

 

To ensure global asymptotic stability within the current loop, 

the synthesis of d-q axes controllers must keep ℋ(𝑥)  as 

positive definite and ℋ̇(𝑥) as negative definite for all values 

of the state variables 𝑥. Obviously, Eq. (22) consists of three 

terms; the first term represents the stability criteria of the d-

axis current control loop, and the second term represents the 

stability criteria of the q-axis current control loop. While, the 

third term represents the stability criteria of the speed control 

loop.  

 

 

6. OPTIMIZATION COST FUNCTION 

 

The integration of the Lyapunov theorem with particle 

swarm optimization (PSO) has been identified in existing 

literature as an intricate implementation strategy and a 

sophisticated methodology, as evidenced by references [4] and 

[6]. However, in the present study, a more streamlined 

approach has been adopted to synergize these concepts. 

Combining PSO with the Lyapunov theorem leverages the 

strengths of both techniques to achieve optimal, stable, 

adaptive, and robust control solutions for complex nonlinear 

systems. Thus, the choice of the cost function must involve all 

those constraints. Besides, obtaining a powerful cost function 

must prevent the algorithm from falling in local optima, 

divergence, or oscillation. Thus, the chosen cost function was 

formulated to evaluate those approaches. The optimization 

process entails the selection of a cost function, achieved 

through the multiplication of two distinct sub-cost functions: 

𝜂(𝑘𝑖,𝑗)  and 𝜉(𝑘𝑖,𝑗)  each of which encapsulates pertinent 

characteristics delineated by their respective functions. The 

first sub-cost function 𝜂(𝑘𝑖,𝑗)  represents the dynamic and 

steady-state response which consists of a summation of three 

constraints: 

𝜂(𝑘𝑖,𝑗) = 𝑚𝑖𝑛 {|
𝑂𝑆∗ − 𝑂𝑆(𝑘𝑖,𝑗)

𝑂𝑆∗
| + |

𝑇𝑟
∗ − 𝑇𝑟(𝑘𝑖,𝑗)

𝑇𝑟
∗

|

+ 𝐼𝑇𝑆𝐸(𝑘𝑖,𝑗)} 

(23) 

 

where, 𝑂𝑆∗ and 𝑂𝑆(𝑘𝑖,𝑗)  are the maximum allowable and 

currently overshoot respectively,  𝑇𝑟
∗ and 𝑇𝑟(𝑘𝑖,𝑗) are the 

required and actual rise time respectively, and 𝐼𝑇𝑆𝐸(𝑘𝑖,𝑗) 

corresponds to the integral-time square speed error. The ITSE 

reflects a steady-state error, while overshoot and rise time 

pertain to transient response. The optimization technique's 

goal is to minimize this sub-cost function and improve both 

transient and steady-state performance. 

The second sub-cost function 𝜉(𝑘𝑖,𝑗)  operates as a 

discerning indicator by actively assessing whether the system 

violates the prescribed Lyapunov stability criteria, as defined 

in Eq. (22), throughout each iterative cycle. This evaluative 

process can be succinctly encapsulated within a conditional 

construct (if statement), thereby elucidating instances where 

deviations from the established stability parameters manifest. 

 

𝜉(𝑘𝑖,𝑗) = {
1           𝑖𝑓 ℋ̇(𝑥) ≤ 0

106        𝑖𝑓ℋ̇(𝑥) > 0
 (24) 

 

If the optimization process applied individually for the three 

controllers Eq. (22) can be eliminated to on term that 

represents that specific control.  

The cost function is 

 

𝐶𝐹(𝑘𝑖,𝑗) = 𝜂(𝑘𝑖,𝑗) ∗ 𝜉(𝑘𝑖,𝑗) (25) 

 

 
 

Figure 2. Flowchart of the optimization process 
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The central idea of incorporating Lyapunov theorem into 

PSO lies in utilizing Lyapunov functions to define and 

maintain a stable region within the search space. This 

approach ensures that particles not only explore the search 

space for optimal solutions but also remain within a region that 

guarantees stability. Figure 2 summarized the optimization 

algorithm flowchart. 

 

 

7. SIMULATION RESULTS 

 

The simulation configuration includes the FOC approach 

executed within a d-axis and q-axis model based on a 

decoupled method. To connect the motor with the controller, 

the dq-abc and abc-dq transformations are utilized. A driving 

voltage source inverter is blended into the system to control 

the PMSM using a 600V DC link. The machine parameters 

which used in the simulation are summarized in Table 1. These 

parameters play important functions in performing the motor's 

behaviour and characteristics. The particle swarm 

optimization algorithm was integrated within the Lyapunov 

concepts by sub-Matlab routines, assisting in the evaluation of 

optimal control parameters. The overall system was simulated 

providing a reliable representation of how the different 

components interact and affect the comprehensive behaviour 

of the PMSM under control. 

The optimization PSO process is executed with the 

following parameter values: 𝛽1=𝛽2=1.5, W=0.7 and a total of 

100 iterations are performed. These parameters are crucial in 

determining the balance between exploration and exploitation 

of the solution space. The dynamic response boundaries are 

chosen as 𝑂𝑆∗ = 1% and 𝑇𝑟
∗ = 1s as maximum allowable. 

 

Table 1. Parameter values of the PMSM 

 
Parameters Physical Meaning Value 

Ld (mH) q-axis inductance 1.5 

Lq (mH) d-axis inductance 1.5 

Rs (Ω) Armature winding resistance 0.13 

J (kg.m2) Rotor moment of inertia 0.1 

P Machine pole pairs 6 

𝜓𝑚 (Wb) Permanent pole magnetic flux 0.028 

 

Table 2 provides an overview of the resultant parameters for 

the three PI controllers after the optimization process. These 

controllers play a pivotal role in the FOC strategy, influencing 

the motor's performance and response characteristics. 

 

Table 2. Optimal controllers’ gains 

 
Controller Kp Ki 

Speed 9.82 14.4 

q-axis current 1.03 10.8 

d-axis current 2.34 6.5 

 

The results depicted in Figure 3 illustrate the tendency of 

particles within the state space, concentrating towards the 

global optimum solution. Sealed red particles are the banned 

particles that guide toward unstable reactions during 

optimization. The reached values of particles, after 100 

iterations, characterize the optimal parameters of the system 

controllers. Figure 4 represents the track of the cost function 

throughout the optimization procedure. The CF values change 

as the optimization algorithm progresses, showcasing the 

iterative performance improvement.  

 

 
 

Figure 3. Particles convergence toward the global optima 

 

 
 

Figure 4. Trajectory of the CF toward minimum value 

 

 
 

Figure 5. Step response performances 

 

Figure 5 shows the system's performance evaluated for 

varying step commands in speed tracking. This figure provides 

insights into how well the system responds to different 

reference speed changes. Figure 6 shows the acceleration and 

deceleration performance in four-quadrant operating modes 

the graph demonstrates the system's response to ramp 

commands. It provides a comprehensive view of how the 

system handles dynamic changes in speed commands. Figure 

7 investigates the d-axis and q-axis stator currents concerning 

variations in speed and torque. It validates the precision of the 

492



 

FOC technique and its ability to adapt to changing operating 

conditions. 

 

 
 

Figure 6. Four-quadrant operation 

 

 
 

Figure 7. dq-axis currents performance 

 

Furthermore, to assess the robustness of the suggested 

controllers, the deviation of stator resistance and inductance 

are inspected. The investigation involves analyzing the 

behaviour of the motor's speed and torque under varying stator 

parameters. This experimentation provides insights into how 

well the proposed controller can maintain performance in the 

presence of parameter variations. 

In real-world operational scenarios, various factors such as 

temperature fluctuations, operating duty cycles, and instances 

of overloading can impact motor performance. Among these 

factors, the parameters most susceptible to change are the 

resistance and inductance of the stator winding. Variations in 

these parameters lead to degrading the performance which 

requires robust control techniques. Figure 8 depicts the 

system's performance in responding to stator resistance 

variation. 

Figure 9 shows the system's behaviour in responding to 

variations in stator inductance. This demonstrates how the 

proposed controller can overcome the variation in machine 

parameters. To evaluate the effectiveness of the proposed 

controller in conjunction with conventional methods, a 

comparative investigation is achieved. Specifically, a 

comparison is made between the proposed controller and an 

optimized PIPSO controller employing only the Integral-Time 

Square Error (ITSE) objective function.  

 

 
 

Figure 8. Stator resistance variations 

 

 
 

Figure 9. Stator inductance variations 

 

 
 

Figure 10. Comparison performances 

 

This comparison provides insights into how well the 

proposed method performs in comparison to a benchmark 

approach. Figure 10 presents a side-by-side comparison of the 

performance achieved by the suggested method and the PI-

PSO optimization technique that considers only the ITSE 

fitness function. The graph visually highlights the differences 
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in performance outcomes. 

Table 3 summarizes the performance constraints achieved 

by both the suggested controller and the optimization 

technique focusing on ITSE. The comparison highlights the 

improvements achieved by the proposed controller in terms of 

rise time 𝑇𝑟 , overshoot 𝑂𝑆, and steady-state time 𝑇𝑠𝑠 . These 

results underscore the effectiveness of the multi-objective cost 

function utilized in the proposed method. 

 

Table 3. Comparison constants 

 
Constraints ITSE Proposed 

𝑇𝑟 (s) 0.95 0.71 

𝑂𝑆 % 1.89 0.04 

𝑇𝑠𝑠 (s) 2.04 0.725 

 

In summary, the discussed parameter variation analysis and 

comparative investigation further validate the robustness and 

superiority of the proposed controller in enhancing the 

performance of the PMSM under various operational 

conditions. 

 

 

8. DISCUSSION  

 

The simulation results affirm the efficacy of the suggested 

optimization strategy using the cost function incorporated with 

Lyapunov theorem. The convergence of particles towards 

optimal values is illustrated in Figure 3 and Figure 4, 

indicating the validity of the suggested multi-objective cost 

function. This outcome is obtained by attracting particles 

towards optimal values using Lyapunov-based constraints; the 

algorithm guides particles toward regions that enhance 

convergence properties. The proposed multi-objective cost 

function contributes to an expedited optimization process by 

considering transient, steady-state, and stable performance and 

accommodating multiple constraints. This key contribution 

distinguishes this work from previous studies that solely 

employed the ITSE cost function. Figure 5 and Figure 6 

demonstrate the PMSM's ramp and step response performance 

in reference tracking for various input references speed, 

illustrating excellent operation under full-load conditions. The 

obtained response parameters, including 𝑇𝑟=0.71s, 𝑂𝑆=0.04%, 

and steady-state time 𝑇𝑠𝑠=0.725s, indicate highly satisfactory 

performance. Furthermore, the robustness of the controllers is 

exhibited through the investigation of stator parameters. 

Figure 8 and Figure 9 showcase the system's performance 

under stator resistance and inductance variations confirm the 

controller's resilience against parameter changes. The 

comparison performance presented in Figure 10 confirms the 

superiority of the proposed controller approach with that 

employs only the ITSE objective function. This demonstrates 

the significance of the proposed Lyapunov-base PSO cost 

function, which enhance the performance as well as integrates: 

rise time, overshoot, steady-state error, and stability 

constraints into a single cost function. 

 

 

9. CONCLUSION 

 

This work suggests a combination of Lyapunov-based 

stability analysis and PSO. To state the benefits of the new 

optimization method, an optimum controller was designed for 

speed control of the PMSM. The new approach distinguishes 

itself from previous works by presenting a comprehensive 

evaluation of the system's performance. This evaluation 

process applies a multi-objective cost function that considers 

steady-state, dynamic, and stability performance. The adopted 

FOC technique proves its effectiveness in controlling speed 

and torque control. The optimization algorithm fine-tunes the 

optimum controller gains, resulting in excellent system 

performance in speed and torque tracking various operating 

cases. The simulation outcomes substantiate the efficacy of the 

suggested cost function in different operating conditions, 

yielding a rise time of 0.71s, an overshoot of 0.04%, and a 

steady-state time of 0.725s. Additionally, the proposed 

controller showcases notable robustness against variations in 

the machine parameters. However, it's crucial to acknowledge 

that the rotor torque ripple is considerably significant, 

potentially leading to undesired operating characteristics. The 

approach presented in this paper holds promise for advancing 

the performance of PMSM applications, especially in the 

context of electric vehicles and other propulsion systems.  

The contribution and potential impact of this work can be 

listed as: 

 

• This method may leads to improve the controller 

performance in dynamic systems, such as robotics, 

aerospace, or industrial processes. It can achieve better 

tracking, disturbance rejection, and stability margins 

compared to traditional control methods. 

• The combining approach can enhance robustness to 

uncertainties and disturbances, making it suitable for 

real-world applications where system parameters may 

vary or external disturbances are present.  

• PSO enables optimal tuning of control parameters based 

on performance metrics, leading to efficient and effective 

control strategies. This is valuable in applications where 

manual tuning is challenging or impractical, such as 

complex systems with nonlinear dynamics. 

• The method can contribute to energy-efficient operation 

in systems that concern of energy consumption, such as 

in renewable energy systems, electric vehicles, etc.  

• The research and development of this method contribute 

to advancing the fields of control systems, optimization, 

and artificial intelligence. 

 

 

10. SUGGESTED FUTURE WORKS 

 

Furthermore, this work can be extended as future aspects 

can be done in several ways to enhance its effectiveness or 

address specific challenges: 

 

• The optimization algorithm could be improved by 

involving fine-tuning parameters, using adaptive 

techniques, or integrating other optimization algorithms 

for a hybrid approach. 

• Extend the analysis of nonlinear systems to assess the 

control system's stability and performance in more 

complex scenarios.  

• Investigate the robustness of the control system to 

uncertainties or disturbances. Robust controlling 

techniques, such as H-infinity control or sliding mode 

control, can be integrated to enhance robustness. 

• Develop methods for real-time optimization of the 

combined PSO-Lyapunov control system. Authors 

believe that this approach gives a promising robust 
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controller. 

• Experimental validation can prove the effectiveness of 

the proposed control system in various scenarios.  

• Explore the applicability of the proposed method in 

different application domains such as robotics, renewable 

energy systems, power electronics converters, etc. 
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