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This study explores a methodology for mapping the 3D spatial information of evacuation 

routes, aiming to acquire lightweight data to enhance the flexibility of evacuation route 

development. Utilizing 3D-LiDAR (Light Detection and Ranging) technology, we 

integrated an Inertial Measurement Unit (IMU) with an existing algorithm to compensate 

for motion distortion, thereby increasing the mapping accuracy of interior spaces 

characterized by a paucity of structural features. Given the extensive volume of point 

cloud data generated by LiDAR, which is impractical for direct application in evacuation 

route mapping, we categorized the data into local and global maps. This paper presents a 

strategy to minimize the data volume necessary for generating optimized evacuation route 

maps, employing the Octomap data format for efficient global map storage. This approach 

not only addresses the challenges of handling large datasets but also contributes to the 

development of more accurate and user-friendly evacuation planning tools. 
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1. INTRODUCTION

Japan is one of the world’s most earthquake-prone countries. 

Japan and its surrounding areas experience roughly a tenth of 

all earthquakes that occur in the world [1]. The critical role of 

rescue robots in such scenarios, specifically in path planning 

and navigation to reach trapped or injured individuals swiftly, 

becomes indispensable. For example, during the 2011 Tohoku 

earthquake and tsunami [2], the rapid deployment of rescue 

robots could have facilitated quicker access to affected areas, 

showcasing the immediate need for advancements in robotics 

for disaster response [3]. 

Such natural disasters rely on escape routes established 

based on advanced evacuation plans. However, smooth, safe, 

and efficient evacuations are greatly complicated if only a 

preliminary evacuation plan is relied upon because the actual 

situations change very rapidly: traffic obstructions from fires 

collapsed buildings along evacuation routes, and traffic 

congestion from fleeing evacuees. Recent studies [4, 5], 

including our team's prior research [6], have demonstrated 

through simulations the potentially unsafe conditions caused 

by the congregation and stalling of individuals during disasters. 

This highlights the importance of real-time path planning to 

mitigate risks and ensure the safety of evacuees. 

Our research is grounded in the realization that disaster 

scenarios are highly dynamic, with people crowding and new 

obstacles frequently emerging making the pre-existing 

evacuation plans quickly outdated. This unpredictability 

necessitates the development of an evacuation guidance 

support robot capable of adapting to the ever-changing 

environment. Our project’s ultimate goal is to develop an 

evacuation guidance support robot that can search for 

evacuation routes during disasters, observe damage and 

evacuation states, and formulate more flexible evacuation 

routes tailored for specific situations [7]. For an evacuation 

support robot to cope with severe conditions during a disaster, 

such sensor information as LiDAR, camera images, and 

ultrasonic waves must be integrated to observe and 

comprehend the overall situation. This study discusses the use 

of LiDAR in this. 

We explored the application of Laser Odometry and 

Mapping (LOAM) [8] as a method for capturing and reducing 

3D spatial information of evacuation routes, with an emphasis 

on minimizing the volume of data acquired. With the ability to 

provide long-range, highly accurate 3D measurements of the 

surrounding environment, 3D-LiDAR is becoming an 

essential sensor in many robotic applications, such as 

autonomous driving vehicles [9], drones [10], surveying, and 

mapping [11, 12]. The capability of 3D-LiDAR to scan spaces 

in three dimensions addresses the limitation inherent in 2D-

LiDAR. Specifically, 2D-LiDAR is constrained to scanning 

solely at the elevation at which it is positioned, potentially 

leading to the omission of crucial spatial information. In 

contrast, 3D-LiDAR offers a comprehensive spatial 

representation, eliminating such blind spots. 

We collected 3D data using DJI Livox 3D-LiDAR [13], 

which represents a new class of solid-state LiDAR featuring 

non-repetitive scanning patterns, garnering increased attention 

and development. Since solid-state LiDAR can be massively 

produced, such high-performance and extremely low-cost 
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LiDAR have the potential to promote or radically change the 

robotics industry [14]. Despite their cost and reliability 

superiority, as well as potential performance advantages 

compared with conventional mechanical spinning LiDAR, 

solid-state LiDAR offers many new features that significantly 

challenge LiDAR navigation and mapping. These features 

include (taking the Livox MID-40 LiDAR as an example) a 

small FOV (field of view), irregular scanning patterns, non-

repetitive scanning, and motion blur [15]. 

The Loam-Livox software suite was specifically designed 

for processing data from the Livox LiDAR [16]. Its algorithm 

performs real-time mapping using only LiDAR data. Due to 

the limitations of the DJI Livox Mid-40 LiDAR itself and the 

fact that the Loam-Livox algorithm maps based on a single 

data source, the risk of drift is high in scenes where feature 

points are not abundant (degenerate scenes). 

This study further optimizes mapping methods with this 

software package, which we use in conjunction with an IMU, 

which compensates for self-motion distortion during LiDAR 

scans and reduces the occurrence of indoor drifts. The map 

derived from LiDAR through SLAM (Simultaneous 

Localization and Mapping) is divided into local and global 

maps, and an Octomap [17] representation scheme is 

introduced to reduce the data volume. 

 

 

2. LIDAR SELF-MOTION DISTORTION REMOVAL 
 

2.1 Self-motion distortion 
 

In previously proposed Loam-Livox software packages, 

motion drift generally occurs in indoor scenes, that is, in a 

degeneration environment with fewer feature points. When we 

conducted experiments on the basement floor of a building 

(Figure 1), the probability of such a drift problem was high 

during turns in the corridor by the LiDAR. LiDAR followed a 

nearly rectangular path along the corridor, eventually 

returning near the starting point. We used the LiDAR data 

obtained from the scan to construct a 3D model (Figure 2). 

 

 
 

Figure 1. Schematic diagram of floor 

 

 
 

Figure 2. Constructed point cloud map of floor 

 

The odometry data representing the scanned path were 

output (Figure 3). From the scan’s start, -13.4 m drift occurred 

on the X-axis, 3.5 m on the Y-axis, and -11.9 m on the Z-axis. 

We analyzed the cause of this drift. Indoor scenes (Figure 4) 

often suffer from too many similar planar features (especially 

in hallways) due to unchanging walls. When used for matching, 

these planar features cause misrecognition and drift in the 

odometry. 

 

 
(a) XYZ Third person perspective 

 

 
(b) XOY top view 

 

Figure 3. Odometry path of corridor 

 

 
 

Figure 4. Example of excessive similar planar features 

 

Another reason for the drift is that the FOV of a solid-state 

LiDAR is narrower than a mechanical LiDAR. For example, 

the FOV of the Livox Mid-40 used in this experiment was only 

38.4°. 

For most LiDARs, although the laser is transmitted and 

received quickly, each point from which the point cloud is 

comprised is not generated at the exact moment. In general, 

we output data accumulated within 100 ms (corresponding to 

a typical value of 10 Hz) as one frame of the point cloud. If the 

absolute location of the LiDAR body or the body where it is 
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mounted changes during this 100 ms, the coordinate system of 

each point in this frame point cloud will be changed. 

Intuitively, this frame of the point cloud data becomes 

"distorted" and will not correspond to the detected 

environmental information. This resembles taking a photo: if 

your handshakes, the photo will be blurry. This is the self-

motion distortion of LiDAR. 

In particular, when turning, errors occur in the positional 

relationship between the point clouds in the same frame owing 

to self-motion distortion. Errors also exist in the projection of 

the feature points at the same position in different frames. This 

situation reduces the number of reliable feature points, causing 

odometry that is prone to drift during LiDAR turns. 

 

2.2 Self-motion distortion removal by IMU 

 

To mitigate these challenges, we introduced an IMU to our 

experimental setup, aiming to correct for self-motion 

distortions. The integration of IMU data, sampled at a higher 

frequency of 200 Hz compared to the LiDAR's 10 Hz, allows 

for real-time adjustment of the LiDAR data, compensating for 

the device's movements and rotations. The confluence of 

LiDAR and IMU data stands as a cornerstone of our 

methodological approach, facilitating real-time adjustments to 

the LiDAR's positional data. 

First, the initial phase involves the synchronization of 

LiDAR and IMU data, coupled with the derivation of a 

transformation matrix. This matrix serves to reconcile the 

LiDAR and IMU coordinate systems, accommodating both 

rotational and translational movements of the LiDAR device. 

The establishment of this matrix is critical for the subsequent 

alignment of point cloud frames with the IMU's temporal data, 

ensuring accuracy in environmental representation. 

We must contend with three central coordinate systems: 

global, IMU, and LiDAR. A global coordinate system 

generally considers the starting point as the origin, whereas an 

IMU coordinate system changes from moment to moment and 

is purely an estimate of the IMU data. If the IMU coordinate 

system is known, the LiDAR coordinate system is also known. 

Therefore, a transformation matrix must be created to place 

both sets of data in the same coordinate system [18]. The 

positive direction is counterclockwise, rotating around the X-

axis by α, then around the Y-axis by angle β, and finally 

around the Z-axis by angle γ. Rotation matrix R is given by Eq. 

(1). We use Eq. (2) for brevity: 

 

𝑅 = 𝑅𝑧𝑅𝑦𝑅𝑧 

= [
cos 𝛽 cos 𝛾 sin 𝛼 sin 𝛽 cos 𝛾 − cos 𝛼 sin 𝛾 cos 𝛼 sin 𝛽 cos 𝛾 + sin 𝛼 sin 𝛾
cos 𝛽 sin 𝛾 sin 𝛼 sin 𝛽 sin 𝛾 + cos 𝛼 cos 𝛾 cos 𝛼 sin 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾

− sin 𝛽 sin 𝛼 cos 𝛽 cos 𝛼 cos 𝛽
] 

(1) 

 

𝑅 = [

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

]. (2) 

 

By measuring the relationship between the distance and 

angle, transformation matrix 𝑇𝐿
𝐼  from the LiDAR coordinates 

to the IMU coordinates becomes 

 

𝑇𝐿
𝐼 = [

𝑅11 𝑅12 𝑅13 𝑇𝑥

𝑅21 𝑅22 𝑅23 𝑇𝑦

𝑅31 𝑅32 𝑅33 𝑇𝑧

0 0 0 1

]. (3) 

 

Following matrix establishment, the correction of each 

point's motion within the LiDAR frame is executed through an 

error back-propagation method (Figure 5). This process entails 

pinpointing the IMU data correlating with the start and end 

times of each LiDAR frame. By applying the transformation 

matrix to adjust the point cloud data accordingly, distortions 

attributable to device movement are meticulously corrected. 

Integral to this correction process is the comprehensive 

integration of IMU data throughout the LiDAR scanning cycle. 

This step involves calculating frame velocity, displacement, 

and angular velocity integrals, thereby facilitating the precise 

projection of each point to its accurate position within the 

global coordinate framework. 

To elaborate on the computational steps involved in this 

process, Algorithm 1 presents a simplified pseudocode, 

summarizing the core logic behind the self-motion distortion 

correction using IMU data. 

 

 
 

Figure 5. Removing self-motion distortions with back-

propagation 

 

Algorithm 1 Self-Motion Distortion Removal using IMU 

Data  

Input: LiDAR scans, IMU data 

Output: Corrected point cloud 

 

1. Initialize Global, IMU, and LiDAR Coordinate Systems 

2. Calculate Transformation Matrix 𝑇𝐼
𝐿  for aligning IMU  

and LiDAR coordinate systems 

3. for each scan in LiDAR scans do 

4.     for each frame in scan do 

5.         𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑  = Get IMU timestamps for frame 

6.         Accel corrected = Remove gravity influence from  

        IMU data between 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑒𝑛𝑑  

7.         Calculate Rotation Matrix and Displacement from  

        accel corrected 

8.         for each point in frame do 

9.             Adjust point position using Transformation 

Matrix, 

            Velocity, and Displacement 

10.             Project adjusted point into final frame position 

under  

            LiDAR coordinate system 

11.         end for 

12.     end for 

13.     Combine adjusted frames into corrected point cloud 

14. end for 

15.  

 

Regarding the error back-propagation method, in detail, 

first using LiDAR data, locate the IMU data for the start time 

𝑇𝑘−1 and end time 𝑇𝑘 of a frame. As the LiDAR's timing might 
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not always align precisely with the IMU's timing, it is possible 

to find the nearest IMU timestamp. After removing the 

influence of gravity on the acceleration from each frame's IMU 

data, the actual acceleration of the IMU is obtained. 

The LiDAR’s frequency (10 HZ) is much lower than that of 

the IMU (200 HZ). One cycle (100 ms) of point cloud data 

generates approximately 20 IMU of data. Taking the angular 

velocity in one direction as an example, the IMU of data is 

integrated in Eqs. (4) and (5): 

 

𝛼𝑡 =
𝜔𝑡0 + 𝜔𝑡

2
(𝑡 − 𝑡0) (4) 

 

𝛼 = ∑ 𝛼𝑖

𝑛−1

𝑖=0

, (5) 

 

where, 𝛼𝑡 is the angular change at time 𝑡 relative to previous 

time 𝑡0 , 𝜔𝑡0 , and 𝜔𝑡  are angular velocities at the 

corresponding times, and n is the IMU data. The IMU rotation 

angle within one cycle is obtained by repeating the integration 

and accumulation in this manner. 

As in the above example, in Figure 5, the IMU data in 𝐼1~𝐼𝑘  

are integrated to obtain the frame velocity, the displacement, 

and angular velocity integrals. Based on the integration results, 

LiDAR data 𝑃𝑗 at any time in this frame are back-calculated 

into transformation matrix 𝑇𝐼𝑗

𝐼𝑘  for end time 𝑃𝑘. 

Each point belonging to time 𝑇𝑘~𝑇𝑘ー1 is projected onto the 

LiDAR coordinate system at the end time of the frame in 

question. The point cloud from the coordinate transformation 

becomes 

 

𝑃𝑓𝑗

𝐿𝑘 = 𝑇𝐿
−1𝐼 𝑇𝐼𝑗

𝐼𝑘 𝑇𝐿
𝐼 𝑃

𝐿𝑗
𝑓𝑗

, (6) 

 

where, 𝑃
𝐿𝑗

𝑓𝑗
 and 𝑃𝑓𝑗

𝐿𝑘  are the point clouds at times j and k in 

frame f of the LiDAR coordinate system; 

𝑇𝐿  𝐼  is the transformation matrix from the LiDAR 

coordinates to the IMU coordinates, and; 

𝑇𝐼𝑗

𝐼𝑘  is the transformation matrix from the IMU coordinates 

at times j to k. 

In this way, each point in the frame is projected under the 

LiDAR coordinate system at the final time to correct for such 

self-motion distortions as rotation in the LiDAR data. 

 

 

3. DATA PROCESSING AND STORAGE 

 
3.1 Data filter 

 
The obtained point cloud data were processed using the 

following three primary filters: 

(1) A radius outlier removal filter [19] removes the outliers 

when the number of people within a specific search radius is 

fewer than a given quantity. This method has a good removal 

effect on some floating isolated or invalid points in the original 

point cloud data. 

(2) A conditional removal filter, based on such conditions 

as point coordinates (x, y, z), removes or retains values for a 

given spatial range. The point cloud data are filtered based on 

the actual size of the scene and the height that makes sense of 

the navigation. This effectively reduces the amount of data 

required to retain just the meaningful points for generating a 

navigation map. 

(3) A ground filter searches for and removes the ground 

surfaces based on the height, the tilt angle, and other 

parameters. It processes large contiguous planes with low 

heights and small horizontal undulation angles. These points 

are stored as ground-point clouds. Issues other than the 

ground-point cloud are used to generate navigation maps. If 

the original point cloud data, including the ground, are used as 

they are, the ground will also be recognized as an obstacle, and 

the entire map will be covered. 

These processes produce point cloud data with noise and are 

ground-removed at a specific altitude. The resulting data are 

stored as a map in a 3D map called Octomap. 

While filtering and storing the data in the Octomap, the 3D 

map is divided into ground and non-ground portions. The latter 

is cropped to an appropriate height and projected onto the 

XOY plane, producing a 2D map with three-dimensional 

occupancy information for planning evacuation routes. 

 

3.2 Data storage 

 

SLAM’s purpose is twofold: to estimate a robot's trajectory 

and to create an accurate map. Maps can be represented in 

various ways, including as feature points, grids, or topological 

depictions. 

The map format used for LiDAR SLAM is primarily a point 

cloud map, which stores such information as spatial point 

coordinates and reflection intensity. However, this format 

suffers from two obvious flaws. 

(1) The map format needs optimization for efficiency. 

Owing to their high-fidelity characteristics, point cloud maps 

inherently encapsulate an extensive range of details, thereby 

producing datasets of considerable magnitude. Post-filtering, 

the resultant PCD files, which serve as the primary data 

storage medium, still necessitate substantial storage capacity. 

This concern transcends mere physical storage implications; it 

profoundly impacts data transfer latency, computational 

processing velocities, and the efficacy of real-time operations. 

Importantly, not all captured details are universally relevant 

across applications. For instance, the granularity of point cloud 

maps can lead to the inclusion of inconsequential anomalies 

such as subtle carpet textural variances or minor wall 

imperfections. In numerous application scenarios, these 

superfluous details neither augment the map's utility nor its 

interpretability, but rather exacerbate storage demands. 

Consequently, there emerges an unequivocal imperative to 

refine and recalibrate the format, ensuring it retains only 

indispensable information, thus promoting optimized storage 

and expedited computational processing. 

(2) Navigational Impediments in Point Cloud Maps: One of 

the principal objectives of a map within robotic applications is 

to facilitate effective navigation, guiding an autonomous agent 

from one point to another. However, the inherent structure of 

point cloud maps poses significant challenges in this regard. 

These maps, in their raw format, do not provide explicit 

delineations between navigable and non-navigable regions. 

Consequently, for a robot to achieve comprehensive and safe 

navigation, it requires more than the mere spatial data present 

in a point cloud. 

Octree [20] is a method of dividing a three-dimensional 

space into eight recursive blocks, each of which is called an 

octant. Each block contains a number that describes whether it 

is occupied. In the simplest case, it can be represented as either 

0 or 1. Typically, the probability of being occupied is 
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expressed as a number between 0 and 1. 

Octomap’s advantage is that it is a complete 3D model that 

is updatable and compact. If all the leaf nodes are occupied, 

unoccupied, or undetermined, their parent nodes can be cut. In 

other words, unless a particular need exists for a more detailed 

structure description (leaf nodes), coarse block information 

(parent nodes) is sufficient. 

Octomap resolves the noise and movement effects on the 

map by providing a probabilistic representation of the current 

node state. 𝑡 = 1, ..., 𝑇, the observed data are 𝑧1, ..., 𝑧𝑇, and the 

information recorded by the 𝑛-th leaf node is represented in 

Eq. (7): 
 

𝑃(𝑛|𝑧1:𝑇) = [1 +
1 − 𝑃(𝑛|𝑧𝑇)

𝑃(𝑛|𝑧𝑇)
×

1 − 𝑃(𝑛|𝑧1:𝑇−1)

𝑃(𝑛|𝑧1:𝑇−1)

×
𝑃(𝑛)

1 − 𝑃(𝑛)
]

−1

. 

(7) 

 

Applying the following logit transformation of Eqs. (7) to 

(8), we obtain Eq. (9): 
 

𝑝 = 𝑙𝑜𝑔𝑖𝑡−1(𝛼) =
1

1 + exp(−𝛼)
, (8) 

 

𝐿(𝑛) = log [
𝑝(𝑛)

1 − 𝑝(𝑛)
]. (9) 

 

Converting the solution in the probability space into real 

coordinate space yields Eq. (10): 

 

L(𝑛|𝑧1:𝑇) = L(𝑛|𝑧1:𝑇−1) + L(𝑛|𝑧𝑇). (10) 

 

In other words, newly scanned information is directly added 

to the existing data. When using a 3D map for navigation, a 

threshold value is set for occupancy probability 𝑃(𝑛|𝑧1:𝑇) . 

Voxels that reach this threshold are considered occupied. 

Otherwise, they are deemed vacant, and two discrete states are 

defined. 

As depicted in Figure 6, the maps are categorized into local 

and global types. The former focuses on nearby feature point 

information, while the latter encompasses every point 

collected during the execution of SLAM. Our SLAM system 

adeptly combines local and global mapping to bolster real-

time localization and comprehensive environmental modeling. 

Crucially, this integration is essential for realizing high-

precision mapping, all while efficiently managing the 

computational load. 

Local Mapping Strategy: Constructed in real-time from 

LiDAR data, local maps provide detailed information on the 

immediate vicinity's feature points. These maps are 

dynamically refreshed as the robot traverses the environment, 

guaranteeing updates at a high frequency that is critical for 

prompt pose estimation and swift adaptation to environmental 

changes. 

Global Mapping Integration: Compiling every data point 

acquired through the SLAM process, the global map forms an 

exhaustive and intricate model of the environment. Although 

the global map's comprehensive nature offers an extensive 

spatial context, direct positioning within this map requires 

significant computational resources due to its data volume. To 

enhance system performance, updates to the global map occur 

at lower frequencies, effectively minimizing the 

computational demand. 

Combining Local and Global Maps: The synergy between 

local and global maps is established through a filtration 

process that seamlessly integrates real-time local map updates 

into the global map structure. This process involves: 

(1) Filtering: A selection of the most pertinent features from 

the local maps is filtered for matching. This step ensures the 

conservation of computational resources by focusing on the 

most relevant data points for global map updates. 

(2) Saving to Octomap: The filtered local maps are then 

methodically incorporated into the Octomap, which serves as 

our global map repository. This process is designed to 

maintain the global map's continuity and accuracy over time. 

(3) Conversion to a Flat Map: For practical applications, 

such as evacuation route planning, the global map's detailed 

three-dimensional information is converted into a more 

accessible flat map. This conversion involves projecting the 

processed global map data onto the XOY plane, resulting in a 

2D representation that retains critical occupancy information. 

The combination strategy ensures that the system maintains 

a real-time understanding of the environment through local 

maps while gradually building a comprehensive global map 

that encapsulates the entirety of the scanned area. This 

approach enables the system to provide accurate navigation 

and mapping capabilities essential for applications that require 

precise environmental awareness and path planning, such as in 

the context of disaster response or autonomous navigation. 

 
 

Figure 6. System flow chart 
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4. ALGORITHM VERIFICATION 

 

4.1 Experiment that removes self-motion distortion 

 

Next, we validated our algorithms and systems. An 

NVIDIA Jetson AGX Xavier was used in the experiments. The 

Jetson AGX Xavier is the world's first computer designed for 

autonomous machines, and the performances are needed for 

next-generation robots. 

We used a WIT Motion WT901C IMU module. WT901C is 

an IMU sensor called the Attitude and Heading Reference 

System (AHRS), which measures the angle, angular velocity, 

acceleration, and magnetic field along three axes. 

We used a 3D printer to create a container with the 

necessary hardware, including a Livox Mid-40 and a Jetson 

AGX Xavier for indoor and outdoor measurements. 

To evaluate the self-motion distortion when using the IMU, 

we rescanned the previously scanned basement floor of a 

building, an area wherein odometry drift had been observed, 

and compared the obtained results with those in Section 2. The 

constructed 3D model is shown in Figure 7. 

The odometry data representing the scanned path were 

output, as shown in Figure 8, and Figure 9 shows the change 

of the coordinates with an increasing frame number in each 

XYZ axis. The dotted line shows the data without the IMU, 

and the solid line shows the data after the self-motion 

distortion correction. 

 

 
 

Figure 7. Comparison of constructed point cloud images 

 

 
 

(a) XYZ Third person perspective (b) XOY top view 

 

Figure 8. Odometry path of basement floor 

 

Our experimental results show that the algorithm more 

effectively corrects the self-motion distortion than the original 

Livox-Loam algorithm. In particular, no drift occurred during 

the rotation. All the rotation angles were close to 90°. The 

odometry returned near the starting point, an outcome that 

agrees with the experimental results (the starting and ending 

points do not coincide exactly). The odometry path is 

projected onto a map (Figure 10). Although some errors 

remained, the map’s accuracy showed a good fit. 

 
 

Figure 9. Odometer data on X-, Y-, and Z-axes  

 

 
 

Figure 10. Projection of odometry path on map 

 

The endpoint coordinates show the following displacements 

from the starting point of the scan: -1.165 m on the X-axis, 

1.108 m on the Y-axis, and 0.52 m on the Z-axis. The error 

was significantly reduced compared to the data without IMU: 

-13.4 m on the X-axis, 3.5 m on the Y-axis, and -11.9 m on the 

Z-axis. 

Our investigation centers on the utilization of Solid-State 

LiDAR, integrated with an Inertial Measurement Unit (IMU), 

to enhance the mapping accuracy in such challenging 

environments. The crux of this method lies in its ability to 

compensate for the inherent indoor scene degradation through 

sophisticated data processing techniques, which correct self-

motion distortion and significantly improve mapping fidelity. 

The methodology's efficacy is demonstrated through a 

comparative analysis of the Z-axis coordinate data, obtained 

from scans performed across the same floor level, thereby 

ensuring that the Z-axis coordinates are expected to remain 

constant, highlighting the algorithm's ability to maintain 

consistent height measurement despite the dynamic indoor 

environment. 

The comparative analysis (Table 1) reveals that the 

algorithm incorporating IMU data exhibits superior 

performance in maintaining the integrity of the Z-axis 

measurements, as evidenced by the mean and standard 
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deviation values of the Z-axis coordinates. Specifically, the 

mean Z-axis coordinate obtained with IMU integration 

(0.306158 meters) starkly contrasts with that derived from the 

Loam-Livox software without IMU assistance (-3.8111 

meters), indicating a marked improvement in vertical axis 

stability and accuracy. Furthermore, the standard deviation 

with IMU (0.194372) is significantly lower than that without 

IMU (4.148744), demonstrating the enhanced precision and 

robustness of our method in mapping the horizontal plane. 

This comparative analysis not only validates the 

effectiveness of integrating Solid-State LiDAR with IMU for 

indoor mapping but also highlights the algorithm's ability to 

navigate and accurately map spaces where conventional 

methods may falter due to feature degradation or 

environmental uniformity. Such a detailed quantitative 

analysis reinforces the novelty and utility of our approach in 

advancing robotic navigation and mapping technologies, 

especially in indoor degradation scene compensation. 

 

Table 1. Z-axis coordinate data analysis 

 
 Our Method Loam-Livox 

Average 0.306158 -3.8111 

Standard error 0.012987 0.2772 

Median 0.35587 -2.29935 

Standard deviation 0.194372 4.148744 

Dispersion 0.037781 17.21208 

Range 0.72491 12.36419 

Minimum -0.08432 -11.9262 

Maximum 0.640587 0.437986 

Total 68.57932 -853.686 

Number of data 224 224 

 

4.2 Experiment of Octomap algorithm  

 

We conducted experiments using the Octomap algorithm to 

create a 2D map of a subway station’s (Figure 11) point cloud 

data. The point cloud data for this station is sourced from a 

public dataset provided by the Tokyo Metropolitan 

Government [21]. As detailed in Section 3, the station’s PCD 

file (Figure 12) was converted to an Octomap file, saved in 

different resolution settings, and the amount of data, file size, 

etc. were recorded. 

We tested the impact of different resolutions on the file size 

reduction using Octomap. The higher the resolution, the 

smaller is the littlest block, and intuitively the map can be 

displayed more finely. We set six conditions (Figure 13) under 

resolutions of 0.2, 0.4, and 0.6 m. The experiments were 

conducted separately with and without the ground, and we 

recorded the number of data, file size, etc. The experiment 

results are shown in Table 2. 

 

 
 

Figure 11. Subway station’s 3D map 

 

 
 

Figure 12. PCD file of subway station 

 

 
 

Figure 13. Octomap tested in six different conditions 

 

Table 2. Test that converted PCD file to Octomap file 

 
 Ground No. Resolution Conversion Time [s] Points File Size [Mb] Ratio to PCD File 

PCD file     990,768 27.5 100.0% 

Octomap file 

Remove 

ground points 

➀ 0.2 24 361,456 10.23 37.2% 

➁ 0.4 21 73,454 2.08 7.6% 

➂ 0.8 19 16,141 0.48 1.7% 

Keep 

ground points 

➃ 0.2 95 375,338 10.24 37.2% 

➄ 0.4 89 85,387 2.34 8.5% 

➅ 0.8 87 19,329 0.55 2.0% 
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The last column of Table 2 shows that the file size was 

significantly reduced using Octomap, and as shown in the 

result of No.2 (with ground removal and a resolution of 0.4), 

both file size reduction and a certain level of guaranteed 

accuracy were achieved. In this scenario, the experimental 

results are excellent. The algorithm’s real-time performance 

can be further improved by setting an appropriate resolution 

depending on the size of the scene. 

 

 

5. CONCLUSIONS 

 

Our study embarked on foundational research dedicated to 

the development of an evacuation guidance support robot, 

exploring a methodology for mapping the 3D spatial 

information of evacuation routes, while also tackling the 

challenge of reducing data volume. We refined the algorithm 

specifically for solid-state 3D-LiDAR characterized by its 

non-repetitive scanning patterns, thereby enhancing the 

practical deployment of this innovative solid-state LiDAR 

technology. 

The cornerstone of our innovation is the refinement of the 

Loam-Livox algorithm, enhanced by integrating an Inertial 

Measurement Unit (IMU). This integration significantly 

reduces self-motion distortion and drift, particularly in 

environments with limited structural features, thereby 

improving the precision of feature point localization and 

enhancing the robot’s navigation and mapping capabilities for 

evacuation routes. 

To manage the extensive point cloud data from LiDAR 

scans, we devised a strategy segregating the data into local and 

global maps. This structure, employing Octomap for global 

data storage, streamlines data processing and elevates the 

efficiency of producing usable evacuation maps. Our method's 

adaptability allows for resolution adjustments tailored to 

specific scenarios, showcasing a balance between detail and 

computational efficiency. 

Despite its advancements, our study is not without 

limitations, especially regarding its primary focus on indoor 

environments and the complexities introduced by integrating 

IMU and LiDAR technologies. These areas present avenues 

for future research, including extending the technology to 

varied environments and exploring sensor fusion and machine 

learning to improve mapping accuracy and usability. 

In conclusion, our study offers several contributions 

towards evacuation guidance, providing a solution to mapping 

challenges in disaster scenarios. By integrating advanced 

sensor technologies and data processing algorithms, we 

highlight the potential of such innovations to significantly 

impact safety and security engineering, fostering 

advancements in disaster response and preparedness. 
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