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This paper proposes a novel security surveillance Unmanned Aerial Vehicle (UAV) that 

can handle security in large industrial areas with increased surveillance efficiency. Our 

basic idea is that Unmanned Aerial Vehicle sighting can be treated as a motion detection 

problem in the surveillance area by detecting position and type simultaneously when the 

Unmanned Aerial Vehicle flies in the 360° detection area. To reach our target, this paper 

proposes a mathematical approach based on camera calibration, ordinal distortion 

correction, and three-dimensional reconstruction that can help us determine the exact 

position of a moving object in the monitored area. It is also important to recognize 

movements and their character and to determine their position on the ground, all of this 

must be done in Real-time with short processing times. The outcomes of our study 

demonstrate that system processing average duration and processing system consumption 

have slightly decreased with the utilization of the Raspberry Pi+VPU system compared to 

alternatives such as the Jetson Nano, Raspberry Pi 4 boards, clusters, and personal 

computers. This underscores the effectiveness of our proposed system in terms of 

processing efficiency and resource utilization. 
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1. INTRODUCTION

In the last decade, drones have been widely changing and 

their usage has steadily increased with each passing year in 

many application domains such as navigation, military, 

delivery, topography, etc. In various fields, Drones have 

exceeded expectations in performance, accuracy, and the tasks 

assigned to them. Therefore, based on our approach, we can 

exploit the drone for surveillance of our areas with a 

determinant algorithm. For surveillance purposes to provide 

safe and secure industrial facilities. Surveillance systems 

proposed here include secure real-time photography, motion, 

object detection, camera calibration, and tracking of the 

object's trajectory using coordinates constructed from the 3D 

coordinates of a calibrated image inserted by three drone 

cameras, relying solely on ground-based surveillance 

measures limits visibility, especially in sprawling industrial 

complexes with complex layouts. Blind spots and obscured 

areas can easily become vulnerable points for unauthorized 

access or security breaches. hence the need to develop 

advanced surveillance systems attached to UAVs, such as the 

system proposed in this paper. 

Motion and object detection is an important security 

research and surveillance application area. With the presence 

of neural network technology, it is being used more and more 

in various fields of application. Peculiarly in security, motion, 

and object detection have a role. Several approaches have been 

suggested in object detection. Lightweight feature-enhanced 

convolutional neural network methods are used for low 

altitude and small size [1] to solve the problem of real-time 

flying and to improve guidance information to suppress black-

flying UAVs. A variety of approaches [2-7] to enhance and 

improve the appearance of objects and increase the precision 

marge of the algorithm used based on deep neural network 

method (Faster R-CNN, SSD, YOLO, LSL\-Net....), the 

difference between these methods is processing architecture. 

As for the areas of application [8-15], (underwater, robotic arm, 

tracking.), researchers are limited to developing algorithms to 

increase quality only in the field in which they are applied, as 

they sometimes become unsuitable in other areas. 

Our drone uses a three-camera to take 360-degree 

photography instead of a 360 camera. A 360-degree camera 

could capture all information in every degree that it sometimes 

lacks focus. 

One of the biggest challenges is the large barrel distortion 

caused by the ultra-wide angle fisheye lens. Even the 360-

degree camera is not versatile compared to traditional cameras. 

For example, all the photos taken with a 360-degree camera 

can look too similar, which is a problem for us since we need 

to detect the movement of an object in an area. Detecting the 

type of object becomes more complicated and can be 

catastrophic. Also, it is very difficult to correct radial 
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distortions within 360 degrees. The wide-angle camera we use 

with drones is severely affected by radial distortion, so 

correcting radial camera distortion is an important step toward 

100% object coordinate accuracy. Nowakowski and Skarbek's 

method [16] uses a Homography of Central Points for Lens 

Radial Distortion Calibration. 

However, the method used to determine the center of 

distortion gives accurate results with no errors. Zhu et al. [17] 

methods use QR Factorization to correct the radial distortion 

in a non-iterative way, which can be faster but misses some 

pieces of the picture. Henrique Brito et al. [18] methods 

propose Self-Calibration Based on observing straight lines 

through the distortion center. Zhang et al. [19] propose a new 

robust line-based distortion estimation method to correct 

radial distortion. 

Cho et al. [20] propose the Automatic Estimation of the 

Distortion Coefficient method, which performs well in radial 

distortion estimation for more correction, the algorithm needs 

to be repeated to satisfy the termination condition. Kim et al. 

[21] solve radial distortion compensation by Illuminating the 

epipolar lines with a Projector [22]. 

Propose using a cascaded one-parameter split model that 

requires execution time for each block with a repetitive 

process to achieve a satisfactory result. The method developed 

by Huang et al. [23] is founded on the principles of direct 

linear transformation. Liao et al. [24] propose an estimation 

approach for distortion rectification based on the Training 

Process of the Proposed Network algorithm that contains two 

loops of repetition inside each other to increase the result 

performance. 

In our situation, in the presence of a drone with three-

camera support, things get different, and it is attributed to the 

drone's movement. Therefore, the Euler coordinates change 

every moment, making it difficult to determine the actual 

coordinates. 

Huu et al. [25] propose introducing two fixed camera 

models to calculate the distance between the camera system 

and the installation. 

In this research, we provide a mathematical model to correct 

camera distortion and identify genuine object coordinates in 

real-time. Single-board computers are preferred in these 

circumstances. These single-board computers have 

microprocessors, memory, input/output, and other useful 

components and are constructed on a single circuit board [26]. 

Due to the possibility of combining different fields of 

technology, single-board computer systems with a wide range 

of applications and a low price are often chosen [27]. 

AI applications for single-board computers have increased 

due to technological advances and the approach to PC 

performance. The use of deep learning, one of the sub-

branches of artificial intelligence [28-37] documents [38, 39], 

and autonomous/mobile systems [40-43] in single-board 

computers have also increased as some single-board 

computers support both CPU and GPU. 

The rest of the work can be summarized as follows: in the 

second section, an overview of the work that describes the 

basic concept of the surveillance system, and in section III, the 

proposed research work is explained. In the next section, we 

discuss experimental results. Finally, in section V, we 

conclude the proposed research work and suggest some future 

directions. 

 

 

2. OVERVIEW 

 

In this work, we propose our SoC-based computing system 

in which the CPU performs multitasking between inputs, large 

processing units, and outputs. We optimized motion detection 

and object detectors forever after calculating the center of 

mass coordinates and implementing them on different 

embedded systems. We found the best processing time using 

our proposed system that can perform a better result with low 

energy consumption, increasing the flying time of the UAV. 

Figure 1 shows an overview of the proposed surveillance 

system. As shown in the figure, the autonomous drone records 

video data with three cameras tilted at 130 degrees to each 

other. Each camera recognizes the scene in its field of view. A 

specific processing system processes this extracted 

information (frame). For each camera, there is a sub-algorithm 

in the overall algorithm system. 

 

 
Figure 1. Proposed surveillance system overview 

 

 

3. METHODOLOGY 

 

The proposed method consists of eight main processing 

steps for efficient drone operation. Initially, three cameras 

connected to the drone record all the scenes within their 

respective fields of view. Subsequently, noise-removing 

techniques to enhance data quality are applied to the stream. 

The third stage involves motion detection in the recorded 

scenes, identifying areas with movement. Once motion is 

detected, the system proceeds to generate a scan of the affected 

region in the fourth stage. In the fifth step, the method 

identifies the nature of objects within the scanned area, 

enabling the calculation of their center of mass coordinates. 

These center of mass coordinates serve as a crucial input for 

the sixth stage, where the actual (x, y, z) coordinates are 

computed. These real-world coordinates are saved in a 

structured CSV file within the system's database. Finally, the 

results are displayed on the supervisor's screen in the last step, 

providing valuable insights and actionable information. 

Figure 2 represents the eight-step process that ensures the 

effective use of the drone system for various applications, 

including surveillance and data collection. 
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Figure 2. Approach overview 

 

3.1 Frame extraction 

 

Streaming from three cameras or real-time video collection 

(Figure 3), which can reflect a series of N images and stand for 

by S= (fs1; fs2; …; fsN). Given the build quality, it's better to 

use a triple camera instead of a 360-degree camera. Because 

RGB represents the red, green, and blue components, each 

video image is recognized as a color image. Therefore, the 

images are periodically moved to the next step. 

 

 
Figure 3. Three-camera position 

 

3.2 Motion detection 

 

Motion detection serves a variety of functions in this 

application. After we have detected a movement of one of the 

three cameras, we immediately start the security process. 

Real-time capturing can be treated as a set of frames. Here, 

we compared different frames to the first frame using the 

frame differencing technique. Figure 4 shows the motion 

detection algorithm used for each frame. 

We need to look at some tiny, moving fragments of the 

picture, not the whole. This will reduce our drone's energy and 

speed up our processing system. 

 

3.3 Object detection 

 

Within Deep Learning, the sub-discipline (Object Detection) 

involves this application to identify objects through real-time 

video. Essentially expressed, this detection approach aims to 

locate objects in the frame (object localization), which will 

help us to track the item in the following processing step. 

 

 
 

Figure 4. The motion detection algorithm 

 

For this method, you need image processing algorithms to 

verify image content. We must follow several guidelines 

offered by the manufacturers (Intel, INVIDIA, Raspberry Pi, 

etc.) to implement our approach on various hardware. These 

guidelines enable us to apply these AI models to our UAV 

application. For instance, the OpenVINO toolkit offers a 

collection of pre-trained Intel models that can be employed for 

software development, learning, and demo purposes. 

Various detection models can detect a set of the most 

common objects. Object detection with SSD-MobileNet v2 

framework is widely used for real-time object detection. For 

the surveillance area, MobileNet V2 is the network used for 

the feature extractor and is the object localizer. Since most 
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networks are SSD-based and offer a reasonable adjustment 

between efficiency and performance, we decided to use 

Mobile Networking SSD v2 for the object detection part. 

Networks that detect objects and offer the option of higher 

accuracy/broad application at the cost of lower performance 

can be expected to detect objects of the same type more exactly. 

 

3.4 Intensity weighted centroiding coordinates of moving 

objects for accurate area tracking 

 

Once we have the position of a moving object in the image, 

we use intensity weighted centroid (IWC) to detect it. 

The center of gravity (CoG) is the basis of the IWC 

calculations [44]. CoG is the same calculation as in physics 

but only applied to the image Figure 5. 

 

(𝑥𝑔, 𝑦𝑔) = [
∑ 𝐼𝑖𝑗

2 𝑥𝑖𝑗𝑖𝑗

𝐼𝑖𝑗
,
∑ 𝐼𝑖𝑗

2 𝑦𝑖𝑗𝑖𝑗

𝐼𝑖𝑗
] (1) 

 

 
 

Figure 5. Object intensity weighted centroiding coordinates 

 

3.5 Determination of the correct real coordinates of a 

moving object 

 

As soon as IWC coordinates are identified, we calculate real 

(X,Y,Z) coordinates. For this, we use the pinhole camera 

model [45]. This model uses perspective transformation to 

project 3D points onto the image plane to create a view of the 

scene. Figure 6. The following equation, Eq. (2), can give us 

the actual coordinates [45-48]. 

 

𝑥𝑔 = 𝐴[𝑅|𝑇]𝑀 (2) 

 

where, 

• xg: 3-D IWC Coordinates 

• A: Camera Matrix or a Matrix of Intrinsic Parameters 

• [𝑅|𝑇]: Rotation-Translation Matrix 

• M: 3-D Real Coordinates 
 

[
 
 
 
 
 
∑ 𝐼𝑖𝑗

2 𝑥𝑖𝑗𝑖𝑗

𝐼𝑖𝑗

∑ 𝐼𝑖𝑗
2 𝑦𝑖𝑗𝑖𝑗

𝐼𝑖𝑗
1 ]

 
 
 
 
 

= [
𝑓𝑥 0 𝐶𝑥

0 𝑓𝑦 𝐶𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

    

𝑡1
𝑡2
𝑡3

] [

𝑋
𝑌
𝑍
1

] (3) 

 

As we know, the drone does not stay in its initial position, 

and there is an infinitely small shift δψ between the two frames, 

Figure 6 and Figure 7, performed at any instant in our 

calculation Figure 8. We can straighten the difference in the 

following Eq. (4). 
 

𝑥𝑔′ = 𝐴[𝑅|𝑇]𝑀′ (4) 

 

where, 

• 𝑀′ = 𝑀 + δψ 

• 𝑥𝑔
′ = 𝑥𝑔 + δ𝑥𝑔 

• δψ = (δX, δY, δZ, 1) 

• 𝛿𝑥 = (𝛿𝑥𝑔, 𝛿𝑦𝑔 , 1) 

 
 

Figure 6. Optical schematic of the object coordinate 
 

 
 

Figure 7. Drone displacement explanation 

 

 
 

Figure 8. Optical schematic of infinitesimal displacement 

explanation 
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For camera calibration and distortion correction 

applications, these distortions must be corrected first. To 

determine these parameters, we provide some sample images 

of a known pattern (such as a chessboard). We find some 

specific points (square corners on the chessboard). We have its 

coordinates in the real world, and its coordinates in the image. 

With these data, some mathematical processes are in the 

background to get the distortion coefficients. 

 

 

4. SYSTEM PROCESSING ARCHITECTURE OF THE 

IMPLEMENTATION 

 

To figure out our approach, many processing systems can 

be exploited, but we need to find a compatible processing 

system with our surveillance system. There are two main 

factors to consider when choosing the suitable device for us, 

Suitable energy System and processing time. 

 

4.1 CPU: Parallel computing 

 

The "core," or heart of the CPU, is where all computing and 

reasoning takes place. A core normally runs through a process 

known as the "instruction cycle," in which instructions are read 

from memory, converted to processing language, and then 

executed through the core's logical gates (execute). Initially, 

all processors were single-core, but as multi-core processors 

became more common, computing power increased, and 

parallel processing arrived Figure 9. 

 

 
 

Figure 9. CPU internal architect 

 

Most parallel computing hardware is often housed in a 

single data center with multiple processors (or cores within a 

processor) advanced over a server rack. The application server 

distributes compute requests in small chunks, subsequently 

executed concurrently on each server. 

Security surveillance using UAVs and embedded systems, 

CPUs are suitable for managing lower-complexity tasks like 

data preprocessing, basic motion detection, and simple object 

identification. 

 

4.2 CPU and GPU computing 

 

Graphical processing is one of these activities, typically 

regarded as one of the CPU's more difficult processing tasks. 

Because of the complexity of the solution, technology now has 

uses far beyond graphics. The difficulty in processing graphics 

is that, to render properly, visuals require complicated 

mathematics, which must be computed in parallel. For 

instance, a graphically demanding computer game may 

simultaneously have hundreds or thousands of polygons on the 

screen, each with its movement, color, lighting, and other 

characteristics. Such a workload is not designed for CPUs. 

Graphical processing units (GPUs) are used in this situation. 

GPUs perform similarly to CPUs, having cores, memory, 

and other parts. GPU acceleration emphasizes parallel data 

processing with a high number of cores rather than context 

switching to manage many activities. Typically, each of these 

cores is less powerful than the CPU core. Additionally, GPUs 

are frequently incompatible with various hardware APIs and 

homeless storage. They perfectly support the simultaneous 

transfer of many processed data. 

The GPU takes batch instructions and transmits them at 

high volume for faster processing and display instead of 

switching between graphics processing tasks Figure 10. 

 

 
 

Figure 10. CPU and GPU internal architect 

 

With GPUs, they can simultaneously increase application 

data throughput and the number of active computations. 

Because of parallelism, the GPU can do more work than the 

CPU in a given period. 

GPUs excel in parallel processing and are well-suited for 

tasks that require high-throughput computations, such as 

image and video processing. For security surveillance, GPUs 

are advantageous in scenarios that involve real-time object 

detection, tracking, and advanced image analysis. 

 

4.3 Cluster computing 

 

In cluster computing, a group of closely related or ad hoc 

computers work together to function as a single unit. The 

collective action of connected computers creates the idea of a 

single system. Typically, fast local area networks are used to 

connect the clusters (LANs). Cluster computing offers a great 

low-cost alternative to huge server or mainframe platforms. 

The demand for content criticality is met, and services are 

processed more quickly Figure 11. 

Many businesses use cluster computing and IT companies 

to improve scalability, availability, processing speed, and 

resource management at a reasonable cost. It guarantees 

constant access to computing power. It offers a unique, 

superior approach to designing and operating high-

performance parallel systems not dependent on specific 

hardware dealers or their product line choices [49]. However, 

clusters might be less suitable in the context of UAVs due to 

their inherent resource constraints and the need for real-time 

processing. 
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Figure 11. Cluster internal architect 

 

4.4 Vision Processing Unit (VPU) computing 

 

A later class of microprocessors called the Vision 

Processing Unit (VPU) is a special type of AI accelerator 

designed specifically to speed up operations that use computer 

vision. The new Vision Processing Unit (VPU) is a quick 

500MHz DSP (ISP) linked with the Image Signal Processors 

Figure 12. 

 

 
 

Figure 12. Vision Processing Unit (VPU) internal architect 

 

Real-time Depth of Field is just one of the fascinating 

camera functions. It offers a dedicated processing platform for 

freeing up the CPU and GPU to conserve power and 

computing resources. 

The platform provided by VPU allows companies to 

differentiate their products by customizing camera features. 

It is a specialized hardware that supports cameras and can 

carry out real-time processing tasks. In the past, these were 

often passed on to the CPU or GPU, but the VPU consumes 

only a fraction of the power. The VPU can still be used alone 

or in conjunction with the CPU/GPU in a truly heterogeneous 

computing environment on the same memory subsystem for 

complex multi-application or multi-function activities. 

For security surveillance using UAVs, VPUs are highly 

suitable as they provide efficient and fast processing of visual 

data. They are particularly valuable for real-time object 

detection, tracking, and other computationally intensive vision 

tasks. VPUs optimize power consumption while delivering the 

required processing power for surveillance applications, 

making them well-suited for embedded systems on UAVs. 

In summary, as shown in Table 1, while each architecture 

has its strengths, a VPU emerges as a promising option for 

security surveillance using UAVs and embedded systems. It 

offers a well-balanced combination of high processing speed, 

power efficiency, real-time capabilities, and accuracy, making 

it suitable for real-time object detection, tracking, and image 

analysis-all essential for effective security surveillance 

applications. 

 

Table 1. The key attributes of each embedded system 

 
Attribute CPU GPU Cluster VPU 

Processing 

Speed 
Moderate High High High 

Power 

Efficiency 
Good Moderate  High Good 

Precision/ 

Accuracy 
Moderate High High High 

Parallel 

Processing 
Limited Excellent Excellent Limited 

Real-Time 

Capability 

Yes 

(For some) 
Yes Possible Yes 

Scalability Limited Moderate High Limited 

Portability Yes No No Yes 

Cost Affordable 
Moderate to 

High 
Variable Moderate 

Hardware 

Integration 
Common Specialized Variable Specialized 

Suitable 

Application 

Basic 

processing, 

Coordination 

Real-time 

object 

detection, 

tracking 

Large-scale 

data 

processing 

Real-time 

image 

analysis 

object 

detection 
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5. SYSTEMS PERFORMANCE AND EVALUATION 

RESULTS 

 

5.1 Algorithm 

 

Algorithm 1 

Begin: 

Input: framei, framei+1 

           Camera Matrix or a Matrix of Intrinsic Parameters 

           Rotation-Translation Matrix [𝑹|𝑻] 
           UAV Initial Position 

           Initialize: framei=CaptureFirstFrame() 

While (framei+1 captured) 

           Save framei+1 

           Pretreatment, noise removal, and filtering 

           Match (framei+1 pixels) with (frame pixels) 

           If (any motion is generated in the vision area) 

           Localization of motion area 

           Objection Identification in the Motion Area 

Calculation of IWC coordinates (xg,yg) for every object in 

the motion area 

           Determination of δψ between frames and framei+1 

           Calculation of the real coordinates xg' 

           Save in .csv file (Time (t)||Object id||(xg,yg )||xg') 

           Print real objects' trajectory 

           Remove frame  

           frame  frame i+1 

          Else (capture new framei+1) 

 

 

5.2 Implementation 

 

The different hardware systems of processing system 

architects discussed earlier are employed to figure out our 

approach. Raspberry Pi 4b (Figure 13), jetson nano (Figure 14), 

Raspberry Pi 4b+Intel Neural Compute Stick 2 (Intel NCS2) 

(Figure 15), Personnel Computer (Figure 16), and Google 

collab cluster to work out the performance of successively 

Parallel CPU (CPU and GPU), Cluster, Vision Processing Unit 

(VPU) computing. For model execution on Movidius NCS 2, 

Intel provides an Opensource deep learning toolkit package, 

OpenVINO. The OpenVINO toolkit allows us to deploy pre-

trained deep learning models, via a high-level Python 

programming language Inference Engine API paired with 

application logic. The model must be restructured into an 

Intermediate Representation (IR) network, which can be 

inferred by the Inference Engine. IR consists of two binary 

files, which are.xml and .bin files. Our work is performed on 

a Windows system for Personal computers and clusters, and in 

Linux for other systems by using the model optimizer built-in 

to the OpenVINO package. 

System processing the average processing time and power 

consumption are the most expensive parts that we have to 

calculate. It depends on the parameters of the model and its 

variables, including the number of layers, the number of cores, 

the size of the core, and the activation function. Figure 17 

shows the video processing results of a moving object in the 

monitored area. 

To measure processing time, the system uses a time stamp 

at the start and end of each processing step. The difference 

between the start and end time stamps provides the elapsed 

time for that step. This time is measured in milliseconds. The 

time module integrated into the Python programming 

language was used in our case. Power is quantified using 

sensors that measure components’ electrical current and 

voltage. These measurements are then used to calculate power 

consumption using the following formula: 

 

𝑃[𝑊𝑎𝑡𝑡𝑠] =  𝑈 [𝑉𝑜𝑙𝑡𝑠] × 𝐼[𝐴𝑚𝑝𝑠] (5) 

 

The workflow scenario included in this work concerns 

motion detection and identification of moving vehicles in an 

industrial complex and tracking their trajectory in an open 

space using the different monitoring platforms. Input images 

were captured from a video. The initial settings default to the 

coordinates of the proposed drone system. As mentioned in 

Table 1, the Raspberry Pi 4 has poor performance and high 

power consumption. Jetson Nano and Cluster are proven to 

have higher power sources and consumption due to their high 

hardware capabilities. If we analyze the model classification 

over time, we see that it happens faster (Raspberry Pi 4+VPU). 

But as for the power consumption, we can see that (Raspberry 

Pi 4+VPU) is a lower power consumption system. This system 

is the preferred processing system of our surveillance system, 

consumes less power and has a short average processing time. 

NVIDIA Jetson Nano has adequate performance for our 

surveillance UAV applications. For resolutions up to 4K, real-

time performance and energy consumption. 

It uses CUDA “Compute Unified Device Architecture” an 

architecture developed by NVIDIA for parallel calculations. 

On the opposite side, some of the limits of this card have been 

encountered, the setting up of the environment is rather 

complicated in addition it does not support some last tools 

versions. 

Intel hardware offers high performance, deep learning, 

simplified development, write once, and deploy anywhere. 

Intel's generation of the OpenVINO toolkit makes accepting 

and maintaining our approach easier. 

 

 
 

Figure 13. Raspberry Pi processing system 

 

 
 

Figure 14. Nvidia Jetson Nano processing system 
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Figure 15. (Raspberry Pi+VPU) processing system 

 

 
 

Figure 16. Personnel computer processing system 

 
 

Figure 17. The real trajectory of the moving object in the 

surveillance area 

 

By building an optimized network and controlling inference 

processes on specific devices, we can use the runtime 

(inference engine) to optimize performance. Optimization is 

also done automatically by detecting peripherals, balancing 

load, and inferring parallelism between CPU, GPU, and VPU. 

The results prove that though system processing average 

processing time and processing system consumption 

marginally went down with (The Raspberry Pi+VPU) system, 

we noticed a significant increase in (Personal computer and 

Cluster) systems. Our (Raspberry Pi+VPU) system Figure 18. 

Achieves those two parameters, 1watt and 18 ms lower than 

(Personal computer and Cluster), respectively. At the same 

time, the parameters of each system are shown in Figure 17. 

In this work, the results attained are compared with the ones 

achieved by the Small-Scale Object Detection for Unmanned 

Aerial Vehicles (UAVs) system proposed by Saeed et al. 

which modified the architecture of the detection network and 

executed on different embedded systems, as we present early 

our system can detect and locate the object in the surveillance 

area in the real-time [50]. Singhal and Barick also proposes an 

application-aware Multi-Path Weighted Load-balancing 

(MWL) routing protocol for managing congestion, this system 

executes its process in the ground center, which increases the 

processing time and makes it out of service and powerless in 

the event of interruption or penetration [51]. Teng et al. 

developed a trajectory planner based on particle swarm 

optimization with surveillance area priority, exploiting highly 

consumed existing UAVs to obtain optimal trajectories [52]. 

In our work, we provide a surveillance system that can reduce 

the energy consumed and processing time to locate any object 

in the surveilled area, whatever the object’s trajectory. 
 

 
 

Figure 18. System processing average time and processing 

system consumption of each system 

 

 

6. CONCLUSION 

 

This paper presents a novel approach to industrial area 

surveillance, which combines the Raspberry Pi 4B with an 

Intel Neural Compute Stick 2 VPU as the edge computing 

device to provide high image processing with low 

consumption of energy which can increase the UAV flying 

time in the surveilled area. In this study, performance tests of 

our big data approach were performed on Jetson Nano and 

Raspberry PI 4 boards, clusters, and personal computers 

(Raspberry PI 4+Intel VPU). Performance benchmarks 

included power consumption and average processing time. 

We want to ensure a minimum of hardware, cost, and 

hardware choice in our real-time monitoring applications after 

the benchmark evaluation. In this context, the model was 

developed using the CNN algorithm from deep learning 

algorithms, and mathematical equations were transferred 

between real-world coordinates and image (pixel) coordinates. 

According to the test results, the cluster consumes more 

power but delivers better performance with a shorter average 

processing time. The major challenge of this system in our 

application is the certainty of achieving a shorter average 

processing time. We need to transfer data over UDP instead of 

TCP communication protocol, and UDP protocol is less secure 

than TCP. In the last part, the system (Raspberry PI 4+Intel 

VPU) is the preferred processing system for our surveillance 

system. It uses less power and has a pretty good average 

processing time Table 2. 

Raspberry Pi

Cluster

Intel Jetson nano

0 50 100 150 200

System Processing Average

Processing Time for one

frame [ms]

Processing System Consumption[W]
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Table 2. Technical specifications of processing systems and results 

 

Processing Systems Raspberry Pi 
Personnel 

Computer 
Cluster 

Raspberry Pi+VPU 

& Intel 
Jetson Nano 

Processing System 

Features 

Quad-core Cortex-

A72 (ARM v8) 64-

bit 1.5GHz and 8GB 

RAM 

Intel Core i7-8750H 

CPU with 12 cores, 

16 GB of RAM 

800 computer nodes 

having from 2 to 16 

virtual processors 

with 4 to 32GB of 

RAM 

1 GB of RAM 4 GB 

free stockage space 

quad-core Cortex-

A57, GPU 128-core 

4Gb RAM 

Processing System 

Consumption 
2,89-7,28 W 180-watt 180-watt 1 watt & 5 watts 

System Processing 

Average Processing 

Time for One Frame 

42 ms 16 ms 15 ms 18 ms 12 ms 

Price 330$ 1150$ - 520$ 800$ 

FPS 32 32 32 16 32 
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