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Deep reinforcement learning (DRL) has emerged as a promising methodology for 

optimizing control policies across diverse domains, despite its well-acknowledged high 

training costs. This paper delves into the application of transformer model-based DRL for 

vibration control in building structures. Specifically, we tackle the challenge of 

diminishing vibrations induced by external factors like wind or earthquakes. Our 

innovative method eliminates the necessity for online interaction with the simulation 

environment during training, offering a more resource-efficient approach. In our proposed 

framework, the DRL agent learns to dynamically adjust the control signal of a classical 

linear–quadratic regulator (LQR)-based model in real-time to alleviate building structure 

vibrations. Combining the proximal policy optimization (PPO) method with a deep neural 

network trained on experimental environment data using the transformer model, our 

approach utilizes input sensor data obtained from the structure. The DRL model then 

generates corrective signals that augment the LQR model's output. Through an 

experimental study on a small-scale 3-story building structure, we demonstrate the efficacy 

of our transformer-based DRL control. Our results highlight the superiority of our 

approach over the classical LQR model in terms of both training computational cost and 

vibration reduction. This underscores the potential of DRL in enhancing the functionality 

of construction frameworks when facing external disturbances. Moreover, our adaptable 

framework is simple to include in the building control systems now in use. with the 

potential for extension to various control challenges within the realm of structural 

engineering. 
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1. INTRODUCTION

Buildings, intricate systems exposed to a myriad of external 

forces such as wind, seismic activities, and human interactions, 

undergo dynamic vibrations that can significantly impact 

occupant comfort and potentially compromise the structural 

integrity of the edifice. The imperative to control these 

vibrations is paramount for ensuring the safety, comfort, and 

longevity of structures. Over the years, researchers and 

engineers have dedicated extensive efforts to investigate and 

develop effective control methodologies, leading to the 

categorization of three primary control methods: passive, 

semi-active, and active [1]. 

Passive control methods, leveraging devices like tuned mass 

dampers, viscoelastic materials, and base isolation systems, 

present cost-effective solutions for the dissipation of energy 

and reduction of vibration amplitudes [2]. These methods are 

particularly suitable for retrofitting existing structures, given 

their relative affordability and ease of installation. On the other 

end of the spectrum, the methods of active control involve 

systems of feedback control equipped with actuators, such as 

piezoelectric materials, hydraulic actuators, or 

electromagnetic shakers. These systems dynamically adjust 

the control signal to counteract vibrations in real time, 

resulting in high levels of vibration reduction [3-5]. Semi-

active control methods strike a middle ground, utilizing smart 

materials like magnetorheological (MR) fluids to adjust 

damping force or stiffness in real-time based on measured 

vibration levels. This approach offers a balanced compromise 

between the efficiency of systems in action and the ease of use 

of passive systems [6-8]. 

While passive and semi-active systems are acknowledged 

for their affordability and dependability, they do have 

limitations, particularly in their ability to adapt to diverse types 

of excitations. Active mass dampers, active tendon systems, 

and active brace systems are examples of active control 

systems. excel at obtaining high-performance outcomes by 

utilising real-time observations to calculate the actuator 

control force that is required [3, 5, 9]. have been used to 

achieve precise control forces utilising sensor readings. These 

techniques include sliding mode control (SMC), pole 

assignment, and LQR [10-13]. 

Recent advancements in machine learning have 

revolutionized various industries, including structural 

engineering. Machine learning algorithms, particularly those 

based on deep learning (DL), have proven highly effective in 

addressing complex challenges. By leveraging data collected 

from building sensors, these algorithms can analyze large 
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volumes of information. One specific application is the 

identification of optimal control strategies to mitigate 

vibrations, a technique known as data-driven control. Data-

driven control has the potential to significantly enhance the 

efficiency and effectiveness of traditional control methods. 

The collected data encompasses a wide range of information, 

such as the building's structural properties, external forces 

acting upon it, and the vibrations themselves. Machine 

learning algorithms process this data to construct predictive 

models that optimize the control system and minimize 

vibrations. These models take into account factors like the 

building's structural properties, external forces, and the 

effectiveness of different control strategies. One crucial 

advantage of this approach is the ability to update the models 

in real-time as new data becomes available. This dynamic 

adaptation empowers the control system to respond and adjust 

to changing conditions promptly. Ultimately, the development 

of machine learning, particularly deep learning algorithms, has 

opened up new avenues for effectively addressing complex 

issues in structural engineering and other sectors. DRL, a 

subset of machine learning, has recently exhibited promising 

results in the domain of structural vibration control. Notably, 

DRL leverages neural networks with multiple layers, known 

as DL, to enhance its capabilities [14]. For instance, Rahmani 

et al. [15] A cutting-edge approach known as the deep Q-

network (DQN) has been proposed to enhance structural 

responses through feedback control. This method has shown 

remarkable effectiveness in reducing structural vibrations 

caused by earthquake excitations. In a study conducted by Kim 

and Kim [16], a deep DQN was employed to implement semi-

active control on a representative building structure. The 

results demonstrated a significant reduction in seismic 

response. Building upon this research, Zhang and Zhu [17] 

developed a deep deterministic policy gradient-based model to 

regulate vibrations in single and multi-degree-of-freedom 

shear-building models. Their findings revealed that this model 

achieved comparable outcomes to the classical linear quadratic 

regulator (LQR) approach and exhibited superior performance 

in a partially observed system. These advancements highlight 

the potential of deep learning techniques, such as DQN and 

deep deterministic policy gradients, in improving control 

strategies for structural dynamics. While these studies 

showcase commendable results, they highlighted the main 

limitation of using DRL for control problems, which is the 

training time that is representative of computational cost. Here, 

DRL models need to interact with the simulation environments 

for construable time to achieve an accurate control policy. In 

this context, the present paper introduces a DRL approach to 

control building vibration without the need for online 

interaction with the simulation environment during the 

training. This goal is achieved in this study by coupling the 

DRL algorithm with a transformer model, which is a 

supervised DL model that can map sequential data. While the 

transformer model is intended to enhance the performance of 

a traditional LQR control algorithm, the DRL model applies 

the DRL technique. This integration is driven not only by a 

large reduction in the computational cost associated with DRL 

techniques but also by a practical improvement in seismic 

response. This paper aims to address the specific research gaps 

compared to previous work During training time and 

computational cost previous, studies have highlighted the 

limitation of using DRL for control problems, which is the 

extensive training time and computational cost associated with 

interacting with simulation environments. The present paper 

proposes a DRL approach that does not require online 

interaction with the simulation environment during training. 

This addresses the need for more efficient training methods to 

reduce computational requirements by applying the  

Integration of DRL with a Transformer Model, where the 

coupling of DRL algorithm with a transformer model, which 

is a supervised DL model capable of mapping sequential data. 

This integration aims to enhance the performance of a classical 

LQR control algorithm by utilizing the capabilities of both 

DRL and transformer models. This addresses the gap in 

research regarding the combined use of DRL and transformer 

models for structural vibration control. 

The remainder of this paper is organized as follows. Section 

2 explains the methodology of this study. Section 3 explains 

the experimental setup and the simulation of building 

vibrations. Section 4 discusses the results of testing the 

proposed approach. Finally, Section 5 presents the conclusions 

of this study.  

 

 

2. METHODOLOGY 

 

2.1 DRL 

 

Reinforcement learning (RL) distinguishes itself from 

supervised and unsupervised learning by utilizing the Markov 

decision process, which involves a cyclic interaction between 

an agent and its environment. This iterative process consists of 

four fundamental components: state (s), action (a), policy 

(π(a|s)), and reward (r). In the realm of DRL, as depicted in 

Figure 1, the agent is represented by a deep neural network 

(NN). This neural network makes decisions at each time step 

(t), thereby influencing the environment's state and receiving 

feedback in the form of a reward that assesses the effectiveness 

of the chosen action. Over multiple iterations, the agent 

improves its decision-making abilities by selecting actions 

based on the policy and learning from accumulated states, 

actions, and rewards. The ultimate objective is to determine an 

optimal policy (π*(a|s)) that maximizes the long-term reward. 

 

 
 

Figure 1. The DRL concept representation 

 

2.2 Transformer model 

 

A neural network architecture called the transformer model 

is frequently utilized for tasks involving natural language 

processing, but it may also be employed for other sequential 

data analysis jobs including time series modelling. It is a good 

option for assessing and managing vibrations in active mass 

dampers under seismic conditions because of its capacity to 

record intricate patterns and dependencies in sequential data. 
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Designed with a specific focus on sequential data, such as 

time series and text, the transformer model stands as a robust 

neural network architecture with significant capabilities. It has 

been engineered to effectively process and analyze such data, 

showcasing its power and versatility in various applications. It 

overcomes some limitations of traditional recurrent neural 

networks (RNNs), such as long short-term memory (LSTM). 

One key aspect of the transformer model is its ability to 

capture long-range dependencies in the data. Traditional 

sequential models like LSTM often struggle with maintaining 

information over long sequences, which can hinder their 

effectiveness. The transformer model addresses this by 

incorporating a concept called self-attention. Self-attention 

allows the model to calculate and represent the relationships 

between different elements in the input sequence without 

relying on the sequential order of the data. This means that the 

model can understand the connections and dependencies 

between elements regardless of their position in the sequence. 

This is particularly useful for capturing complex patterns and 

relationships in sequential data. LSTM [18] stands out as the 

most successful artificial neural network for managing 

sequential data and time series modeling, representing a 

variant of recurrent neural network (RNN). Its proficiency 

extends to capturing the temporal evolution in various contexts. 

Despite its capability to address traditional RNN limitations 

like gradient vanishing and explosion [19], LSTM often 

exhibits slowness in training due to its sequential data 

introduction requirement, hindering parallelization and 

necessitating GPU usage. Additionally, it has displayed 

constraints in handling long-range dependencies. 

To overcome these challenges, the transformer [20] was 

introduced, incorporating the self-attention concept to 

calculate and represent the input and output data without the 

need to feed sequential data. In this study, the transformer 

model was used to show the time evolution in the acceleration 

fields represented in the turbulent flow data.The Transformer 

model in this study, depicted in Figure 2, mirrors the original 

Transformer and comprises two primary components: the 

encoder and the decoder. Both components process inputs 

through positional encoding (PE), employing sine and cosine 

functions to encode order position information into a vector 

inserted straight into the vector of input. 

Six stacked encoder layers make up the encoder, and each 

one has a feed-forward and a multi-head self-attention sub-

layer. In the multi-head self-attention sub-layer, the input 

includes queries, keys, and values, and attention serves as a 

mapping function that calculates the weighted sum of values 

based on queries and key-value pairs. 

Scaled dot-product attention, an attention mechanism in 

which the dot products are scaled down by √𝑑𝑘 , is used to 

illustrate the attention function. The scaled dot-product 

attention is calculated as: 

 

( , , ) max( )
T

K

QK
Attention Q K V soft V

d
=  (1) 

 

where, Q, K, V are matrices that contain the queries, keys, and 

values, respectively. 𝑑𝑘 is the dimension of Q, K. Here 𝑑𝑘 =
𝑑𝑣 = 𝑑𝑚𝑜𝑑𝑒𝑙/ℎ, where 𝑑𝑣, 𝑑𝑚𝑜𝑑𝑒𝑙, and h are the dimension of 

V, the dimension of the input data to the model, and the 

number of heads, respectively. 

The multi-head self-attention sub-layer in the transformer 

model enables the model to collectively focus on and process 

information from diverse representation subspaces at various 

positions. This mechanism facilitates the model's ability to 

capture and integrate contextual dependencies across the input 

sequence, leading to a comprehensive understanding and 

analysis of the sequential data. 

 
2 2 2

1 2 3
[( ) ( ) ( ) ]st nd rdt t t tr D D D= − + +  (2) 
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where, 𝑊𝑖
𝑄 . 𝑊𝑖

𝐾 . 𝑊𝑖
𝑉 . and 𝑊𝑜  are the weights corresponding 

to Q, K, V at every head, respectively; 𝑊𝑜  represents the 

weights of the concatenated heads.  𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 , and 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 . 

The feed-forward sub-layer of the encoder layer is made up 

of two dense layers with ReLU and linear activation functions. 

Before performing layer normalisation, a residual connection 

is used, same like in the multi-head self-attention sub-layer. 

With the use of this connection, the vector can be projected 

into a higher-dimensional space and then projected back to its 

original dimension, making it easier to extract pertinent 

information. Similar to the encoder, the decoder layer is made 

up of six layers. The decoder layer includes a third sub-layer 

that handles multi-head attention over the encoder stack's 

output in addition to the feed-forward and multi-head self-

attention sub-layers. With the help of this attention mechanism, 

the decoder can efficiently extract information from the 

encoder's output, which facilitates the creation of precise 

predictions. Moreover, as shown in Figure 2, the multi-head 

self-attention sub-layer in the decoder is transformed into a 

masked multi-head self-attention sub-layer. This modification 

involves applying a mask to the attention mechanism, ensuring 

that during training, the decoder attends only to the available 

information at each decoding step. This prevents the model 

from accessing future positions, maintaining the integrity of 

the training process. Overall, the transformer model utilizes 

the feed-forward and multi-head self-attention sub-layers in 

the encoder and decoder layers to process and extract 

important information from the input sequence. The decoder 

layer includes additional multi-head attention over the encoder 

stack's output, enhancing prediction accuracy. The masked 

multi-head self-attention sub-layer in the decoder ensures that 

predictions are solely based on the available information, 

preventing any influence from future positions.jh This 

resembles the multi-head self-attention sub-layer except that 

the scaled dot-product attention is modified to a masked scaled 

dot-product attention [20]. In order to prevent eventual 

information leaking, the masking procedure makes sure that 

the prediction can only rely on the known outputs. In this work, 

the rate of dropout is fixed at 0.1 and the dropout approach is 

applied to each sub-layer prior to the residual connection. The 

Transformer model's loss function is determined to be the 

square of the 𝐿2 norm error, such that: 

 
2

1 2

1
arg

M

Transformer m m

m

l output T et
M =

= −  (4) 

 

When, at a given time step, m, Output and Target stand for 

the ground truth and the output of the Transformer model, 

respectively.The optimization algorithm known as adaptive 

moment estimation (Adam) [21] is employed in the weights' 

updating. Mini-batches are created from the training data, with 
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a 64-bit size limit for each minibatch.  Using random actions, 

the transformer model is utilised in this work to forecast the 

temporal evolution of the displacement of each level in the 

three-story building. Here, the input to the model is the 

instantaneous actions with the accelerations and displacements 

and the output is the predicted values of a specific future time 

step. More details are shown in the next section. 

 

 
 

Figure 2. The construction  of the transformer 

 

2.3 DRL framework 

 

This work utilizes a DRL model based on PPO, which falls 

within the family of policy gradient methods [22]. PPO is 

commonly employed in DRL-based control problems due to 

its simplicity, faster execution compared to Trust Region 

Policy Optimization (TRPO) [23], and minimal need for meta-

parameter tuning. It is particularly well-suited for continuous 

control problems and outperforms DQN. Appendix provides a 

brief introduction to the PPO method. In this study, the 

objective is to develop a model that optimally adjusts the 

control signal of AMD (Active Mass Damper), represented by 

voltage values as depicted in Figure 3. The instantaneous 

values, denoted as at, are added to the control signal ut derived 

from a classical LQR model at each iteration step. The agent 

operates under a policy π(at|st), where ai,j
n belongs to the action 

range [-1,1] multiplied by urms (root mean square of the control 

signal from the LQR model). At each step, the agent receives 

the next state st+1 and reward rt+1 from the environment based 

on the action at taken. The states are defined by the 

accelerations and displacements of the three floors. The 

reward function incorporates the drifts of the three levels, 

enabling the DRL model to determine the most favorable 

action to take. Therefore, the DRL model's goal is to discover 

the control strategy that maximizes the anticipated long-term 

rewards [24]: 

 
* ( 1)

1
arg max ( )

N t

tt
E r  −

=
=   (5) 

 

where, 𝛾(𝑡−1)  is the (t-1)th power of the discount factor 𝛾 , 

which estimate the weight of the immediate rewards in the 

future steps of  iteration . In this work, the term of 𝛾 is set to 

0.9. The immediate reward function is defined as: 

2 2 2

1 2 3
[( ) ( ) ( ) ]st nd rdt t t tr D D D= − + +  (6) 

 

 
 

Figure 3. Diagram for framework the building structure's 

active vibration control with DRL 

 

 
 

Figure 4. Training process with  transformer 

 

For every episode in our investigation, we employ 50 

iteration steps to train the DRL model. As previously stated, 

this study utilizes the transformer model to forecast the 

temporal progression of each floor's displacement in the 

436



 

building, serving as an emulator in the training phase. As 

shown in Figure 4, the model takes instantaneous actions along 

with accelerations and displacements as input and generates 

predicted values for a specific future time step. The structure 

of the DRL model used in this study is implemented using the 

tensorforce library [25]. 

 

 

3. EXPERIMENTAL SETUP AND EARTHQUAKE 

SIMULATION  

 

The practical test was conducted by designing and 

manufacturing a three-story shear building structure model 

with dimensions of (50×40×40) cm for each floor. The floor 

surface was made of wood while the columns were made of 

steel, taking into account the addition of damping factors 

between the floors. The weight of the floor is 45 Newtons, and 

AMD was installed at the top of the structural model on the 

roof of the third floor, which consists of a 42HD4027 

NEMA17 Stepper Motor, in addition to the active mass that 

weighs 7 Newtons, equivalent to 5% of the total weight of the 

structural model. The optimal performance was evaluated by 

conducting a test on  the Shaking tables are commonly utilized 

in earthquake simulation scenarios, wherein a tabletop is fixed 

atop a series of mechanical vibrators or actuators. The purpose 

of the table surface is to simulate the motion and vibrations 

that occur during an earthquake in order to mimic the behavior 

of the ground. A specimen or scale model of a structure is set 

up on the shaking table for the experiment. The table is then 

programmed to replicate the collected ground acceleration 

data, so producing distinct earthquake motions. A vast variety 

of ground motions, including various frequencies, amplitudes, 

and waveforms, can be replicated using the shaking table. 

Shaking tables are widely used in structural testing, earthquake 

engineering research, and seismic qualifying of buildings.  the 

shaking table that was manufactured in the laboratory by 

connecting the structure to a moving base using a 42HD4027 

NEMA17 Stepper Motor, in addition to a 240 watt power 

supply with a high power capacity of 20 kN and max. Stroke 

200 mm . The Arduino Mega 2560 microcontroller board is 

used to control the actuator with TB6600 stepper driver 

module for stepper motor in AMD and shaking table when 

using the time hestory for acceleration ampltuted EL 

centro(scaled version) [26] by apply tha data for it to 

generation the vibration in the model strcture by shaking table, 

in addition to using an SD card adapter to convert the analog 

signal as shown in the Figure 5. 

 

 
 

Figure 5. The components of experimental work 

 

Four ADXL335 accelerometers were installed and 

distributed on the floors, in addition to installing one of them 

on the AMD To calculate the absolute acceleration. The 

measurement range for the acceleration was ±25 m/s2. The 

control force of the AMD was obtained through the product of 

the acceleration multiplied by the active mass. At the same 

time, distance sensors were used. VL53L0X is distributed to 

all floors of the structural model in order to measure the 

relative displacement of each floor,see Figure 6. The AMD 

controller was implemented by building the DRL-LQR 

controller on the host desktop using MATLAB/Simulink and 

then connecting it to the Arduino Mega 2560 I/O using blocks 

provided by Simulink Real-Time. The DRL-LQR needed 

structural states to control the feedback, but these were not 

observable in testing. Therefore, the control force was 

calculated using the recorded acceleration as input. However, 

noise in the accelerometer measurement may cause high-

frequency control force and increase the acceleration response. 

As a result, a fourth-order low-pass filter with a cut-off 

frequency of 20 Hz was created.  

 

 
 

Figure 6. The components of experimental work 

 

When compared to simulation-based research, 

implementing a DRL controller in an experimental context can 

have a number of drawbacks and difficulties. Firstly, the 

Experimental Setup and HardwareActuators and sensors are 

examples of the physical hardware needed in an experimental 

context to interact with the structure and gather data. Hardware 

component design and setup can be difficult and time-

consuming. To guarantee precise measurements and 

appropriate control action, the hardware required meticulous 

calibration and synchronization. Real-time control is another 

important component of the experimental setup. In this 

scenario, the DRL controller must function in real-time to 

deliver control inputs based on the collected sensor data. 

Because real-time implementation requires that the DRL 
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algorithms be completed within the allotted time, it may create 

limits on their computational complexity. To meet the 

demands of real-time control, hardware resources, and 

efficient algorithms are needed. so that the transformer 

concept was employed. 

 

 

4. RESULTS AND DISCUSSION 

 

First and foremost, the study delves into the learning 

process of the proposed model. Illustrated in Figure 7, the 

reward values exhibit a gradual increase, plateauing at a 

consistent level after just 600 episodes, underscoring the 

commendable learning performance of the model. The 600 

training episodes are considered sufficient, and this is evident 

from the stability of the system’s reward values, which 

indicates that the system has reached the highest possible 

stable state within the available controller, which in turn 

depends on stable policy noting that the reward values become 

almost constant after the 600 training episodes. Notice Figure 

7 at the Training 800 episodes the reward value equals 

approximal -30 for smoothed reword which is the same value 

for 600 training episodes for smoothed reword. 

 

 
 

Figure 7. Reward function evaluation during the training 

process (The red plot represents the smoothed reward values) 

 

Notably, there is no real-time interaction between the DRL 

agent and the real experimental environment during the 

training phase, which leads to a significant decrease in the 

computing cost, symbolised by the training time. Analysing 

the control signal's immediate effect on the three floors' 

displacements and accelerations reveals some intriguing 

trends. Figure 6 illustrates a tendency for displacement values 

to increase with the increase in floor levels. The DRL model's 

results, depicted in Figure 8, show fewer values compared to 

the no-control case, suggesting the DRL model effectively 

mitigates floor displacement. Furthermore, Figure 9. 

showcases the model's remarkable capability to reduce the 

acceleration of each floor consistently throughout the artificial 

ground excitation period, maintaining its performance across 

all floors during this period. The LQR controller offers a 

baseline control technique that guarantees stability and 

optimal control by integrating DRL with LQR control. 

Subsequently, DRL refines the control strategies that the LQR 

controller has learned, resulting in enhanced structural 

responsiveness and vibration reduction performance.  The 

DRL training procedure begins with the original LQR 

controller. It cuts down on the amount of training time needed 

to get optimal control by offering a stable control policy that 

enables DRL to converge more quickly. To show the 

effectiveness of this type of controller comparisons are 

provided between the DRL and uncontrolled cases, In addition 

to comparing it with the most ideal case applied throughout 

this article, DRL-LQR can be represented in literature [27]. 

 

 
 

Figure 8. Plots showing the first floor (top), second floor 

(middle), and third floor (bottom) in real time 

 

 
 

Figure 9. Plots showing the first floor's instantaneous 

acceleration at the top, middle, and bottom 

 

The root mean square (RMS) of the accelerations and 

displacements on the three floors is measured as part of the 

statistical assessment of the model's performance. As Figure 

10(a) illustrates, the RMS of floor accelerations is significantly 

lower than in the no-control case, by about 50–70%. In a 

similar vein, the model's performance is shown in terms of the 

RMS of floor displacements in Figure 10(b).The RMS 

acceleration and displacement reductions compared to the 

uncontrolled case for experimental tests without control,that is 

means the time history for the EL Centro earthquake as scaled 

version applied for the model structure by shaking table 

without applying any control for AMD that is fixing  in the top 
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floor  of the structure  (without DRL-LQR) and extracting 

experimental results related to RMS of displacement or 

acceleration. It is evident that the model has learned to adjust 

signals from the classical LQR model, striving to achieve 

optimal reductions in both floor displacement and acceleration. 

Figure11 provides an overarching view of AMD's behavior 

under the control of the DRL model. In Figure11(a), the 

AMD's acceleration behavior aligns relatively consistently 

with the building during the excitation period, although the 

acceleration values of the AMD exhibit a more randomized 

pattern. This randomness is linked to the DRL model's pursuit 

of optimal performance, adapting to the dynamic structure of 

the model with quasi-random changes in the AMD position, as 

reflected in Figure 9. 

 

 
(a) 

 

 
(b) 

 

Figure 10. (a) RMS of each floor's acceleration; (b) RMS of 

each floor's displacement 

 

Furthermore, Figure 11(b) illustrates a direct correlation 

between the consumed power of the AMD and the amplitude 

of the simulated earthquake. Notably, the AMD's response 

displays less random behavior compared to its acceleration 

values. This correlation emphasizes the model's ability to 

efficiently modulate the AMD's power consumption in 

response to varying earthquake conditions. The interplay 

between AMD behavior, DRL model control, and earthquake 

dynamics, as visualized in Figure 9, underscores the model's 

capability to intricately manage the AMD's response in a way 

that aligns with the building's characteristics and seismic 

inputs. It should be noted that All details related to the 

comparison of results of performance  between the case of 

DRL  and LQR controller were included Severally within the 

citation from the article mentioned [27]. Lastly , The main goal 

of the article was to shed light on the efficiency of the 

controller experimentally in reducing the displacement and 

acceleration of the structure mainly within the experimental 

test of the laboratory structure model. As for the computational 

cost/training time for the new controller DRL-LQR and the 

previous DRL, it was included to indicate that increasing the 

efficiency in it was relied upon theoretically in previous 

research has been included in the previous references 

 

 
(a) 

 
(b) 

 

Figure 11. Instantaneous AMD acceleration (a) and 

instantaneous AMD power (b) 

 

 

5. CONCLUSIONS 

 

A recently created transformer-based DRL framework for 

active building structure vibration control under seismic 

effects is presented in this work. The framework creates 

control actions that improve the performance of a traditional 

LQR model by fusing ANNs with the PPO method. 

Furthermore, an emulator model in the form of a transformer 
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model is employed to replicate the training environment. The 

training outcomes show how successful the suggested 

structure is. The model demonstrates the capacity to learn in a 

very short amount of episodes, leading to a notable decrease 

in training expenses. The instantaneous results of the 

displacements and accelerations of the structure model floors 

exhibit a remarkable reduction, surpassing the performance of 

the LQR model. Furthermore, the statistical results indicate a 

50 to 70% improvement in the reduction of drifts compared to 

the no-control case. The instantaneous displacement and 

acceleration findings for the structure model floors show a 

significant decrease in the LQR model's performance. 

Additionally, compared to the no-control condition, the 

statistical results show a 50–70% improvement in the drift 

decrease. The AMD response, power, and building 

accelerations are correlated, and this indicates that the DRL 

model learns to generate the best control signals without any 

prior understanding of the structure's dynamics. This 

highlights the capability of the transformer-based DRL 

framework to adapt and optimize control actions based on the 

observed structural response. The findings of this study 

suggest that the combination of transformer models and DRL 

has significant potential for practical applications in active 

vibration control, including multi-story building structures. 

The framework not only achieves remarkable reductions in 

training time but also offers promising results in terms of 

control performance. However, it is important to acknowledge 

the limitations of this study. The practical implementation of 

the proposed framework on larger-scale structures may 

encounter challenges related to hardware requirements, 

control loop design, system identification, and data acquisition 

strategies. These factors need to be carefully considered and 

addressed in future research. Future research directions can 

focus on enhancing the transformer-based DRL framework by 

exploring advanced DRL algorithms that can efficiently 

handle larger-scale systems while maintaining real-time 

control capabilities. Additionally, investigating hybrid control 

strategies that combine DRL with other control techniques 

could further enhance performance, improve robustness, and 

reduce computational requirements. Furthermore, 

experimental validation on larger and more complex structures 

will be crucial to validate and extend the findings of this study. 
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APPENDIX 

 

PPO algorithm 

 

Recognized for its stability and proficiency in handling 

continuous action spaces, Proximal Policy Optimization (PPO) 

is particularly well-suited for tasks involving continuous 

control actions. PPO operates within the framework of policy 

gradient algorithms, aiming to directly derive the optimal 

policy, denoted as 𝜋∗(𝑎𝑡|𝑠𝑡), which maximizes the long-term 

reward function, 𝑅(𝑡) = ∑ 𝛾𝑡−1𝑟𝑡𝑡=1 , where γ is the discount 

factor and its range is between 0 and 1. Unlike in other 

methods such as Q-learning, where an indirect description of 

the policy is represented by the artificial neural network 

(ANN), in the policy gradient methods, the policy is directly 

obtained by utilizing the ANN. The goal of training in the 

policy gradient methods is the obtain the maximum reward 

such that: 

 

𝑅𝑚𝑎𝑥 =
max

Θ
𝔼 [∑ 𝑅(𝑠𝑡)|

𝐻

𝑡=0

𝜋Θ] (A.1) 

 

where, 𝜋Θ is the policy function, Θ represents the weights of 

the ANN, and 𝑠𝑡 represents the state of the system. 

If we denote 𝜏 as a (s, a, r)-based sequence,  

 

𝜏 = (𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), … , (𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻) (A.2) 

 

Then, we can define a value function (which is the quantity 

that should be maximized) as, 

 

∇Θ= 𝔼 [∑ 𝑅(𝑠𝑡 , 𝑢𝑡)|

𝐻

𝑡=0

𝜋Θ] = ∑ Ρ(𝜏, Θ)𝑅(𝜏)

𝜏

 (A.3) 

 

With mathematical manipulations, one can obtain, 

 

∇Θ𝑉(Θ) = ∑ ∇ΘΡ(𝜏, Θ)𝑅(𝜏)

𝜏

 

= ∑
Ρ(𝜏, Θ)

Ρ(𝜏, Θ)
∇ΘΡ(𝜏, Θ)𝑅(𝜏)

𝜏

 

= ∑ Ρ(𝜏, Θ)

𝜏

∇ΘΡ(𝜏, Θ)

Ρ(𝜏, Θ)
𝑅(𝜏) 

= ∑ Ρ(𝜏, Θ)∇Θ log(Ρ(𝜏, Θ)) 𝑅(𝜏)

𝜏

 

(A.4) 

 

Eq. (A.4) represents a new expected value, which can be 

sampled under 𝜋Θ and used as the input to the gradient descent. 

Here one can estimate the policy-dependent log-prob gradient 

as: 

 

∇Θ log (Ρ(𝜏𝑖 , Θ)) 

= ∇Θ log [∏ Ρ(𝑠𝑡+1
𝑖 |𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 )𝜋Θ(𝑎𝑡

𝑖 |𝑠𝑡
𝑖)

𝑡

] 

= ∇Θ [log Ρ(𝑠𝑡+1
𝑖 |𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 ) + ∑ log 𝜋Θ(𝑎𝑡

𝑖 |𝑠𝑡
𝑖)

𝑡

] 

= ∇Θ ∑ log 𝜋Θ(𝑎𝑡
𝑖 |𝑠𝑡

𝑖)

𝑡

 

(A.5) 
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