

Performance Analysis of Regex-Based Processing for Dark Web Targeted Crawling

Muhammad Faris Ruriawan , Yudha Purwanto , Putri R. Yunelfi, Agus S. Popalia

School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia

Corresponding Author Email: omyudha@telkomuniversity.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140214

ABSTRACT

Received: 21 September 2023

Revised: 12 March 2024

Accepted: 25 March 2024

Available online: 26 April 2024

 Data crawling in the dark web holds a critical significance in bolstering security

intelligence efforts. Previous research has successfully developed fast crawlers for

specific purposes such as digital investigations, abusive content, automated captcha

breaking, etc. However, this research mostly focuses on faster download time and has not

paid attention to the importance of assessing crawl accuracy. Due to the fast-changing

dark web shape and content, accurate and complete crawled data is a vital part of security

intelligence. This research has successfully developed a targeted dark web crawler by

combining the focus and in-depth crawling for The Onion Router (TOR) network. Regex

Text, Regex Wildcard, and Regex Optional are used to automatically filter the content by

a specific keyword. The effectiveness of the crawler was tested in the five real-world dark

website environments. From the testing with a depth of 3, the application achieved more

than 98% accuracy. The Regex Optional processing performance was faster than the

Regex Text and Regex Wildcard by over a second, due to the swift crawling attempt. In

terms of accuracy, the Regex Optional achieved 99.14% which is 4.83% higher than

Regex Text. The best keyword processing method in targeted crawling is Regex Optional,

with an accuracy rate of over 99%.

Keywords:

dark web, The Onion Router (TOR), focus

crawling, in-depth crawling, regex

1. INTRODUCTION

Security intelligence plays a pivotal role in safeguarding

organizations and individuals from a rapidly evolving

landscape of threats and vulnerabilities. By systematically

gathering, analysing, and interpreting data from various

sources, security intelligence provides a comprehensive

understanding of potential risks and malicious activities. This

proactive approach empowers decision-makers to make

informed choices, allocate resources effectively, and

implement targeted measures to mitigate potential breaches,

cyberattacks, and physical threats.

As the dark web serves as a breeding ground for illicit

activities, systematic data crawling becomes an essential tool

for gaining insights into these hidden realms. By employing

specialized algorithms and technologies, security experts can

navigate this obscure landscape, collecting valuable data on

emerging cyber threats from the extracted dark web content.

This proactive approach enables organizations to stay ahead of

malicious resources [1], identify vulnerabilities [2], and

understand the tactics, techniques, and procedures they

employ [3]. To harvest the dark web data, security intelligence

developed a dark web crawler.

Focus crawling is a type of crawling that looks for specific

subjects using keywords that most accurately describe the

target topic. Previous researchers have investigated the focus

crawling for surface web [4], hidden web [5], and dark

networks [6]. In focused crawling, a regular expression (regex

or regexp) is often used to define a pattern for locating specific

text within a web page [7], exploring text semantics [8], and

even DNA sequence mining [9]. By the use of regular

expression, the surface crawlers were successfully developed

with high accuracy and classified into certain classes [10, 11].

Over the past five years, there has been significant progress

in the field of dark web crawlers, resulting in the development

of crawlers that possess both speed and flexibility. The first

research concern on dark web is about the content collection

for specific topics. Most research in this area proposed a

crawler that digs down the dark web to obtain a comprehensive

database for topic profiling and classification. This kind of

research can be seen in research of Pannu et al. [12] for

creating a database of suspicious websites, Alkhatib et al. [6]

for market structure and product summary, Yang et al. [13] for

hidden threat intelligence, Lee at el. [14] to uncover types of

cyber-criminal activities occurring in South Korea, Shiaeles et

al. [15] for monitoring and analysis of attack trends in the IoT

ecosystem, Shinde et al. [16] to uncover child and women

abuse materials, Alharbi et al. [17] to analyze the Tor dark web

graph's internal structure and connectivity. The second

concern is about the technical aspect of the crawler to gain

flexibility and overcome the website crawling limitations,

such as crawler traps and captcha. In research of Shinde et al.

[16], the relevance of the page and hyperlinks is calculated

using natural language processing and ANN-based classifiers

to produce a high harvest rate. David et al. [18] proposed the

use of information theory to compare widely used distances

and consider heterogeneous data to avoid crawler traps. The

challenge of link harvesting was researched in the study of

International Journal of Safety and Security Engineering
Vol. 14, No. 2, April, 2024, pp. 467-476

Journal homepage: http://iieta.org/journals/ijsse

467

https://orcid.org/0009-0000-0724-6239
https://orcid.org/0000-0001-5608-4723
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140214&domain=pdf

Dalvi et al. [19] by the use of a dedicated parser. The

CAPTCHA breaking method was proposed in research of

Zhang et al. [20] using the generative method. David et al. [18]

uses information theory to compare widely used distances and

considers heterogeneous data to produce more accurate

distances for classification and data mining. Dalvi et al. [21]

uses a pre-trained NLP model to determine the relevance score

used in content classification and gain a high harvest rate.

From previous research, the regular expression is widely

used in surface and dark web crawling methods. Based on our

latest research of Yunelfi et al. [22] the accuracy of Regex

classified-based focus crawling can reach 20% higher than

traditional filter crawling. However, for the advance of our

knowledge, there still no research has analyzed the use of

different Regex methods for the dark web crawler. Technically,

the different Regex methods allow crawlers to have different

speed, flexibility, and accuracy. This is essential to

consistently uphold the principles of data integrity in

alignment with forensic science standards, ensuring the

potential admissibility of the acquired data as evidence in legal

proceedings. This significance becomes particularly

pronounced in cases involving the forensic acquisition of dark

web content.

This research developed a Regex-based dark web-targeted

crawler to elevate the accuracy and completeness without

degrading the processing time. The crawling procedure was

carried out by developing a system that details the dark web's

crawling procedure from input to output in the form of URLs

for content results categorized by a particular topic. The

targeted crawling is developed based on the combination of

focus and in-depth crawling. Regex Text, Regex Wildcards,

and Regex Optional were used to process keywords in the

focused crawling process to improve system accuracy and

performance. The in-depth method can enhance the crawling

depth by digging the dark web even deeper. White box

validation was utilized to verify functions in this targeted

crawling system, and the findings show that every function

operates as it should. Additionally, in this study, accuracy and

performance testing of the system findings were conducted by

comparing the three Regex scenarios. Given the known that

dark web URLs (Unified Resource Locator) are more complex

than regular web URLs [23], it is important to develop a fast

and accurate method to crawl the dark web.

This research contribution is stated as follows. First, the

application of Regex-based targeted crawling has been

successfully developed with more than 98% accuracy. Second,

it was discovered that the Regex Optional processing was

superior to the Regex Text and Regex Wildcard in terms of

accuracy and performance. The combination of in-depth

algorithm and focus crawling in the TOR network has been

proven to provide high-accuracy crawling results.

In this report, the related issues are elaborated. In Section 2,

the advanced research of dark web crawling was summarized.

The novelty of this research is discussed in Section 3 by the

targeted-crawling system design and implementation setup.

The output of the crawling system is discussed and analyzed

in section 4, in terms of time processing and crawled data

accuracy. Based on the analysis from Section 4, the research

conclusion is stated in Section 5.

2. RELATED WORKS

The dark web itself is the most obscure area of the deep web

that is purposefully concealed, virtually unreachable via

standard Web browsers, and only accessible with the use of

specialized protocols, configuration, or authorization with the

use of the TOR network [24]. The state-of-the-art dark web

crawling techniques involve a multi-faceted approach that

combines advanced technologies and innovative

methodologies to efficiently gather and analyse information

from the hidden corners of the internet.

The process begins with the development of a sophisticated

web crawler equipped with intelligent algorithms that can

dynamically adapt to the ever-changing structure of the dark

web. An automated computer program that browses webpages

based on hyperlinks is called a web crawler, often referred to

as a web spider or web robot. Web crawling, often known as

spiders, is the technique through which crawlers collect data

from the Web [4]. This crawler's implementation intends to

manage and maintain the index of online pages and enable

quick, accurate, and useful searches [25].

It is well known that there will be several challenges when

crawling on the dark web, including the fact that it is hard to

penetrate because it is at the base of the internet network [6].

The difficulty of obtaining a dark web address from the regular

web is due to its random and elongated shape, dark network

logins, and web cycles brief and could end in days [26]. A few

research studies have thoroughly scrutinized web crawling on

the dark web such as I2P (Invisible Internet Project), IPFS

(Interplanetary File System), and TOR. The crawling

technique employs a combination of traditional URL-based

crawling and content-based analysis to traverse through onion

sites, forums, and other hidden platforms. The research focus

on the crawling method is summarized in Table 1.

Table 1. Research on the technical aspects of dark web crawler

Reference Summary Tools

[27]

A novel crawling system using a human-assisted accessibility approach and an incremental crawler with a recall-

improvement mechanism. The system improves access to dark web forums and outperforms standard periodic- and

incremental-update approaches.

Not

specified.

[28]

A novel crawling system to collect dark web forum content. The system uses a human-assisted accessibility

approach, URL ordering features, and an incremental crawler with a recall-improvement mechanism. Experiments

show that the system significantly improves access to dark web forums, outperforming standard periodic- and

incremental-update approaches.

Not

specified.

[24]

A conceptual crawling system to uncover suspicious and malicious websites from The Onion Router (TOR)

network. The system creates a database of suspicious and malicious websites by scraping and linking attributes,

updating automatically, and archiving previous versions.

Not

specified.

[29]
A python-based scrapy spider for structure and content mining to explore the dark web. The toolkit includes

preparing content and reconstructing the graph structure.
Python.

468

Reference Summary Tools

[30]

The study develops methods for classifying complaints and an interactive crawler to identify discrimination.

Conservative exit policies are ineffective, but most Tor attacks generate high traffic volume, suggesting potential

for detection and prevention without violating users' privacy.

Not

specified.

[12]

A conceptual system for automatically creating a database of suspicious websites on the TOR network. The system

would find these websites by looking for links within TOR webpages. The database would be special because it

would keep track of old versions of itself, so law enforcement could search both current and past versions to find

malicious sites.

Not

specified.

[15]

Designs and implements Python scrapers for Crawling and scraping dark crypto markets marketplaces to investigate

the possibility of extracting useful results regarding attack trends and predicting them in advance by crawling the

Deep/Dark and Surface web. The result shows that proactive monitoring and analysis of attack trends can contribute

to the protection of the IoT ecosystem.

Python.

[6]
A crawler that is able to simulate a user login to a dark market, crawling the whole website and fetching the required

data from its pages. The market structure was uncovered and analyze the product summary.

[13]
A framework for hidden threat intelligence by briefly summarize some of the most frequently occurring words on

various dark websites. As the growing data set continues, the knowledge of the dark web will uncover.
Python.

[14]

A Selenium-based crawler was used to harvest data specific to South Korean dark websites. The focus was on

investigating cyber-criminal activities by performing an in-depth profiling of the top 3 Korean dark web sites. The

researchers were able to gain insights into the types of cyber-criminal activities occurring in the region.

Not

specified.

[16]

This paper proposes a python-based focused crawling framework to uncover child and women abuse material in

the Surface and Dark Net. The relevance of the page and hyperlinks is calculated using natural language processing

and ANN-based classifiers from anchor text and local context of the hyperlinks. The result shows that the hyperlink

selection method is an effective approach for web data mining and classification tasks.

Python.

[17, 29]

Analyze the Tor dark web graph's internal structure and connectivity, examining the bow-tie structure found in the

World Wide Web. The web graph is generated from Python crawler data, with nodes representing individual Tor

hidden services and edges representing hyperlinks. The graph is sparse, with few connected pairs, and can be

decomposed into a bow-tie structure with small component sizes. The Tor network exhibits characteristics of small-

world and scale-free networks.

Python.

[18]
This system uses information theory to compare widely used distances and considers heterogeneous data, resulting

in more accurate distances than other tested methods.

Not

specified.

[19]

This paper proposes a dedicated parser methodology for extracting URLs from the dark web, outperforming regular

expressions and built-in parsers. It addresses challenges in link harvesting on the dark web and discusses factors

that make it more efficient. However, this research only provides a URL validation for link harvesting.

Not

specified.

[20]

A novel framework for automated CAPTCHA breaking, utilizing a generative method to recognize dark web text-

based CAPTCHAs with noisy backgrounds and variable character length. The framework achieved over 94.4%

success rate.

Not

specified.

[21]

A SpyDark collects information from both the surface and the dark web. The crawler extracts text data, images,

and hyperlinks, and uses a pre-trained NLP model to determine relevance. It can draw link tree of the content and

mark the crawled page to relevan and irrelevant to specific criteria.

Not

specified.

[31]

A Tor-based web crawling model was developed, which successfully scraped web content from both clear and dark

web pages and dark marketplaces on the Tor network. This paper provides novel knowledge about ACN-based web

crawlers and presents a model for crawling, scraping, and similarity analysis of clear and dark websites.

Python.

3. PROPOSED METHOD

Focus web crawlers are web crawlers that have been

designed specifically for deep browsing [32]. By looking at

similar terms, focus crawling searches online pages in a

targeted manner [6]. There are three learning phases for the

web crawling process of web exploration: content-based, link-

based, and brother-based [33].

Focus crawlers discover web resources by navigating

through link structures and selecting hyperlinks based on

relevance. Focus crawling operates by precisely classifying

information based on content relevance and preserving the

maximum functionality of collected URLs and searchable

forms [34]. This method of operation allows the use of focus

crawling for platforms such as the World Wide Web [35],

Twitter [36], and deep web data [34, 37]. This has led to the

knowledge that focus crawling may be used by any search

engine [38].

This research investigated sites on the dark web using a

combination of in-depth algorithms and focus crawling

techniques. A VPN (Virtual Private Network) and TOR

browser are used as supporting software to directly check the

website that is being browsed in addition to the targeted

crawling technique. The focus crawling was combined with in-

depth crawling to produce targeted crawling. The following

block diagram shows the steps of the focus in-depth crawling

method procedure. The basic model of our research is depicted

as a level 0 data flow diagram in Figure 1. The diagram context

shows a targeted crawler system that has three entities, namely

the user, the TOR network, and the dark web site to be

accessed.

Figure 1. The context diagram of the proposed dark web

crawling system

The targeted crawler has two main processes according to

focus and in-depth crawling method. The focus crawling

handled the keyword processing and content filtering. The in-

469

depth crawling was used to handle the URL processing in the

focus crawling.

The system process begins with the user inputting keywords

and the parent URL that the system will explore.

After processing the input, the system accesses the dark web

with the assistance of the TOR network to reach the provided

URL and further explore additional URLs based on the entered

keywords. Following the exploration process, the discovered

URLs, based on the input URL and keywords, are stored in a

dataset under the name of the dark web input. The process is

depicted in Figure 2.

Figure 2. Data flow diagram level 1

The URL processing is then divided into three processes,

namely the input verification process, the excluding process,

and the fixing process. At DFD (Data Flow Diagram) level 2,

there are already 2 data stores, namely the data store for raw

URLs and the result URL data store. The raw URL data store

contains a list of URL lists placed in the “a href” and “area

href” tags. As the URLs contained in this tag are not

completely perfect, it then enters the URL fixing process and

then stored in a database.

The keyword processing and content filtering in the targeted

crawling system is carried out using three processes: Regex

Text, Regex Wildcard, and Regex Optional. Regex Text

involves exploration based on the text of the keywords entered

by the user such in RegexText pseudocode. Regex Wildcard

explores keywords with the limitation symbols of a period (.)

and/or a plus sign (+) to represent multiple letters in the

keyword such as Regex Wildcard pseudocode. Meanwhile, the

Regex Optional processing explores keywords with a question

mark (?) symbol to indicate that the letters before the symbol

are optional such as in Regex Optional pseudocode. The

crawled data was then stored in a result database. Figure 3

shows the DFD level 2 of the URL processing system.

Program RegexText (keyword, inputkw, url)

1. FOR url contains keyword

2. F(i,j) → string inputkw[0…i] matches with string

keyword[0…j]

3. IF (inputkw[i]==keyword[j])

4. PRINT (URL. Keyword)

5. return TRUE

6. ELSE

7. Return FALSE

8. End FOR

Program RegexWildcard (keyword, inputkw, url)

1. FOR url contains keyword

2. F(i,j) → string inputkw[0…i] matches with string

keyword[0…j]

3. IF (i<0 && j<0)

4. return TRUE

5. END IF

6. IF (i<0 && j>=0)

7. return FALSE

8. END IF

9. IF (i>=0 && j<0)

10. return isAllStarts(keyword,j)

11. End if

12. END FOR

Program RegexOptional (keyword, inputkw, url)

1. FOR url contains keyword

2. F(i,j) → string inputkw[0…i] matches with string

keyword[0…j]

3. IF (inputkw[i]&&keyword[j] not in konten)

4. return FALSE

5. ELSE

6. PRINT (URL. Keyword)

7. Return TRUE

8. END IF

9. END FOR

Figure 3. Data flow diagram level 2

470

The system was tested across various scenarios, including

functional testing, accuracy testing, and performance testing.

Functional testing involves assessing the system's

functionality, with a focus on white-box validation to gauge its

compliance with system requirements. During white-box

validation, each process within the system was scrutinized

individually to determine if it functioned correctly and as

intended. This validation process was conducted for all code

files, with the expectation of achieving a 100% success rate,

thereby confirming the program's full functionality.

The testing and analysis were conducted in dark web TOR

network. Due to the large scale of the dark web network, this

research only crawls the specific URL which contains the

specific keywords. First, the TOR network is activated, and the

crawling parameter is set. The TOR connection was done on

TOR network through TOR software which integrated with

Virtual Private Network. In the experiment, the crawling

parameters are keywords, in-depth value, pause time, and

URLs. And then, the crawler crawls the dark web and

keywords processing.

4. RESULT AND ANALYSIS

4.1 Simulation setup

The testing and analysis were conducted in dark web TOR

network. Due to the large scale of the dark web network, this

research only crawls the specific URL which contains the

specific keywords. First, the TOR network is activated, and the

crawling parameter is set. The TOR connection was done on

TOR network through TOR software which integrated with

Virtual Private Network. In the experiment, the crawling

parameters are keywords, in-depth value, pause time, and

URLs. And then, the crawler crawls the dark web and

keywords processing. The flowchart of the crawling process is

depicted in Figure 4.

Figure 4. Crawling process

In this experiment, the input keywords are “cocain” and

“hack”. The crawling parameters were set with the in-depth

value set to three, and the pause time is set to 0. This limitation

is in place because extending the depth further would

necessitate introducing “pause intervals”. Thus, it would

render performance measurements unreliable due to the

impact of these pauses. Additionally, setting a limit on the

crawling depth serves the purpose of simplifying accuracy

assessment, as it was manually checked. It is important to note

that no commercial dark web crawler is available for

benchmarking accuracy, which necessitates manual

verification of all website URLs during each trial. The

wildcard and the optional character in the Regex Wildcard and

Regex Optional are set to 1.

The rule-based focus crawling from [22] and targeted

crawling were occupied to crawl the URLs to dig and scrap

even deeper. Each URL was crawled ten times to statistically

analyze the accuracy, completeness, and time processing. The

list of the URLs is listed in Table 2.

Table 2. List of the tested URLs

No. URL

1
http://rfyb5tlhiqtiavwhikdlvb3fumxgqwtg2naanxtiqibid

qlox5v*****.onion/

2
http://xf2gry25d3tyxkiu2xlvczd3q7jl6yyhtpodevjugnxi

a2u665a*****.onion/

3
http://prjd5pmbug2cnfs67s3y65ods27vamswdaw2lnwf

45ys3pjl55h*****.onion/

4
http://guzjgkpodzshso2nohspxijzk5jgoaxzqioa7vzy6qd

mwpz3hq4*****.onion/

5
http://kq4okz5kf4xosbsnvdr45uukjhbm4oameb6k6agjj

sydycvflce*****.onion/

The highest accuracy score was then calculated to select the

best Regex-based crawling method. Given 𝑋 = {𝑥1, 𝑥2, 𝑥3, … ,

𝑥𝑖}; which 𝑥𝑖 is the average harvest rate of Regex (i), and 𝑌 =

{𝑦1, 𝑦2, 𝑦3, …, 𝑦𝑖}; which 𝑦𝑖 is the number of crawled pages

of Regex (i); i=3 which is Regex Text, Regex Wildcard, and

Regex Optional, the accuracy score is calculated such in Eq.

(1).

𝐴𝑆𝑖 = 𝑥𝑖 ∗
𝑦𝑖

max(𝑌)
 (1)

4.2 White box validation

The results of testing with this white box come in the form

of software errors. All processes on each code file that are

validated are shown in Table 3. All the functionalities

employed in the system that was centered on crawling were

found to be operating as expected. The system works properly

according to the system requirements, which example of the

crawled data can be seen in Figure 5 and Figure 6.

Figure 5. Example of crawled page data with keyword

"cocaine"

471

Table 3. White box validation

Function Expected Results Results

Input
The URL and keyword input process is carried out

to be crawled.

Users can input URL and keyword restrictions to complete

the operation.

Checking TOR service
The checker module provides notification

regarding the availability of TOR service.

The checker module provides notification regarding the

availability of TOR service.

URL validation
The checker module can detect and repair any

missing components of the URL.

The checker module can detect and repair any missing

components of the URL.

Crawling when

examining the Keyword

Regex text

Retrieve URL results from dark web crawling and

use a regular expression approach to find the

entered keywords.

Retrieve URL results from dark web crawling and use a

regular expression approach to find the entered keywords.

Checking Keyword

Regex Wildcard while

crawling

Using the URL of the returned results from dark

web crawling to check the entered keywords using

the Regular expression wildcard technique.

Applying the Regular Expression Wildcard technique to

check the entered keywords, and use crawling to obtain URL

results from the dark web.

Checking Keyword

Regex Optional when

Crawling

Retrieving the URL of the results from dark web

crawling and using the optional Regular expression

approach to check the entered keywords.

Can obtain URLs through dark web crawling and use the

optional Regular expression approach to verify the entered

keywords.

Create output file

Creating a text file with extension .txt that has a

list of output URLs with filenames that correspond

to the input keywords.

Can produce a text file with the extension .txt that contains a

list of output URLs with filenames based on the keywords.

Crawling
Alpha crawl, checker, and core crawl can run the

crawling process.
The system can crawl the dark web.

Crawl time notification
Shows information about the crawl time, which

signifies that the URL procedure is finished.

Can show information on the length of the crawling process,

indicating when the process for the URL has finished

Figure 6. Example of crawling process using Regex

Wildcard on keyword “hack”

4.3 Performance testing

The performance testing aimed to assess the application's

overall performance. This involved collecting data on the

average crawling times, enabling an analysis of crawling

performance. Testing was done ten times for each URL with

three different keyword processing methods, including Regex

Text from research [22], Regex Wildcard, and Regex Optional.

This system uses focus crawling on a parent URL to test the

system's crawling performance for each keyword search

procedure. The table displays the parent URL that crawled

during the targeted crawling system test.

The dataset is the crawled dark web pages from the URLs

in Table 2. The crawled dataset consists of two datasets which

are dark web content and filtered content. The first is the

dataset from the in-depth crawling, consisting of all pages on

the web for related input URLs. The second is the filtered

pages that match the targeted crawling keyword. Each epoch

of the testing was then parameterized by crawling time,

number of filtered pages, number of pages, attempt number,

accuracy, and keywords. Each parameter was recorded for

Regex Text, Regex Wildcard, and Regex Optional crawling in

an epoch. The example of the crawling output is shown in

Figure 7. The dataset structure can be seen in Figure 8. The log

parameter result is a table of 300 data with seven features.

Based on the average per-page crawling time, it was

determined that the crawler demonstrated a rapid crawling

performance, with a testing speed of approximately 0.2 to 1.1

seconds per URL. It shows that the crawler can work properly

with a fast per-page crawling time. The low per-page crawling

time is not only influenced by the web server but also by the

type of content. For example, the URL 2 is a static web that

can be crawled faster. The average per page crawling in each

URL is depicted in Figure 9.

Figure 7. An example of the result of keyword checking and

crawling

Figure 8. Dataset structure

From the ten times Regex Text crawling process from

research [22] in five URLs, the average crawling time was

16.7 seconds. In comparison, the Regex Wildcard crawling

process averaged 15.8 seconds, which was slower than the

472

Regex Optional process which averaged 14.4 seconds. The

Regex Optional has the fastest crawling time compared to the

others. The higher number of characters in keyword result in a

higher crawling time. The statistical average crawling time

result comparison can be seen in Figure 10.

Figure 9. Average crawling rate

Figure 10. Average crawling time

Figure 11. Average crawling time variation

The use of Regex-based crawling has shown high-speed

average crawling times. Regex wildcard and Regex Optional

provide a more stable crawling process. Based on testing the

targeted crawling system on the keywords "cocain," and

“hack”, it was discovered that the crawling process was carried

out with different variations in time in each experiment. Each

URL variance value demonstrates that the crawling for each

attempt may be affected by the network and web server

performance and condition. Regex Optional achieves more

stable average variation with 1.88 seconds which is better than

1.95 seconds in Regex Wildcard and 2.07 seconds in Regex

Text. The results can be seen in Figure 11.

4.4 Completeness testing

The completeness is measured by the number of crawled

and scraped data from the dark web. With the focused crawling,

the data only contained the URLs and pages that contained the

keywords. To measure the completeness, the number of

crawled data was compared to the Regex Text in research [22],

and analysed manually. For the depth = 3, the result shows that

the Regex Optional has crawled and scraped a higher number

of URLs than the Regex Text and Wildcard. The number of

crawled pages can be seen in Table 4.

Table 4. The number of collected crawled pages

URL Number Regex Text Regex Wildcard Regex Optional

1 2 2 3

2 12 10 12

3 7 6 7

4 11 11 14

5 11 10 11

4.5 Accuracy testing

Accuracy testing was employed to evaluate the URL

content obtained from crawling in relation to the input

keywords. This analysis also considered the impact of Regex

Text from research [13], Regex Wildcard, and Regex Option

on the collected data. The accuracy analysis was performed on

the data obtained from the same scenario as the performance

testing, where each URL was tested ten times using three

distinct keyword processing methods. Each URL utilized in

the earlier performance test was tested. By comparing the URL

results returned by the system with manual search results on

the dark web, it is possible to determine the correctness of the

system. Two separate input keywords are used in this test to

determine correctness. For the outcomes of employing two

keywords to measure accuracy, Figure 12 shows the accuracy

results.

Figure 12. Average crawling accuracy

By comparing system results with manual search results on

the dark web, the accuracy of the targeted crawling system is

determined. The system divides its calculation of accuracy into

three distinct keyword processing techniques. These

techniques are employed with five different URLs and the

keywords "cocain" and "hack" in the system.

1 2 3 4 5

Average per-page

crawling time
0.5 0.2 1.1 0.8 0.6

0

0.2

0.4

0.6

0.8

1

1.2

S
ec

o
n

d

Average crawling rate

Regex Text
Regex

Wildcard

Regex

Optional

Cocain 17.76 17.42 15.52

Hack 15.69666667 14.24333333 13.35333333

0
2
4
6
8

10
12
14
16
18
20

S
ec

o
n

d

Average crawling time

Regex Text
Regex

Wildcard

Regex

Optional

Cocain 1.84 2.121866667 1.69

Hack 2.3 1.78 2.08

0

0.5

1

1.5

2

2.5

S
ec

o
n

d

Average of crawling time variation

Regex Text
Regex

Wildcard

Regex

Optional

Cocain 90.95% 98.61% 98.61%

Hack 97.67% 99.67% 99.67%

90.00%
91.00%
92.00%
93.00%
94.00%
95.00%
96.00%
97.00%
98.00%
99.00%

100.00%

A
cc

u
ra

cy

Average crawling accuracy

473

The accuracy of each URL varies from the average system

accuracy results according to the comparison of the system and

manual results. In the targeted crawling process utilizing

Regex Text such as in the study of Yunelfi et al. [22], the

average accuracy is 94.31%. The Regex Wildcard and Regex

Optional both achieved an average accuracy of 99.14% for the

same two terms. However, as the number of crawled pages in

Regex Optional is higher than in Regex Wildcard, Regex

Optional achieved the best performance. The accuracy rate of

the Regex Optional result achieved the highest score of

99,14% compared to Regex Text and Regex Wildcard which

achieved 86% and 82%.

4.6 Discussion

According to the result of performance testing, the

difference in crawling time is not influenced by the use of

Regex Text, Regex Wildcard, and Regex Optional. From the

Anova testing on the conjugated crawling time for each

method, the result shows there are no influence of the Regex

method on the crawling time. Compared to the significance

value=0,05, the p-value=0,75 shows that the variance of the

Regex-based crawling time is homogenous. However, the F-

score shows that there is no difference in average crawling

time using different Regex. It can be seen from the F-

core=0.28 is lower than the F-critical which is 3,2. Thus, it

shows that the use of Regex does not affect the crawling time.

The Anova testing result can be seen in Table 5.

Table 5. Anova test result

Source of

Variation
SS df MS F P-Value F crit

Between groups 17.1 2 8.5 0.28 0.75 3.2

Within groups 1251.8 42 29.8

From further analysis, the difference in crawling time is

primarily due to its swiftness of login attempt, with an average

of 1,15 on Regex Text, compared to 1 on Regex Wildcard and

1 attempt on Regex Optional. The faster crawling time of the

Regex Optional may be caused by the number of checking

characters, which is a stable checking character in the keyword.

It results in the complexity of O(m) which is the same as the

Regex Text with m being the number of characters in the

keyword string. From the pseudocode of Regex Wildcard, the

complexity is O(m*n) with m being the number of characters

in the input string and n being the number of characters in the

wildcard pattern.

It is shown that the wildcard will search for all possible

characters to replace the wildcard character in the keyword

which makes it slower along with the rising number and

complexity of character and wildcard. However, in our

scenario, as the optional and wildcard characters are set to 1,

the difference is not visible. The analysis of the influence of

the depth and the number of wildcard characters will be

reported in a separate report.

This study has limitations. The Regex processing is

determined as greedy and lazy [39]. These behaviours come

close to the previous finding that Regex has a slow processing

time. In HTML files, the Regex needs to keep track of all

HTML tags which is arbitrarily large. That is why in the next

research, the HTML parser may be better used to crawl the

dark web. For the alternative of the Regex processing in web

content, the use of automata and formal language may be

implemented in the future crawling method.

5. CONCLUSION

This research has successfully developed an application that

utilizes a targeted crawler. Following white-box validation and

testing, the crawler aligns with the system requirements.

During performance testing, Regex Optional outperformed

both Regex Wildcard and Regex Text, boasting an average

crawling time that was over a second faster than Regex

Wildcard and 2 seconds than Regex Text. Regex Optional

proves superior to Regex Text and Regex Wildcard due to the

swift access attempts on the initial access, thus reducing crawl

duration.

In terms of accuracy, the accuracy of Regex Wildcard

matches that of Regex Optional, standing at 99.14%, which is

4.83% higher than the accuracy achieved with Regex Text.

This outcome arose from the observation that registering on

Regex Wildcard and Regex Optional is a swifter process

compared to Regex Text. Moreover, when using Wildcard

Regex and Optional Regex, there have been no instances of

access failures during dark web crawling, influencing the

quantity of obtained URL results. The best keyword

processing method in targeted crawling is Regex Optional,

with an accuracy rate of over 99%.

However, the Regex-based processing may suffer a slower

process with the rising number and complexity of characters

and wildcards. The objective of future research is to improve

this drawback by the use of better data processing. The use of

an HTML parser for HTML files may increase the crawling

time. The use of automata and formal language may improve

the accuracy to gain better content analysis of the dark web.

ACKNOWLEDGMENT

This research is funded by Telkom University under the

grant no. KWR4.073/PNLT3/PPM-LIT/2022.

REFERENCES

[1] Prayogi, A., Aji, R.F. (2023). Utilization of mobile

network infrastructure to prevent financial mobile

application account takeover. Jurnal Rekayasa Sistem

dan Teknologi Informasi, 7(4): 797-808.

https://doi.org/10.29207/resti.v7i4.5025

[2] Hafiz, N., Briliyant, O.C., Priambodo, D.F., Hasbi, M.,

Siswanti, S. (2023). Remote penetration testing with

telegram bot. Jurnal Rekayasa Sistem dan Teknologi

Informasi, 7(3): 705-714.

https://doi.org/10.29207/resti.v7i3.4870

[3] Sianturi, T., Ramli, K. (2022). A security framework for

secure host-to-host environments. Jurnal Rekayasa

SIstem dan Teknologi Informasi, 6(3): 380-386.

https://doi.org/10.29207/resti.v6i3.4018

[4] Sekhat, S.R.M., Siddesh, G.M., Manvi, S.S., Srinivasa,

K.G. (2019). Optimized focused web crawler with

natural language. Cybernetics and Information

Technologies, 19(2): 146-158.

https://doi.org/10.2478/cait-2019-0021

[5] Liakos, P., Ntoulas, A., Labrinidis, A., Delis, A. (2016).

Focused crawling for the hidden web. World Wide Web,

19: 605-631. 19: 605-631.

https://doi.org/10.1007/s11280-015-0349-x

[6] Alkhatib, B., Basheer, R. (2019). Crawling the dark web:

474

A conceptual perspective, challenges and

implementation. Journal of Digital Information

Management, 17(2): 51-60.

https://doi.org/10.6025/jdim/2019/17/2/51-60

[7] Jiang, J.T., Song, X.Y., Yu, N.H., Lin, C.Y. (2013).

FoCUS: Learning to crawl web forums. In Proceedings

of the 21st International Conference on World Wide Web,

pp. 33-42. https://doi.org/10.1145/2187980.2187985

[8] Idrees, A.M., Shaaban, E.M. (2020). Building a

knowledge base shell based on exploring text semantic

relations from arabic text. International Journal of

Intelligent Engineering and Systems, 13(1): 324-333.

https://doi.org/10.22266/ijies2020.0229.30

[9] Lakshmanna, K., Khare, N. (2016). FDSMO: Frequent

DNA sequence mining using FBSB and optimization.

International Journal of Intelligent Engineering and

Systems, 9(4): 157-166.

https://doi.org/10.22266/ijies2016.1231.17

[10] Sekhar, M., Siddesh, G.M., Manvi, S.S., Srinivasa, K.G.

(2019). Optimized focused web crawler with natural

language processng based relevance measure in

bioinformatics web sources. Cybernetics and

Information Technologies, 19(2): 146-158.

https://doi.org/10.2478/cait-2019-0021

[11] Agun, H.V. (2023). Webcollectives: A light regular

expression based web content extractor in Java. Social

Science Research Network.

https://doi.org/10.2139/ssrn.4480037

[12] Pannu, M., Kay, I., Harris, D. (2018). Using dark web

crawler to uncover suspicious and malicious websites. In

Ahram, T., Nicholson, D. (eds.) Advances in Human

Factors in Cybersecurity, 108-115.

https://doi.org/10.1007/978-3-319-94782-2_11

[13] Yang, Y., Zhu, G.C., Yang, L., Yu, H.H. (2020).

Crawling and analysis of dark network data. In

International Conference on Computing and Data

Engineering, pp. 116-120.

https://doi.org/10.1145/3379247.3379272

[14] Lee, J., Hong, Y., Kwon, H., Hur, J. (2020). Shedding

light on dark Korea: An in-depth analysis and profiling

of the dark web in Korea. International Workshop on

Information Security Applications, Lecture Notes in

Computer Science(), vol 11897. Springer, Cham.

https://doi.org/10.1007/978-3-030-39303-8_27

[15] Shiaeles, S., Kolokotronis, N., Bellini, E. (2019). IoT

vulnerability data crawling and analysis. In IEEE World

Congress on Services (SERVICES), Milan, Italy.

https://doi.org/10.1109/SERVICES.2019.00028

[16] Shinde, V., Dhotre, S., Gavde, V., Dalvi, A., Kazi F.,

Bhirud, S.G. (2021). CrawlBot: A domain-specific

pseudonymous crawler. In ICCEDE 2020.

Communications in Computer and Information Science,

vol 1436. Springer, Cham. https://doi.org/10.1007/978-

3-030-84842-2_7

[17] Alharbi, A., Faizan, M., Alosaimi, W., Alyamni, H.,

Agrawal, A., Kumar, R., Khan, R.A. (2021). Exploring

the topological properties of the tor dark web. IEEE

Access, 9: 21746-21758.

https://doi.org/10.1109/ACCESS.2021.3055532

[18] David, B., Delong, M., Filiol, E. (2021). Detection of

crawler traps: Formalization and implementation—

defeating protection on internet and on the TOR network.

Journal of Computer Virology and Hacking Techniques,

17: 185-198. https://doi.org/10.1007/s11416-021-00380-

4

[19] Dalvi, A., Siddavatam, I., Thakkar, V., Jain, A., Kazi, F.,

Bhirud, S. (2021). Link harvesting on the dark web. In

IEEE Bombay Section Signature Conference (IBSSC),

Gwalior, India.

https://doi.org/10.1109/IBSSC53889.2021.9673428

[20] Zhang, N., Ebrahimi, M., Li, W.F., Chen, H. (2021).

Counteracting dark web text-based CAPTCHA with

generative adversarial learning for proactive cyber threat

intelligence. ACM Transactions on Management

Information Systems, 13(2): 1-21.

https://doi.org/10.1145/3505226

[21] Dalvi, A., Paranjpe, S., Amale, R., Kurumkar, S., Kazi,

F., Bhirud, S.G. (2021). SpyDark: Surface and dark. In

2021 2nd International Conference on Secure Cyber

Computing and Communications (ICSCCC), Jalandhar,

India.

https://doi.org/10.1109/ICSCCC51823.2021.9478098

[22] Yunelfi, P.R., Popalia, A.S., Fahrani, F., Purwanto, Y.,

Ruriawan, M.F. (2022). DarkWeb crawling using

focused and classified algorithm. Journal of Computer

Engineering, Progress, Application & Technology, 1(2):

1-6. https://doi.org/10.25124/cepat.v1i02.4879

[23] Kumar, M., Bindal, A., Gautam, R., Bhatia, R. (2018).

Keyword query based focused web crawler. Procedia

Computer Science, 125: 584-590.

https://doi.org/10.1016/j.procs.2017.12.075

[24] Iliou, C., Kalpakis, G., Tsikrika, T., Vrochidis, S.,

Kompatsiaris, I. (2017). Hybrid focused crawling on the

Surface and the dark web. Eurasip Journal on

Information Security, 11.

https://doi.org/10.1186/s13635-017-0064-5

[25] Shrivastava, V. (2018). A methodical study of web

crawler. Journal of Engineering Research and

Application, 8(11): 1-8. https://doi.org/10.9790/9622-

0811010108

[26] Monterrubio, S.M.M., Naranjo, J.E.A., Lopez, L.I.B.,

Caraguay, Á.L.V. (2021). Black widow crawler for TOR

network to search for criminal patterns. In 2021 Second

International Conference on Information Systems and

Software Technologies (ICI2ST), Quito, Ecuador.

https://doi.org/10.1109/ICI2ST51859.2021.00023

[27] Frana, P.L. (2004). Before the web there was gopher.

IEEE Annals of the History of Computing, 26(1): 20-41.

https://doi.org/10.1109/MAHC.2004.1278848

[28] Fu, T.J., Abbasi, A., Chen, H. (2010). A focused crawler

for dark web forums. Journal of the American Society for

Information Science and Technology, 61(6): 1213-1231.

https://doi.org/10.1002/asi.21323

[29] Celestini, A., Guarino, S. (2017). Design,

implementation and test of a flexible tor-oriented web

mining toolkit. In International Conference on Web

Intelligence, Mining, and Semantics, pp. 1-10.

https://doi.org/10.1145/3102254.3102266

[30] Singh, R., Nithyanand, R., Afroz, S., Pearce, P., Tschantz,

M.C., Gill, P., Paxson, V. (2017). Characterizing the

Nature and Dynamics. In Proceedings of the 26th

USENIX Security Symposium, BC, Canada, pp. 325-341.

[31] Bergman, J., Popov, O. (2023). Exploring dark web

crawlers: A systematic literature review of dark web

crawlers and their implementation. IEEE Access, 11:

35914-35933.

https://doi.org/10.1109/ACCESS.2023.3255165

[32] Alfarisy, G.A.F., Bachtiar, F.A. (2017). Focused web

475

crawler for Indonesian recipes. In 2017 International

Conference on Sustainable Information Engineering and

Technology (SIET), Malang, Indonesia.

https://doi.org/10.1109/SIET.2017.8304134

[33] Lu, H., Zhan, D., Zhou, L., He, D. (2016). An improved

focused crawler: Using web page classification and link

priority evaluation. Mathematical Problems in

Engineering, 2016: 6406901.

https://doi.org/10.1155/2016/6406901

[34] Mishra, P., Khurana, A. (2018). Accuracy crawler: An

accurate crawler for deep web data extraction. In 2018

International Conference on Control, Power,

Communication and Computing Technologies

(ICCPCCT), Kannur, India.

https://doi.org/10.1109/ICCPCCT.2018.8574286

[35] Fang, T., Han, T., Zhang, C., Yao, Y.J. (2020). Research

and construction of the online pesticide information

center and discovery platform based on web crawler.

Procedia Computer Science, 166: 9-14.

https://doi.org/10.1016/j.procs.2020.02.004

[36] Khazaie, A., Seghouani, N.B., Bugiotti, F. (2021). Smart

crawling: A new approach toward focus crawling from

Twitter. Information Retrieval.

https://doi.org/10.48550/arXiv.2110.06022

[37] Patil, T.A., Chobe, S. (2017). Web crawler for searching

deep web sites. In 2017 International Conference on

Computing, Communication, Control and Automation

(ICCUBEA), Pune, India.

https://doi.org/10.1109/ICCUBEA.2017.8463648

[38] Ghupta, A., Singh, K.B., Singh, R.K. (2018). Web

crawling techniques and its implications. Globus An

International Journal of Management & IT, 9(2): 7.

[39] Cox, R. (2019). Regular expression matching can be

simple and fast.

https://swtch.com/~rsc/regexp/regexp1.html, accessed

on Feb. 12, 2024.

476

