
Security Surveillance Using UAVs and Embedded Systems in Industrial Areas

Abdelkader Mezouari1* , Mohamed Benaly1 , Hajar El Karch2 , Hamad Dahou1 , Laâmari Hlou1 ,

Rachid Elgouri2

1 Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail

University, Kenitra 14000, Morocco
2 Laboratory of Advanced Systems Engineering, National School of Applied Sciences, Ibn Tofail University, Kenitra 14000,

Morocco

Corresponding Author Email: abdelkader.mezouari1@uit.ac.ma

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140207 ABSTRACT

Received: 25 May 2023

Revised: 2 December 2023

Accepted: 11 December 2023

Available online: 26 April 2024

This paper proposes a novel security surveillance Unmanned Aerial Vehicle (UAV) that

can handle security in large industrial areas with increased surveillance efficiency. Our

basic idea is that Unmanned Aerial Vehicle sighting can be treated as a motion detection

problem in the surveillance area by detecting position and type simultaneously when the

Unmanned Aerial Vehicle flies in the 360° detection area. To reach our target, this paper

proposes a mathematical approach based on camera calibration, ordinal distortion

correction, and three-dimensional reconstruction that can help us determine the exact

position of a moving object in the monitored area. It is also important to recognize

movements and their character and to determine their position on the ground, all of this

must be done in Real-time with short processing times. The outcomes of our study

demonstrate that system processing average duration and processing system consumption

have slightly decreased with the utilization of the Raspberry Pi+VPU system compared to

alternatives such as the Jetson Nano, Raspberry Pi 4 boards, clusters, and personal

computers. This underscores the effectiveness of our proposed system in terms of

processing efficiency and resource utilization.

Keywords:

computer vision, embedded systems,

industrial safety, motion opposition, object

detection, unmanned aerial vehicle (UAV),

360° detection, security

1. INTRODUCTION

In the last decade, drones have been widely changing and

their usage has steadily increased with each passing year in

many application domains such as navigation, military,

delivery, topography, etc. In various fields, Drones have

exceeded expectations in performance, accuracy, and the tasks

assigned to them. Therefore, based on our approach, we can

exploit the drone for surveillance of our areas with a

determinant algorithm. For surveillance purposes to provide

safe and secure industrial facilities. Surveillance systems

proposed here include secure real-time photography, motion,

object detection, camera calibration, and tracking of the

object's trajectory using coordinates constructed from the 3D

coordinates of a calibrated image inserted by three drone

cameras, relying solely on ground-based surveillance

measures limits visibility, especially in sprawling industrial

complexes with complex layouts. Blind spots and obscured

areas can easily become vulnerable points for unauthorized

access or security breaches. hence the need to develop

advanced surveillance systems attached to UAVs, such as the

system proposed in this paper.

Motion and object detection is an important security

research and surveillance application area. With the presence

of neural network technology, it is being used more and more

in various fields of application. Peculiarly in security, motion,

and object detection have a role. Several approaches have been

suggested in object detection. Lightweight feature-enhanced

convolutional neural network methods are used for low

altitude and small size [1] to solve the problem of real-time

flying and to improve guidance information to suppress black-

flying UAVs. A variety of approaches [2-7] to enhance and

improve the appearance of objects and increase the precision

marge of the algorithm used based on deep neural network

method (Faster R-CNN, SSD, YOLO, LSL\-Net....), the

difference between these methods is processing architecture.

As for the areas of application [8-15], (underwater, robotic arm,

tracking.), researchers are limited to developing algorithms to

increase quality only in the field in which they are applied, as

they sometimes become unsuitable in other areas.

Our drone uses a three-camera to take 360-degree

photography instead of a 360 camera. A 360-degree camera

could capture all information in every degree that it sometimes

lacks focus.

One of the biggest challenges is the large barrel distortion

caused by the ultra-wide angle fisheye lens. Even the 360-

degree camera is not versatile compared to traditional cameras.

For example, all the photos taken with a 360-degree camera

can look too similar, which is a problem for us since we need

to detect the movement of an object in an area. Detecting the

type of object becomes more complicated and can be

catastrophic. Also, it is very difficult to correct radial

International Journal of Safety and Security Engineering
Vol. 14, No. 2, April, 2024, pp. 387-397

Journal homepage: http://iieta.org/journals/ijsse

387

https://orcid.org/0000-0001-5389-2450
https://orcid.org/0000-0002-2586-4839
https://orcid.org/0000-0001-7775-9830
https://orcid.org/0000-0001-6515-640X
https://orcid.org/0009-0004-0925-774X
https://orcid.org/0000-0001-6006-8486
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140207&domain=pdf

distortions within 360 degrees. The wide-angle camera we use

with drones is severely affected by radial distortion, so

correcting radial camera distortion is an important step toward

100% object coordinate accuracy. Nowakowski and Skarbek's

method [16] uses a Homography of Central Points for Lens

Radial Distortion Calibration.

However, the method used to determine the center of

distortion gives accurate results with no errors. Zhu et al. [17]

methods use QR Factorization to correct the radial distortion

in a non-iterative way, which can be faster but misses some

pieces of the picture. Henrique Brito et al. [18] methods

propose Self-Calibration Based on observing straight lines

through the distortion center. Zhang et al. [19] propose a new

robust line-based distortion estimation method to correct

radial distortion.

Cho et al. [20] propose the Automatic Estimation of the

Distortion Coefficient method, which performs well in radial

distortion estimation for more correction, the algorithm needs

to be repeated to satisfy the termination condition. Kim et al.

[21] solve radial distortion compensation by Illuminating the

epipolar lines with a Projector [22].

Propose using a cascaded one-parameter split model that

requires execution time for each block with a repetitive

process to achieve a satisfactory result. The method developed

by Huang et al. [23] is founded on the principles of direct

linear transformation. Liao et al. [24] propose an estimation

approach for distortion rectification based on the Training

Process of the Proposed Network algorithm that contains two

loops of repetition inside each other to increase the result

performance.

In our situation, in the presence of a drone with three-

camera support, things get different, and it is attributed to the

drone's movement. Therefore, the Euler coordinates change

every moment, making it difficult to determine the actual

coordinates.

Huu et al. [25] propose introducing two fixed camera

models to calculate the distance between the camera system

and the installation.

In this research, we provide a mathematical model to correct

camera distortion and identify genuine object coordinates in

real-time. Single-board computers are preferred in these

circumstances. These single-board computers have

microprocessors, memory, input/output, and other useful

components and are constructed on a single circuit board [26].

Due to the possibility of combining different fields of

technology, single-board computer systems with a wide range

of applications and a low price are often chosen [27].

AI applications for single-board computers have increased

due to technological advances and the approach to PC

performance. The use of deep learning, one of the sub-

branches of artificial intelligence [28-37] documents [38, 39],

and autonomous/mobile systems [40-43] in single-board

computers have also increased as some single-board

computers support both CPU and GPU.

The rest of the work can be summarized as follows: in the

second section, an overview of the work that describes the

basic concept of the surveillance system, and in section III, the

proposed research work is explained. In the next section, we

discuss experimental results. Finally, in section V, we

conclude the proposed research work and suggest some future

directions.

2. OVERVIEW

In this work, we propose our SoC-based computing system

in which the CPU performs multitasking between inputs, large

processing units, and outputs. We optimized motion detection

and object detectors forever after calculating the center of

mass coordinates and implementing them on different

embedded systems. We found the best processing time using

our proposed system that can perform a better result with low

energy consumption, increasing the flying time of the UAV.

Figure 1 shows an overview of the proposed surveillance

system. As shown in the figure, the autonomous drone records

video data with three cameras tilted at 130 degrees to each

other. Each camera recognizes the scene in its field of view. A

specific processing system processes this extracted

information (frame). For each camera, there is a sub-algorithm

in the overall algorithm system.

Figure 1. Proposed surveillance system overview

3. METHODOLOGY

The proposed method consists of eight main processing

steps for efficient drone operation. Initially, three cameras

connected to the drone record all the scenes within their

respective fields of view. Subsequently, noise-removing

techniques to enhance data quality are applied to the stream.

The third stage involves motion detection in the recorded

scenes, identifying areas with movement. Once motion is

detected, the system proceeds to generate a scan of the affected

region in the fourth stage. In the fifth step, the method

identifies the nature of objects within the scanned area,

enabling the calculation of their center of mass coordinates.

These center of mass coordinates serve as a crucial input for

the sixth stage, where the actual (x, y, z) coordinates are

computed. These real-world coordinates are saved in a

structured CSV file within the system's database. Finally, the

results are displayed on the supervisor's screen in the last step,

providing valuable insights and actionable information.

Figure 2 represents the eight-step process that ensures the

effective use of the drone system for various applications,

including surveillance and data collection.

388

Figure 2. Approach overview

3.1 Frame extraction

Streaming from three cameras or real-time video collection

(Figure 3), which can reflect a series of N images and stand for

by S= (fs1; fs2; …; fsN). Given the build quality, it's better to

use a triple camera instead of a 360-degree camera. Because

RGB represents the red, green, and blue components, each

video image is recognized as a color image. Therefore, the

images are periodically moved to the next step.

Figure 3. Three-camera position

3.2 Motion detection

Motion detection serves a variety of functions in this

application. After we have detected a movement of one of the

three cameras, we immediately start the security process.

Real-time capturing can be treated as a set of frames. Here,

we compared different frames to the first frame using the

frame differencing technique. Figure 4 shows the motion

detection algorithm used for each frame.

We need to look at some tiny, moving fragments of the

picture, not the whole. This will reduce our drone's energy and

speed up our processing system.

3.3 Object detection

Within Deep Learning, the sub-discipline (Object Detection)

involves this application to identify objects through real-time

video. Essentially expressed, this detection approach aims to

locate objects in the frame (object localization), which will

help us to track the item in the following processing step.

Figure 4. The motion detection algorithm

For this method, you need image processing algorithms to

verify image content. We must follow several guidelines

offered by the manufacturers (Intel, INVIDIA, Raspberry Pi,

etc.) to implement our approach on various hardware. These

guidelines enable us to apply these AI models to our UAV

application. For instance, the OpenVINO toolkit offers a

collection of pre-trained Intel models that can be employed for

software development, learning, and demo purposes.

Various detection models can detect a set of the most

common objects. Object detection with SSD-MobileNet v2

framework is widely used for real-time object detection. For

the surveillance area, MobileNet V2 is the network used for

the feature extractor and is the object localizer. Since most

389

networks are SSD-based and offer a reasonable adjustment

between efficiency and performance, we decided to use

Mobile Networking SSD v2 for the object detection part.

Networks that detect objects and offer the option of higher

accuracy/broad application at the cost of lower performance

can be expected to detect objects of the same type more exactly.

3.4 Intensity weighted centroiding coordinates of moving

objects for accurate area tracking

Once we have the position of a moving object in the image,

we use intensity weighted centroid (IWC) to detect it.

The center of gravity (CoG) is the basis of the IWC

calculations [44]. CoG is the same calculation as in physics

but only applied to the image Figure 5.

(𝑥𝑔, 𝑦𝑔) = [
∑ 𝐼𝑖𝑗

2 𝑥𝑖𝑗𝑖𝑗

𝐼𝑖𝑗
,
∑ 𝐼𝑖𝑗

2 𝑦𝑖𝑗𝑖𝑗

𝐼𝑖𝑗
] (1)

Figure 5. Object intensity weighted centroiding coordinates

3.5 Determination of the correct real coordinates of a

moving object

As soon as IWC coordinates are identified, we calculate real

(X,Y,Z) coordinates. For this, we use the pinhole camera

model [45]. This model uses perspective transformation to

project 3D points onto the image plane to create a view of the

scene. Figure 6. The following equation, Eq. (2), can give us

the actual coordinates [45-48].

𝑥𝑔 = 𝐴[𝑅|𝑇]𝑀 (2)

where,

• xg: 3-D IWC Coordinates

• A: Camera Matrix or a Matrix of Intrinsic Parameters

• [𝑅|𝑇]: Rotation-Translation Matrix

• M: 3-D Real Coordinates

[

∑ 𝐼𝑖𝑗

2 𝑥𝑖𝑗𝑖𝑗

𝐼𝑖𝑗

∑ 𝐼𝑖𝑗
2 𝑦𝑖𝑗𝑖𝑗

𝐼𝑖𝑗
1]

= [
𝑓𝑥 0 𝐶𝑥

0 𝑓𝑦 𝐶𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑡1
𝑡2
𝑡3

] [

𝑋
𝑌
𝑍
1

] (3)

As we know, the drone does not stay in its initial position,

and there is an infinitely small shift δψ between the two frames,

Figure 6 and Figure 7, performed at any instant in our

calculation Figure 8. We can straighten the difference in the

following Eq. (4).

𝑥𝑔′ = 𝐴[𝑅|𝑇]𝑀′ (4)

where,

• 𝑀′ = 𝑀 + δψ

• 𝑥𝑔
′ = 𝑥𝑔 + δ𝑥𝑔

• δψ = (δX, δY, δZ, 1)

• 𝛿𝑥 = (𝛿𝑥𝑔, 𝛿𝑦𝑔 , 1)

Figure 6. Optical schematic of the object coordinate

Figure 7. Drone displacement explanation

Figure 8. Optical schematic of infinitesimal displacement

explanation

390

For camera calibration and distortion correction

applications, these distortions must be corrected first. To

determine these parameters, we provide some sample images

of a known pattern (such as a chessboard). We find some

specific points (square corners on the chessboard). We have its

coordinates in the real world, and its coordinates in the image.

With these data, some mathematical processes are in the

background to get the distortion coefficients.

4. SYSTEM PROCESSING ARCHITECTURE OF THE

IMPLEMENTATION

To figure out our approach, many processing systems can

be exploited, but we need to find a compatible processing

system with our surveillance system. There are two main

factors to consider when choosing the suitable device for us,

Suitable energy System and processing time.

4.1 CPU: Parallel computing

The "core," or heart of the CPU, is where all computing and

reasoning takes place. A core normally runs through a process

known as the "instruction cycle," in which instructions are read

from memory, converted to processing language, and then

executed through the core's logical gates (execute). Initially,

all processors were single-core, but as multi-core processors

became more common, computing power increased, and

parallel processing arrived Figure 9.

Figure 9. CPU internal architect

Most parallel computing hardware is often housed in a

single data center with multiple processors (or cores within a

processor) advanced over a server rack. The application server

distributes compute requests in small chunks, subsequently

executed concurrently on each server.

Security surveillance using UAVs and embedded systems,

CPUs are suitable for managing lower-complexity tasks like

data preprocessing, basic motion detection, and simple object

identification.

4.2 CPU and GPU computing

Graphical processing is one of these activities, typically

regarded as one of the CPU's more difficult processing tasks.

Because of the complexity of the solution, technology now has

uses far beyond graphics. The difficulty in processing graphics

is that, to render properly, visuals require complicated

mathematics, which must be computed in parallel. For

instance, a graphically demanding computer game may

simultaneously have hundreds or thousands of polygons on the

screen, each with its movement, color, lighting, and other

characteristics. Such a workload is not designed for CPUs.

Graphical processing units (GPUs) are used in this situation.

GPUs perform similarly to CPUs, having cores, memory,

and other parts. GPU acceleration emphasizes parallel data

processing with a high number of cores rather than context

switching to manage many activities. Typically, each of these

cores is less powerful than the CPU core. Additionally, GPUs

are frequently incompatible with various hardware APIs and

homeless storage. They perfectly support the simultaneous

transfer of many processed data.

The GPU takes batch instructions and transmits them at

high volume for faster processing and display instead of

switching between graphics processing tasks Figure 10.

Figure 10. CPU and GPU internal architect

With GPUs, they can simultaneously increase application

data throughput and the number of active computations.

Because of parallelism, the GPU can do more work than the

CPU in a given period.

GPUs excel in parallel processing and are well-suited for

tasks that require high-throughput computations, such as

image and video processing. For security surveillance, GPUs

are advantageous in scenarios that involve real-time object

detection, tracking, and advanced image analysis.

4.3 Cluster computing

In cluster computing, a group of closely related or ad hoc

computers work together to function as a single unit. The

collective action of connected computers creates the idea of a

single system. Typically, fast local area networks are used to

connect the clusters (LANs). Cluster computing offers a great

low-cost alternative to huge server or mainframe platforms.

The demand for content criticality is met, and services are

processed more quickly Figure 11.

Many businesses use cluster computing and IT companies

to improve scalability, availability, processing speed, and

resource management at a reasonable cost. It guarantees

constant access to computing power. It offers a unique,

superior approach to designing and operating high-

performance parallel systems not dependent on specific

hardware dealers or their product line choices [49]. However,

clusters might be less suitable in the context of UAVs due to

their inherent resource constraints and the need for real-time

processing.

391

Figure 11. Cluster internal architect

4.4 Vision Processing Unit (VPU) computing

A later class of microprocessors called the Vision

Processing Unit (VPU) is a special type of AI accelerator

designed specifically to speed up operations that use computer

vision. The new Vision Processing Unit (VPU) is a quick

500MHz DSP (ISP) linked with the Image Signal Processors

Figure 12.

Figure 12. Vision Processing Unit (VPU) internal architect

Real-time Depth of Field is just one of the fascinating

camera functions. It offers a dedicated processing platform for

freeing up the CPU and GPU to conserve power and

computing resources.

The platform provided by VPU allows companies to

differentiate their products by customizing camera features.

It is a specialized hardware that supports cameras and can

carry out real-time processing tasks. In the past, these were

often passed on to the CPU or GPU, but the VPU consumes

only a fraction of the power. The VPU can still be used alone

or in conjunction with the CPU/GPU in a truly heterogeneous

computing environment on the same memory subsystem for

complex multi-application or multi-function activities.

For security surveillance using UAVs, VPUs are highly

suitable as they provide efficient and fast processing of visual

data. They are particularly valuable for real-time object

detection, tracking, and other computationally intensive vision

tasks. VPUs optimize power consumption while delivering the

required processing power for surveillance applications,

making them well-suited for embedded systems on UAVs.

In summary, as shown in Table 1, while each architecture

has its strengths, a VPU emerges as a promising option for

security surveillance using UAVs and embedded systems. It

offers a well-balanced combination of high processing speed,

power efficiency, real-time capabilities, and accuracy, making

it suitable for real-time object detection, tracking, and image

analysis-all essential for effective security surveillance

applications.

Table 1. The key attributes of each embedded system

Attribute CPU GPU Cluster VPU

Processing

Speed
Moderate High High High

Power

Efficiency
Good Moderate High Good

Precision/

Accuracy
Moderate High High High

Parallel

Processing
Limited Excellent Excellent Limited

Real-Time

Capability

Yes

(For some)
Yes Possible Yes

Scalability Limited Moderate High Limited

Portability Yes No No Yes

Cost Affordable
Moderate to

High
Variable Moderate

Hardware

Integration
Common Specialized Variable Specialized

Suitable

Application

Basic

processing,

Coordination

Real-time

object

detection,

tracking

Large-scale

data

processing

Real-time

image

analysis

object

detection

392

5. SYSTEMS PERFORMANCE AND EVALUATION

RESULTS

5.1 Algorithm

Algorithm 1

Begin:

Input: framei, framei+1

 Camera Matrix or a Matrix of Intrinsic Parameters

 Rotation-Translation Matrix [𝑹|𝑻]
 UAV Initial Position

 Initialize: framei=CaptureFirstFrame()

While (framei+1 captured)

 Save framei+1

 Pretreatment, noise removal, and filtering

 Match (framei+1 pixels) with (frame pixels)

 If (any motion is generated in the vision area)

 Localization of motion area

 Objection Identification in the Motion Area

Calculation of IWC coordinates (xg,yg) for every object in

the motion area

 Determination of δψ between frames and framei+1

 Calculation of the real coordinates xg'

 Save in .csv file (Time (t)||Object id||(xg,yg)||xg')

 Print real objects' trajectory

 Remove frame

 frame  frame i+1

 Else (capture new framei+1)

5.2 Implementation

The different hardware systems of processing system

architects discussed earlier are employed to figure out our

approach. Raspberry Pi 4b (Figure 13), jetson nano (Figure 14),

Raspberry Pi 4b+Intel Neural Compute Stick 2 (Intel NCS2)

(Figure 15), Personnel Computer (Figure 16), and Google

collab cluster to work out the performance of successively

Parallel CPU (CPU and GPU), Cluster, Vision Processing Unit

(VPU) computing. For model execution on Movidius NCS 2,

Intel provides an Opensource deep learning toolkit package,

OpenVINO. The OpenVINO toolkit allows us to deploy pre-

trained deep learning models, via a high-level Python

programming language Inference Engine API paired with

application logic. The model must be restructured into an

Intermediate Representation (IR) network, which can be

inferred by the Inference Engine. IR consists of two binary

files, which are.xml and .bin files. Our work is performed on

a Windows system for Personal computers and clusters, and in

Linux for other systems by using the model optimizer built-in

to the OpenVINO package.

System processing the average processing time and power

consumption are the most expensive parts that we have to

calculate. It depends on the parameters of the model and its

variables, including the number of layers, the number of cores,

the size of the core, and the activation function. Figure 17

shows the video processing results of a moving object in the

monitored area.

To measure processing time, the system uses a time stamp

at the start and end of each processing step. The difference

between the start and end time stamps provides the elapsed

time for that step. This time is measured in milliseconds. The

time module integrated into the Python programming

language was used in our case. Power is quantified using

sensors that measure components’ electrical current and

voltage. These measurements are then used to calculate power

consumption using the following formula:

𝑃[𝑊𝑎𝑡𝑡𝑠] = 𝑈 [𝑉𝑜𝑙𝑡𝑠] × 𝐼[𝐴𝑚𝑝𝑠] (5)

The workflow scenario included in this work concerns

motion detection and identification of moving vehicles in an

industrial complex and tracking their trajectory in an open

space using the different monitoring platforms. Input images

were captured from a video. The initial settings default to the

coordinates of the proposed drone system. As mentioned in

Table 1, the Raspberry Pi 4 has poor performance and high

power consumption. Jetson Nano and Cluster are proven to

have higher power sources and consumption due to their high

hardware capabilities. If we analyze the model classification

over time, we see that it happens faster (Raspberry Pi 4+VPU).

But as for the power consumption, we can see that (Raspberry

Pi 4+VPU) is a lower power consumption system. This system

is the preferred processing system of our surveillance system,

consumes less power and has a short average processing time.

NVIDIA Jetson Nano has adequate performance for our

surveillance UAV applications. For resolutions up to 4K, real-

time performance and energy consumption.

It uses CUDA “Compute Unified Device Architecture” an

architecture developed by NVIDIA for parallel calculations.

On the opposite side, some of the limits of this card have been

encountered, the setting up of the environment is rather

complicated in addition it does not support some last tools

versions.

Intel hardware offers high performance, deep learning,

simplified development, write once, and deploy anywhere.

Intel's generation of the OpenVINO toolkit makes accepting

and maintaining our approach easier.

Figure 13. Raspberry Pi processing system

Figure 14. Nvidia Jetson Nano processing system

393

Figure 15. (Raspberry Pi+VPU) processing system

Figure 16. Personnel computer processing system

Figure 17. The real trajectory of the moving object in the

surveillance area

By building an optimized network and controlling inference

processes on specific devices, we can use the runtime

(inference engine) to optimize performance. Optimization is

also done automatically by detecting peripherals, balancing

load, and inferring parallelism between CPU, GPU, and VPU.

The results prove that though system processing average

processing time and processing system consumption

marginally went down with (The Raspberry Pi+VPU) system,

we noticed a significant increase in (Personal computer and

Cluster) systems. Our (Raspberry Pi+VPU) system Figure 18.

Achieves those two parameters, 1watt and 18 ms lower than

(Personal computer and Cluster), respectively. At the same

time, the parameters of each system are shown in Figure 17.

In this work, the results attained are compared with the ones

achieved by the Small-Scale Object Detection for Unmanned

Aerial Vehicles (UAVs) system proposed by Saeed et al.

which modified the architecture of the detection network and

executed on different embedded systems, as we present early

our system can detect and locate the object in the surveillance

area in the real-time [50]. Singhal and Barick also proposes an

application-aware Multi-Path Weighted Load-balancing

(MWL) routing protocol for managing congestion, this system

executes its process in the ground center, which increases the

processing time and makes it out of service and powerless in

the event of interruption or penetration [51]. Teng et al.

developed a trajectory planner based on particle swarm

optimization with surveillance area priority, exploiting highly

consumed existing UAVs to obtain optimal trajectories [52].

In our work, we provide a surveillance system that can reduce

the energy consumed and processing time to locate any object

in the surveilled area, whatever the object’s trajectory.

Figure 18. System processing average time and processing

system consumption of each system

6. CONCLUSION

This paper presents a novel approach to industrial area

surveillance, which combines the Raspberry Pi 4B with an

Intel Neural Compute Stick 2 VPU as the edge computing

device to provide high image processing with low

consumption of energy which can increase the UAV flying

time in the surveilled area. In this study, performance tests of

our big data approach were performed on Jetson Nano and

Raspberry PI 4 boards, clusters, and personal computers

(Raspberry PI 4+Intel VPU). Performance benchmarks

included power consumption and average processing time.

We want to ensure a minimum of hardware, cost, and

hardware choice in our real-time monitoring applications after

the benchmark evaluation. In this context, the model was

developed using the CNN algorithm from deep learning

algorithms, and mathematical equations were transferred

between real-world coordinates and image (pixel) coordinates.

According to the test results, the cluster consumes more

power but delivers better performance with a shorter average

processing time. The major challenge of this system in our

application is the certainty of achieving a shorter average

processing time. We need to transfer data over UDP instead of

TCP communication protocol, and UDP protocol is less secure

than TCP. In the last part, the system (Raspberry PI 4+Intel

VPU) is the preferred processing system for our surveillance

system. It uses less power and has a pretty good average

processing time Table 2.

Raspberry Pi

Cluster

Intel Jetson nano

0 50 100 150 200

System Processing Average

Processing Time for one

frame [ms]

Processing System Consumption[W]

394

Table 2. Technical specifications of processing systems and results

Processing Systems Raspberry Pi
Personnel

Computer
Cluster

Raspberry Pi+VPU

& Intel
Jetson Nano

Processing System

Features

Quad-core Cortex-

A72 (ARM v8) 64-

bit 1.5GHz and 8GB

RAM

Intel Core i7-8750H

CPU with 12 cores,

16 GB of RAM

800 computer nodes

having from 2 to 16

virtual processors

with 4 to 32GB of

RAM

1 GB of RAM 4 GB

free stockage space

quad-core Cortex-

A57, GPU 128-core

4Gb RAM

Processing System

Consumption
2,89-7,28 W 180-watt 180-watt 1 watt & 5 watts

System Processing

Average Processing

Time for One Frame

42 ms 16 ms 15 ms 18 ms 12 ms

Price 330$ 1150$ - 520$ 800$

FPS 32 32 32 16 32

REFERENCES

[1] Ye, T., Zhao, Z.Y., Zhang, J., Chai, X.H., Zhou, F.Q.

(2021). Low-altitude small-sized object detection using

lightweight feature-enhanced convolutional neural

network. Journal of Systems Engineering and Electronics,

32(4): 841-853.

https://doi.org/10.23919/JSEE.2021.000073

[2] Li, X.X., Zhu, L.Q., Yu, Z.J., Wan, Y.Q. (2019).

Adaptive auxiliary input extraction based on vanishing

point detection for distant object detection in high-

resolution railway scene. In 2019 14th IEEE

International Conference on Electronic Measurement &

Instruments (ICEMI), Changsha, China, pp. 522-527.

https://doi.org/10.1109/ICEMI46757.2019.9101454

[3] Chiu, C.C., Lo, W.C. (2020). An object detection

algorithm with disparity values. In 2020 4th International

Conference on Imaging, Signal Processing and

Communications (ICISPC), IEEE, Kumamoto, Japan, pp.

20-23.

https://doi.org/10.1109/ICISPC51671.2020.00011

[4] Wang, S.Q., Chen, Z.Q., Ding, Z.Y. (2019). The unified

object detection framework with arbitrary angle. In 2019

5th International Conference on Big Data and

Information Analytics (BigDIA), IEEE, Kunming, China,

pp. 103-107.

https://doi.org/10.1109/BigDIA.2019.8802710

[5] Chen, Z.Y., Gao, H.L., Wang, K. (2020). A motion based

object detection method. In 2020 2nd International

Conference on Information Technology and Computer

Application (ITCA), IEEE, Guangzhou, China, pp. 280-

283. https://doi.org/10.1109/ITCA52113.2020.00067

[6] Lee, T.H., Kang, Y.G., Ryu, S., Lee, H.J. (2020). An

ASMO method for CNN-based occluded object detection.

In 2020 IEEE International Conference on Consumer

Electronics-Asia (ICCE-Asia), IEEE, Seoul, Korea

(South), pp. 1-2. https://doi.org/10.1109/ICCE-

Asia49877.2020.9277112

[7] Xue, Z.J., Chen, W.J., Li, J. (2020). Enhancement and

fusion of multi-scale feature maps for small object

detection. In 2020 39th Chinese Control Conference

(CCC), IEEE, Shenyang, China, pp. 7212-7217.

https://doi.org/10.23919/CCC50068.2020.9189352

[8] Saini, A., Biswas, M. (2019). Object detection in

underwater image by detecting edges using adaptive

thresholding. In 2019 3rd International Conference on

Trends in Electronics and Informatics (ICOEI), IEEE,

Tirunelveli, India, pp. 628-632.

https://doi.org/10.1109/ICOEI.2019.8862794

[9] Siaho, D., Ghislain, P.K., Lambert, K.T., Ernest, K.K.,

Souleymane, O., Emmanuel, A.N. (2023). Modeling

artificial neural network of insect's proliferation during

cocoa beans storage. Ingénierie des Systèmes

d'Information, 28(2): 291-298.

https://doi.org/10.18280/isi.280204

[10] Kilic, I., Aydin, G. (2020). Traffic sign detection and

recognition using tensorflow’s object detection API with

a new benchmark dataset. In 2020 International

Conference on Electrical Engineering (ICEE), IEEE,

Istanbul, Turkey, pp. 1-5.

https://doi.org/10.1109/ICEE49691.2020.9249914

[11] Moon, S.W., Lee, J., Lee, J., Nam, D., Yoo, W. (2020).

A comparative study on the maritime object detection

performance of deep learning models. In 2020

International Conference on Information and

Communication Technology Convergence (ICTC), IEEE,

Jeju, Korea (South), pp. 1155-1157.

https://doi.org/10.1109/ICTC49870.2020.9289620

[12] Jakkulla, P.K., Ganesh, K.M., Jayapal, P.K., Malla, S.J.,

Chandanapalli, S.B., Sandhya, E. (2023). Selection of

features using adaptive tunicate swarm algorithm with

optimized deep learning model for thyroid disease

classification. Ingenierie des Systemes d'Information,

28(2): 299-308. https://doi.org/10.18280/isi.280205

[13] Li, W.T., Li, W.Y., Yang, F., Wang, P. (2019). Multi-

scale object detection in satellite imagery based on

YOLT. In IGARSS 2019-2019 IEEE International

Geoscience and Remote Sensing Symposium,

Yokohama, Japan, pp. 162-165.

https://doi.org/10.1109/IGARSS.2019.8898170

[14] Yedla, S.K., Manikandan, V.M., Panchami, V. (2020).

Real-time scene change detection with object detection

for automated stock verification. In 2020 5th

International Conference on Devices, Circuits and

Systems (ICDCS), IEEE, Coimbatore, India, pp. 157-161.

https://doi.org/10.1109/ICDCS48716.2020.243571

[15] Vengurlekar, S.G., Jadhav, D., Shinde, S. (2019). Object

detection and tracking using Zernike moment. In 2019

International Conference on Communication and

Electronics Systems (ICCES), IEEE, Coimbatore, India,

pp. 12-17.

https://doi.org/10.1109/ICCES45898.2019.9002556

[16] Nowakowski, A., Skarbek, W. (2007). Lens radial

distortion calibration using homography of central points.

In EUROCON 2007-The International Conference on"

Computer as a Tool", IEEE, Warsaw, Poland, pp. 340-

395

343. https://doi.org/10.1109/EURCON.2007.4400578

[17] Zhu, W., Diao, C., Huang, J. (2010). Calibration of radial

distortion via QR factorization. In 2010 IEEE

International Conference on Progress in Informatics and

Computing, 2: 728-732.

https://doi.org/10.1109/PIC.2010.5687940

[18] Henrique Brito, J., Angst, R., Koser, K., Pollefeys, M.

(2013). Radial distortion self-calibration. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1368-1375.

[19] Zhang, L., Shang, H., Wu, F., Wang, R., Sun, T., Xie, J.

(2019). Robust line-based radial distortion estimation

from a single image. IEEE Access, 7: 180373-180382.

https://doi.org/10.1109/ACCESS.2019.2959204

[20] Cho, W., Lee, M., Kim, H., Paik, J. (2018). Automatic

estimation of distortion coefficient for correcting radial

distortion. In 2018 International Conference on

Electronics, Information, and Communication (ICEIC),

Honolulu, HI, USA, IEEE, pp. 1-3.

https://doi.org/10.23919/ELINFOCOM.2018.8330606

[21] Kim, Y., Kim, D., Lee, S. (2010). Camera lens radial

distortion compensation by illuminating the epipolar

lines with a projector. In ICCAS 2010, IEEE, Gyeonggi-

do, Korea (South), pp. 1871-1874.

https://doi.org/10.1109/ICCAS.2010.5670171

[22] Mei, X., Yang, S., Rong, J., Ying, X., Huang, S., Zha, H.

(2015). Radial lens distortion correction using cascaded

one-parameter division model. In 2015 IEEE

International Conference on Image Processing (ICIP),

Quebec City, QC, Canada, pp. 3615-3619.

https://doi.org/10.1109/ICIP.2015.7351478

[23] Huang, K., Ziauddin, S., Zand, M., Greenspan, M. (2020).

One shot radial distortion correction by direct linear

transformation. In 2020 IEEE International Conference

on Image Processing (ICIP), Abu Dhabi, United Arab

Emirates, pp. 473-477.

https://doi.org/10.1109/ICIP40778.2020.9190749

[24] Liao, K., Lin, C., Zhao, Y. (2021). A deep ordinal

distortion estimation approach for distortion rectification.

IEEE Transactions on Image Processing, 30: 3362-3375.

https://doi.org/10.1109/TIP.2021.3061283

[25] Huu, P.N., Van, T.T., Thi, N.G. (2019). Proposing

distortion compensation algorithm for determining

distance using two cameras. In 2019 6th NAFOSTED

Conference on Information and Computer Science

(NICS), IEEE, Hanoi, Vietnam, pp. 172-177.

https://doi.org/10.1109/NICS48868.2019.9023875

[26] Oleksandr, O., Molga, A., Kochan, V., Sachenko, A.

(2020). Method of ensuring the noise immunity at

measurement of single-board microcontroller average

energy within IoT environment. In 2020 IEEE 40th

International Conference on Electronics and

Nanotechnology (ELNANO), Kyiv, Ukraine, pp. 807-

810.

https://doi.org/10.1109/ELNANO50318.2020.9088880

[27] Vavrenyuk, A.B., Matveeva, D.V., Lukyantsev, N.M.,

Makarov, V.V. (2021). Analysis of an efficiency of

parallelization of algorithms running on computing

cluster based on single-board diskless computers

raspberry PI 3 model B. In 2021 IEEE Conference of

Russian Young Researchers in Electrical and Electronic

Engineering (ElConRus), Petersburg, Moscow, Russia,

pp. 728-730.

https://doi.org/10.1109/ElConRus51938.2021.9396277

[28] Süzen, A.A., Duman, B., Şen, B. (2020). Benchmark

analysis of jetson tx2, jetson nano and raspberry pi using

deep-CNN. In 2020 International Congress on Human-

Computer Interaction, Optimization and Robotic

Applications (HORA), IEEE, Ankara, Turkey, pp. 1-5.

https://doi.org/10.1109/HORA49412.2020.9152915

[29] Inthanon, P., Mungsing, S. (2020). Detection of

drowsiness from facial images in real-time video media

using NVidia Jetson Nano. In 2020 17th International

Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information

Technology (ECTI-CON), IEEE, Phuket, Thailand, pp.

246-249. https://doi.org/10.1109/ECTI-

CON49241.2020.9158235

[30] Rehman, A., Yar, H., Ayesha, N., Sadad, T. (2020).

Dermoscopy cancer detection and classification using

geometric feature based on resource constraints device

(Jetson Nano). In 2020 13th International Conference on

Developments in eSystems Engineering (DeSE), IEEE,

Liverpool, United Kingdom, pp. 412-417.

https://doi.org/10.1109/DeSE51703.2020.9450750

[31] Koubaa, A., Ammar, A., Kanhouch, A., AlHabashi, Y.

(2021). Cloud versus edge deployment strategies of real-

time face recognition inference. IEEE Transactions on

Network Science and Engineering, 9(1): 143-160.

https://doi.org/10.1109/TNSE.2021.3055835

[32] Slater, W.S., Tiwari, N.P., Lovelly, T.M., Mee, J.K.

(2020). Total ionizing dose radiation testing of NVIDIA

Jetson nano GPUs. In 2020 IEEE High Performance

Extreme Computing Conference (HPEC), Waltham, MA,

USA, pp. 1-3.

https://doi.org/10.1109/HPEC43674.2020.9286222

[33] Kamal, R., Chemmanam, A.J., Jose, B.A., Mathews, S.,

Varghese, E. (2020). Construction safety surveillance

using machine learning. In 2020 International

Symposium on Networks, Computers and

Communications (ISNCC), IEEE, Montreal, QC, Canada,

pp. 1-6.

https://doi.org/10.1109/ISNCC49221.2020.9297198

[34] Ullah, S., Kim, D.H. (2020). Benchmarking jetson

platform for 3D point-cloud and hyper-spectral image

classification. In 2020 IEEE International Conference on

Big Data and Smart Computing (BigComp), Busan,

Korea (South), pp. 477-482.

https://doi.org/10.1109/BigComp48618.2020.00-21

[35] Kim, J.U., Ro, Y.M. (2019). Attentive layer separation

for object classification and object localization in object

detection. In 2019 IEEE International Conference on

Image Processing (ICIP), Taipei, Taiwan, pp. 3995-3999.

https://doi.org/10.1109/ICIP.2019.8803439

[36] Marshall, M.R., Hellfeld, D., Joshi, T.H.Y., Salathe, M.,

Bandstra, M.S., Bilton, K.J., Cooper, R.J., Curtis, J.C.,

Negut, V., Shurley, A.J., Vetter, K. (2020). 3-d object

tracking in panoramic video and lidar for radiological

source-object attribution and improved source detection.

IEEE Transactions on Nuclear Science, 68(2): 189-202.

https://doi.org/10.1109/TNS.2020.3047646

[37] Ye, T., Zhang, J., Li, Y., Zhang, X., Zhao, Z., Li, Z.

(2022). CT-Net: An efficient network for low-altitude

object detection based on convolution and transformer.

IEEE Transactions on Instrumentation and Measurement,

71: 1-12. https://doi.org/10.1109/TIM.2022.3165838

[38] Kozlov, D.V., Stepanov, A.B. (2021). The main features

of a multichannel continuous wavelet transform

396

https://doi.org/10.1109/TIM.2022.3165838

implementation on the Nvidia Jetson single board

computers. In 2021 IEEE Conference of Russian Young

Researchers in Electrical and Electronic Engineering

(ElConRus), Petersburg, Moscow, Russia, pp. 1632-

1636.

https://doi.org/10.1109/ElConRus51938.2021.9396291

[39] Fontaine, J., Shahid, A., Elsas, R., Seferagic, A.,

Moerman, I., De Poorter, E. (2020). Multi-band sub-GHz

technology recognition on NVIDIA’s Jetson Nano. In

2020 IEEE 92nd Vehicular Technology Conference

(VTC2020-Fall), Victoria, BC, Canada, pp. 1-7.

https://doi.org/10.1109/VTC2020-

Fall49728.2020.9348566

[40] Uddin, M.I., Alamgir, M.S., Rahman, M.M., Bhuiyan,

M.S., Moral, M.A. (2021). Ai traffic control system

based on deepstream and iot using NVidia jetson nano.

In 2021 2nd International Conference on Robotics,

Electrical and Signal Processing Techniques (ICREST),

IEEE, DHAKA, Bangladesh, pp. 115-119.

https://doi.org/10.1109/ICREST51555.2021.9331256

[41] Vijitkunsawat, W., Chantngarm, P. (2020). Comparison

of machine learning algorithm’s on self-driving car

navigation using Nvidia Jetson Nano. In 2020 17th

International Conference on Electrical

Engineering/Electronics, Computer,

Telecommunications and Information Technology

(ECTI-CON), IEEE, Phuket, Thailand, pp. 201-204.

https://doi.org/10.1109/ECTI-CON49241.2020.9158311

[42] Wang, L., Ye, X., Xing, H., Wang, Z., Li, P. (2020). Yolo

nano underwater: A fast and compact object detector for

embedded device. In Global Oceans 2020: Singapore-US

Gulf Coast, IEEE, Biloxi, MS, USA, pp. 1-4.

https://doi.org/10.1109/IEEECONF38699.2020.938921

3

[43] Nguyen, S.T., Le, B.N., Dao, Q.X. (2021). AI and IoT-

powered smart university campus: design of autonomous

waste management. In 2021 International Symposium on

Electrical and Electronics Engineering (ISEE), IEEE, Ho

Chi Minh, Vietnam, pp. 139-144.

https://doi.org/10.1109/ISEE51682.2021.9418672

[44] Akondi, V., Roopashree, M.B., Budihala, R.P. (2010).

Improved iteratively weighted centroiding for accurate

spot detection in laser guide star based Shack Hartmann

sensor. In Atmospheric and Oceanic propagation of

Electromagnetic Waves IV, SPIE, 7588: 44-54.

https://doi.org/10.1117/12.841331

[45] Bräuer-Burchardt, C., Ramm, R., Kühmstedt, P., Notni,

G. (2022). The duality of ray-based and pinhole-camera

modeling and 3D measurement improvements using the

ray-based model. Sensors, 22(19): 7540.

https://doi.org/10.3390/s22197540

[46] Wang, G., Tsui, H.T., Hu, Z., Wu, F. (2005). Camera

calibration and 3D reconstruction from a single view

based on scene constraints. Image and Vision Computing,

23(3): 311-323.

https://doi.org/10.1016/j.imavis.2004.07.008

[47] Poulin-Girard, A.S., Thibault, S., Laurendeau, D. (2016).

Influence of camera calibration conditions on the

accuracy of 3D reconstruction. Optics Express, 24(3):

2678-2686. https://doi.org/10.1364/OE.24.002678

[48] Gu, C., Cong, Y., Sun, G., Gao, Y., Tang, X., Zhang, T.,

Fan, B. (2021). MedUCC: Medium-driven underwater

camera calibration for refractive 3-D reconstruction.

IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 52(9): 5937-5948.

https://doi.org/10.1109/TSMC.2021.3132146

[49] Zhao, X., Yin, J., Chen, Z., Lu, X. (2013). Distance-

aware virtual cluster performance optimization: A

hadoop case study. In 2013 IEEE International

Conference on Cluster Computing (CLUSTER),

Indianapolis, IN, USA, pp. 1-8.

https://doi.org/10.1109/CLUSTER.2013.6702618

[50] Saeed, Z., Yousaf, M.H., Ahmed, R., Velastin, S.A.,

Viriri, S. (2023). On-board small-scale object detection

for unmanned aerial vehicles (UAVs). Drones, 7(5): 310.

https://doi.org/10.3390/drones7050310

[51] Singhal, C., Barick, S. (2022). ECMS: Energy-efficient

collaborative multi-UAV surveillance system for

inaccessible regions. IEEE Access, 10: 95876-95891.

https://doi.org/10.1109/ACCESS.2022.3206375

[52] Teng, H., Ahmad, I., Msm, A., Chang, K. (2020). 3D

optimal surveillance trajectory planning for multiple

UAVs by using particle swarm optimization with

surveillance area priority. IEEE Access, 8: 86316-86327.

https://doi.org/10.1109/ACCESS.2020.2992217

397

