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 In response to escalating cyber threats, there is an urgent need for adaptive detection 

mechanisms. This study introduces a cyber threat detection framework employing 

ensemble learning and a hybrid feature ranking approach. Designed to address diverse and 

evolving threats, the framework aims to enhance detection accuracy in dynamic 

environments. The framework comprises three key components. Firstly, an ensemble 

feature ranking algorithm identifies influential features in imbalanced datasets, ensuring 

effective threat detection while mitigating imbalanced class impact. Secondly, a hybrid 

feature ranking measure (HFRM) integrates fusion entropy to assess feature importance 

comprehensively. HFRM combines information gain, entropy, and proposed fusion 

entropy for a holistic ranking. Thirdly, the framework includes a multi-class k-means 

rank-based classification for efficient clustering and threat categorization. Evaluation 

using diverse datasets underscores the framework's effectiveness in achieving high 

detection accuracy and robustness across threat scenarios. The ensemble approach, hybrid 

feature ranking, and rank-based classification collectively provide an adaptive solution 

for cyber threat detection. In conclusion, this research introduces an innovative framework 

integrating ensemble learning, hybrid feature ranking, and k-means clustering, promising 

more resilient cybersecurity in the face of sophisticated threats. 
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1. INTRODUCTION 

 

The rapid proliferation of the Internet of Things (IoT) has 

significantly reshaped urban landscapes, particularly in the 

context of smart city applications. With projections estimating 

an excess of 125 billion IoT devices by 2030, the security of 

interconnected systems faces unprecedented challenges. This 

text aims to delve into the intricate vulnerabilities and threats 

confronting IoT networks within smart city infrastructures, 

underscoring the imperative for advanced threat intelligence 

detection mechanisms [1]. 

 

1.1 IoT in smart cities: A vulnerability overview 

 

Smart city applications heavily rely on the interconnectivity 

of IoT devices, presenting a significant impact on urban life. 

However, the sheer volume and diversity of IoT devices across 

various technologies and protocols expose residents' personal 

information to serious cybersecurity threats. This section 

delves into the challenges of administering IoT networks, 

emphasizing the susceptibility of smart city applications to 

cyber dangers [2]. 

 

1.2 Intrusion detection system for IoT security 

 

Traditional Intrusion Detection Systems (IDS) prove 

inadequate for resource-constrained IoT devices. This section 

introduces the concept of an IDS tailored for IoT networks, 

highlighting the need for specialized approaches. The text 

explores the role of IDS in monitoring and defending against 

intruders, emphasizing its significance as a secondary line of 

defense [3]. 

 

1.3 Machine learning and deep learning for attack 

detection 

 

As traditional IDS falls short in identifying IoT attacks, this 

section introduces machine learning and deep learning 

techniques as viable alternatives. Various algorithms, 

including Support Vector Machine, Naïve Bayes, Random 

Forest, K-Nearest Neighbor, Multilayer Perceptron, Logistic 

Regression, Decision Tree, and Deep Learning CNN, are 

explored for their potential in detecting and classifying attacks. 

The multi-class k-means rank-based classification method 

with a Hybrid Bayesnet combines several key techniques to 

offer a robust approach to multi-class classification.  

Multi-Class K-Means Clustering: 

The method utilizes k-means clustering to partition the 

dataset into k distinct clusters based on the features' similarity. 

Each data point is assigned to the nearest cluster centroid, 

effectively grouping similar instances together. 

Rank-Based Classification: 

After clustering, a rank-based classification approach is 

employed to assign labels to the data points within each cluster. 

International Journal of Safety and Security Engineering 
Vol. 14, No. 2, April, 2024, pp. 541-551 

 

Journal homepage: http://iieta.org/journals/ijsse 
 

541

https://orcid.org/0000-0002-5491-5957
https://orcid.org/0000-0003-0760-6227
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140221&domain=pdf


 

This classification method utilizes the ranked features, 

where features with higher importance scores are given more 

weight in the classification process. 

By incorporating feature ranking, the algorithm ensures that 

the most relevant features contribute more significantly to the 

classification decision. 

Hybrid Bayesnet Construction: 

Following classification, a Hybrid Bayesnet is constructed 

to further refine the classification model. 

The Bayesian network captures dependencies between 

features and their impact on the target labels. 

By leveraging both the clustered data and the selected 

features, the Hybrid Bayesnet enhances the classification 

model's accuracy and interpretability. 

Advantages: 

Robustness to Complex Data Structures: 

The multi-class k-means clustering allows for the 

identification of underlying patterns in complex datasets. 

By grouping similar data points into clusters, the method 

can handle non-linear relationships and complex data 

distributions effectively. 

Interpretability through Feature Ranking: 

Feature ranking ensures that only the most relevant features 

contribute to the classification decision. 

This enhances the interpretability of the model by focusing on 

the key factors influencing the classification outcome. 

Scalability and Efficiency: 

K-means clustering and rank-based classification are 

computationally efficient techniques, making the method 

scalable to large datasets. 

Distributed computing frameworks can further improve 

efficiency by parallelizing the computation across multiple 

processors or nodes. 

Integration of Bayesian Networks: 

The incorporation of a Hybrid Bayesnet allows for the 

capture of complex dependencies between features and labels. 

This integration enhances the model's ability to handle 

uncertainty and noisy data, leading to more robust 

classification results. 

Flexibility and Adaptability: 

The method can be adapted to different types of datasets and 

classification tasks by adjusting parameters such as the 

number of clusters (k) and the feature selection criteria. 

This flexibility makes the approach suitable for various real-

world applications across different domains. 

 

1.4 Problem statement and motivation 

 

The text highlights vulnerabilities in IoT networks within 

smart cities, aiming to bolster security against increasingly 

sophisticated cyber threats. It proposes enhancing threat 

intelligence detection through optimized deep learning and 

IDS-based attack detection, with novel approaches to feature 

selection and secure data transmission. Intrusion Detection 

Systems play a vital role in identifying and alerting to 

anomalous behavior, safeguarding against internal and 

external attacks. Various types, such as Network-Based and 

Distributed IDS, offer scalable defense mechanisms. Feature 

extraction is crucial in intrusion detection, involving the 

extraction of values from datasets, categorized into simple 

heuristic, static, and dynamic features, enhancing detection 

techniques. 

This research works as describes the section 2 of related 

survey and prosed work as defined as section 3 and results 

discussion section 4 and finally section 5 as concluded in this 

paper. 

 

 

2. RELATED WORKS 

 

A comprehensive review of major research findings in the 

field of IoT security in smart cities, both domestically and 

internationally, underscores the evolving landscape of 

cybersecurity and highlights areas for further investigation [4, 

5]. 

Noor et al. [6] explored discriminatory features for machine 

learning-based malware classifiers. They experimented with 

various feature sets, including byte-n-grams, opcode-n-grams, 

fields of PE headers, and dynamic traces, for classifying 

malware families. Their results showcased the optimal 

algorithm-feature set combinations, highlighting that Decision 

Tree (DT) performance excels or equals that of Support Vector 

Machine (SVM) across all features, providing the highest 

accuracy with minimal features. The escalating growth and 

sophistication of malware pose a critical challenge to the 

digital world. To mitigate losses caused by malware, various 

security solutions, such as Anti-Virus (AV) techniques, have 

been developed. These AV techniques are broadly categorized 

into Signature-based and Non-Signature-based methods. 

Signature-based AV software uses scanning techniques to 

identify suspicious files based on specific byte sequences, 

offering high accuracy for known malware but failing to detect 

"zero-day" and "unknown" malwares. Signature-based 

techniques face limitations in their signature databases, and the 

process of creating signatures is time-consuming and complex, 

providing a larger attack time window for attackers. Dey et al. 

[7] proposed an Intrusion Detection System (IDS) specifically 

designed for IoT-related routing attacks, including selective 

forwarding and sinkhole attacks. The system incorporated 

anomaly-centric and specification-centric IDS modules, 

utilizing a voting method to determine suspicious behavior. In 

a smart city scenario, the hybridized model achieved a 76.19 

percent true positive rate and a 5.92 percent False Positive 

Rate (FPR) during simultaneous selective-forwarding and 

sinkhole assaults, demonstrating efficient performance with 

minimal storage requirements. In the exploration conducted by 

Imran et al. [8] an IoT architecture based on an ID architecture 

was adopted, emphasizing the use of commodity devices as a 

core unit for the suggested design. The Raspberry Pi, a widely 

used single-board computer, was employed in performance 

evaluations using the open-source IDS, Snort. The study 

suggested that the proposed design, utilizing resource-

constrained devices like the Raspberry Pi, effectively 

safeguarded IoT distributed systems. However, a notable 

drawback was identified as the design inadvertently leaving an 

open door for potential harm by an attacker on the target 

system. Al-Hawawreh and Hossain [9] proposed that 

processing health-related data could minimize malware 

attacks. They utilized a Deep Neural Network (DNN) 

primarily for authenticating IoT devices. The study 

highlighted concerns about potential overfitting in this context. 

Jamal et al. [10] developed a three-layered IDS employing a 

supervised methodology to detect various network-centric 

cyber-attacks in IoT networks. The system not only classified 

and analyzed each connected IoT device but also identified 

malicious packets and categorized different attack types. 

Evaluation in a smart-home test environment, utilizing eight 

commercially available gadgets, demonstrated F-measures of 
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90%, 98%, and 96% for the system's fundamental activities. 

Despite the high security level achieved, the implementation 

cost was higher. Akhter et al. [11] introduced Deep Neural 

Networks-centric anomalous Network IDSs, an intelligent 

framework constructing an optimized hybrid model based on 

Simulated and Improved Genetic Algorithms. Multiple 

algorithms were applied to determine the most effective 

combination of parameters crucial for constructing a DNN-

centered IDS, such as feature selection, architectural design, 

data normalization, activation, and momentum functions. The 

results of experiments showcased the system's superiority over 

existing frameworks, demonstrating improved detection 

accuracy and reduced false alarm rates. The network-based 

IDS's significant advantage in blocking attacks before 

reaching internal systems was acknowledged, while the study 

recognized the inevitability of DoS attacks. Alani et al. [12] 

proposed an algorithm named RBMs (Restricted Boltzmann 

Machines) for a smart city Intrusion Detection System (IDS) 

framework. The utilization of unsupervised learning, coupled 

with real-time data from sensors and smart meters, informed 

the use of RBMs. Diverse classifiers were subsequently 

trained based on these characteristics. The methodology's 

performance was evaluated using a smart water distribution 

unit, demonstrating its ability to identify attacks with greater 

precision. It outperformed a categorization strategy lacking a 

feature learning phase, albeit with a notable reliance on 

hardware, presenting a significant drawback. Despite a 3.120 

error rate, the method exhibited an improved malware 

detection rate of 98.790 percent, albeit with a significant error 

rate compared to current methods. Jahromi et al. [13] proposed 

addressing the effective balance between energy usage and 

security in IoT networks using three different techniques. 

Optimization at the MAC layer was deemed necessary to 

reduce energy consumption during security solution 

implementation. Trust-centric algorithms, including LDF 

(Listen Own Data Forwarding), NLDF (No Listening for Data 

Forwarding), and LT (Listen to All Transmissions), were 

introduced. LDF was chosen based on the network 

characteristics of the smart city, resulting in an energy-

efficient security strategy for resource-constrained IoT devices. 

Yazdinejad et al. [14] proposed an anomaly-based Intrusion 

Detection System based on Recurrent Neural Network (RNN), 

a deep learning technique. RNN leverages feedback from 

antecedent data to influence present outcomes, evaluated 

through multiclass and binary classifications using the NSL-

KDD intrusion detection dataset. Noor et al. [15] developed an 

Anomaly Traffic Detection method using Support Vector 

Machine, a supervised machine learning approach. The 

introduction of a novel algorithm estimating the entropy of 

data instances, coupled with a threshold value, identified 

aberrations in network behavior. SVM served as the classifier, 

enhanced by Particle Swarm Optimization (PSO) method, 

with assessments conducted on KDD CUP 99 and DARPA 

datasets. Noor et al. [15] designed a peculiar intrusion 

detection scheme for the IoT environment based on deep 

learning technology, addressing zero-day threats encountered 

due to the usage of multiple protocols in the IoT platform. 

Abirami and Palanikumar [16] introduced a modern network 

intrusion detection approach based on Conditional Variational 

Autoencoder (CVAE), specifically created for recognizing 

threats in the IoT network. The model, with intrusion labels 

consolidated within the decoder, emphasizes feature 

reconstruction and is deployable in IoT networks for 

identifying network intrusions. They tackled the IoT 

middleware requirement, acknowledging constrained 

resources in most devices, and proposed intelligent-based 

making methods for such middleware. An automata theory-

based technique was presented in the study of Aygul et al. [17] 

for the vast and diverse IoT platform. This technique involves 

designing uniform descriptions of IoT systems through labeled 

transition systems expansions, facilitating threat identification 

by correlating the flow of actions. A hybrid Intrusion 

Detection System (IDS), Jiang et al. [18] were developed to 

distribute various tasks to the border router and each network 

node, enabling cooperative functioning. In this design, each 

node in the IDS module has the capability to monitor neighbor 

nodes. If an attack is detected on a neighbor node, the notifying 

node informs the IDS module present in the border router. The 

specific technique used to identify usual activities is not 

explicitly mentioned by the authors. An IDS for the IoT 

environment was developed using a hybrid placement method 

[19]. Nodes in the centralized module receive notifications 

from network nodes about variations in nearby nodes. Three 

algorithms are applied in this technique to examine and 

identify threats in the network, with reduced power 

consumption and memory usage in the IoT environment. 

Alshehri et al. [20] introduced a deep packet anomaly 

detection-based IDS technique for IoT networks. Optimal 

attributes are selected using bit-pattern matching, considering 

the payload of the network as a byte sequence. N-gram and bit-

pattern comparisons significantly reduce the false positive rate 

for traditional threats. Lin et al. [21] deployed the Knowledge-

driven Adaptable Lightweight Intrusion Detection System 

(KALIS) in a centralized placement method. KALIS is 

knowledge-driven, self-adapting, and supports various 

communication protocols. It automatically gathers attribute 

details while monitoring the network, accurately detecting 

routing, Denial of Service (DoS), and conventional threats 

compared to other classical IDS approaches. Racherache et al. 

[22] introduced an anomaly-based intrusion detection system 

to address threats in the cloud platform. Binary-based Particle 

Swarm Optimization (BPSO) selects the most relevant 

instances, which are then classified using Support Vector 

Machine (SVM). Control parameters of SVM are tuned by 

Standard-based Particle Swarm Optimization (SPSO). Chen et 

al. [23] designed a novel security scheme for the virtual 

network layer in cloud computing using snort and classifiers 

like decision tree, associative, and Bayesian. An intrusion 

detection system is deployed in each host of the cloud, 

performing analysis in both offline and real-time. Admass et 

al. [24] developed the Online Intrusion Detection System 

Cloud System (OIDCS) to detect zero-day threats in online 

mode. The NeuCube architecture, based on the TBR algorithm, 

is deployed on OIDCS, achieving high accuracy. Yockey et al. 

[25] introduced a packet scrutinization algorithm and NK-

RNN (normalized Kmeans with the recurrent neural network) 

using trust authority, cloudlet controller, and virtual machine. 

A one-time signature secures end-users from invaders, 

detecting port scan and flooding attacks through the Packet 

Scrutinization Algorithm (PS). Irshad and Siddiqui [26] 

examined the interaction between malignant users and rational 

cloud resource supporters in the context of multi-mesh 

distributed technology in cloud computing, addressing its 

fragility and sensitivity to security risks. 
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3. PROPOSED FRAMEWORK 

 

In this framework, a hybrid system is devised to handle 

threat data across three distinct phases, as illustrated in Figure 

1. The input dataset emerges as a pivotal tool for detecting 

network intrusions within the Internet of Things (IoT) network. 

This dataset comprises data capturing the behavior of various 

devices interconnected within the network. Information about 

these devices, including their type, behavior, and 

communication patterns, is collected and stored in the cloud. 

Subsequently, this data undergoes analysis to pinpoint 

potential intrusions. 

The initial phase of cyber threat dataset analysis involves 

statistical outlier detection. Outliers, characterized by data 

points significantly divergent from the dataset's norm, are 

scrutinized. Input data, in the context of machine learning and 

data analysis, denotes raw information or observations 

furnished to a system or algorithm for processing, analysis, or 

other purposes. The quality and relevance of input data play 

pivotal roles in determining the efficacy of machine learning 

models. 

Data filtering, a subsequent step, entails the selection of a 

subset of data from a larger dataset based on specific criteria 

or conditions. This process aids in reducing dataset size and 

focusing on pertinent information. Techniques such as 

removing duplicates, applying specific conditions (e.g., 

selecting recent customers), and eliminating outliers 

contribute to refining the dataset for subsequent analysis or 

modeling. 

Ranking, another crucial aspect, involves ordering items or 

data points within a dataset based on specific attributes. This 

assigns a numerical or ordinal position to each item, indicating 

its relative importance, value, or relevance. Such ordering 

enhances the interpretability of the dataset and aids in 

subsequent analysis. 

Unlike traditional multi-class classification, where a model 

is trained to classify data into one of several mutually 

exclusive classes, parallel multi-class classification involves 

performing these classifications concurrently. This approach 

proves advantageous when dealing with a vast number of 

classes or when speed and efficiency are paramount. Proposed 

multi-class classification can be implemented through 

distributed computing frameworks, allowing the training and 

evaluation of multiple classifiers simultaneously. Each 

classifier handles the classification of data into one of the 

classes, and their results are amalgamated to make the final 

prediction, as depicted in Figure 1. 

The "Distributed Feature Ranking for Subset Selection" 

algorithm aims to efficiently rank features for subset selection 

by leveraging decision tree-based methods. Initially, the 

algorithm takes as input an input feature matrix X consisting 

of n samples and m features, along with a target variable vector 

y containing n labels. Additionally, the maximum depth of the 

decision tree, denoted as max_depth, is specified. The 

algorithm defines a function, rank_features (X, y), responsible 

for ranking features based on their importance, employing a 

suitable feature ranking method and returning a list of features 

sorted in descending order of importance. Subsequently, 

another function, construct_ decision_tree (X, y, depth), is 

defined to recursively build the decision tree. If the depth 

equals the maximum depth or if all samples in y belong to the 

same class, a leaf node with the majority class is created and 

returned. If X has no features remaining, a leaf node with the 

majority class is created and returned. Features are ranked 

using the rank_features function, and the top feature is selected 

for branching in the decision tree. For each unique value of the 

selected feature, subsets of samples and corresponding labels 

are created, and the process recurs until the tree reaches the 

maximum depth or all samples in a subset belong to the same 

class. Finally, the constructed decision tree is returned. The 

algorithm concludes by calling construct_decision_tree with 

the input data and depth initialized to zero, initiating the 

construction of the decision tree. Through this approach, the 

algorithm efficiently ranks features and constructs a decision 

tree for subset selection, aiding in identifying relevant features 

and improving model interpretability. 

The "Multi Class K-Means Rank Based Classification with 

Hybrid Bayes Net" function describes a comprehensive 

approach for multi-class classification by sequentially 

executing several key steps. Initially, feature ranking is 

performed to assess the relevance of features within the dataset 

(X, y), followed by feature selection to isolate the most 

informative ones based on a specified parameter (m). 

Subsequently, the selected features are utilized in K-Means 

clustering to partition the dataset into distinct clusters, 

facilitating the identification of underlying patterns. Upon 

clustering, rank-based classification is employed to assign 

labels to the data points, enhancing interpretability. 

Additionally, a hybrid Bayesian network is constructed to 

further refine the classification model, leveraging both the 

clustered data and the selected features. Overall, this 

methodological framework ensures a robust and informed 

approach to multi-class classification, offering insights into 

complex data structures and enhancing predictive accuracy. 

 

 
 

Figure 1. Overall framework of proposed cluster based 

classification model 

 

Algorithm 1: Filling missing values in numerical feature F 

using non-linear Gaussian estimation 

 

1. Input: 

2. F: Numerical feature array with missing values 

3. N: Number of elements in F 

4. Initialize an array NLG to store the non-linear 

Gaussian estimation values. 

5. For each index j from 0 to N-1: 

6. Calculate logF as the natural logarithm of F[j]. 

7. Calculate gaussian as 1 / sqrt (2 * pi * logF). 
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8. Append gaussian to NLG. 

9. Calculate maxF as the maximum value in F. 

10. Calculate sumF as the sum of all non-missing 

values in F. 

11. Calculate NLG_sum as the sum of all values in 

NLG. 

12. Initialize an array filled_values to store the filled 

values. 

13. For each index i from 0 to N-1: 

14. If F[i] is missing (e.g., NaN or null): 

15. Calculate NLG_ratio as (maxF / abs(sumF)) * 

NLG[i] / NLG_sum. 

16. Set filled_values[i] as NLG_ratio * sumF. 

17. Otherwise, set filled_values[i] as F[i]. 

18. Output filled_values as the array with missing 

values filled using non-linear Gaussian estimation. 

 

Algorithm 1 outlines the procedure for filling missing 

values in a numerical feature array, denoted as F, using a non-

linear Gaussian estimation. The input parameters include the 

numerical feature array F with missing values and the total 

number of elements in F, denoted as N. The algorithm 

initializes an array NLG to store the non-linear Gaussian 

estimation values. It then iterates through each index of F, 

calculating the natural logarithm of each element and 

subsequently determining the corresponding Gaussian value. 

The maximum value (maxF) in F and the sum of all non-

missing values in F (sumF) are calculated. Additionally, the 

sum of all values in NLG (NLG_sum) is computed. Another 

array, filled_values, is initialized to store the filled values. For 

each index in F, if the corresponding element is missing (e.g., 

NaN or null), the algorithm calculates the NLG_ratio using 

specific formulas, and the missing value is filled using this 

ratio and the sum of non-missing values. If the element is not 

missing, it is simply copied to the filled_values array. The 

output of the algorithm is the filled_values array, containing 

the original values where available and estimated values for 

the missing ones based on non-linear Gaussian estimation. 

The Algorithm 2 described outlines a process for 

constructing a decision tree within a distributed feature 

ranking framework for subset selection. This procedure takes 

as input an array of features (X) and corresponding target 

labels (y), utilizing a specified maximum depth for the 

decision tree. The algorithm comprises two key functions: 

rank_features (X, y) and construct_decision_tree (X, y, depth). 

The former is responsible for assessing the importance of each 

feature through a designated ranking method, returning a list 

of features sorted by their significance. The latter function, 

construct_decision_tree, is a recursive process that builds the 

decision tree. It first checks stopping conditions, such as 

reaching the maximum depth or having all samples in the same 

class. Subsequently, it ranks features, selects the most 

important one, and creates decision nodes based on its unique 

values. The process is repeated recursively for each subset 

until leaf nodes are created, capturing the majority class. This 

distributed feature ranking approach ensures that the decision 

tree is constructed by considering the importance of features 

in a systematic manner, facilitating effective subset selection 

for predictive modeling. 

 

Algorithm 2: Distributed Feature ranking for subset 

selection 

 

1. Input: 

2. X: Input feature matrix with n samples and m 

features 

3. y: Target variable vector with n labels 

4. max_depth: Maximum depth of the decision tree 

5. Define a function rank_features (X, y) that ranks 

the features based on their importance using a 

suitable feature ranking method. This function 

should return a list of features sorted in 

descending order of importance. 

6. Define a function construct_decision_tree (X, y, 

depth) to recursively build the decision tree: 

7. If depth is equal to max_depth or all samples in y 

belong to the same class, create a leaf node with 

the majority class and return it. 

8. If X has no features remaining, create a leaf node 

with the majority class and return it. 

9. Rank the features using rank_features (X, y) and 

store the result in feature_ranking. 

10. Select the first feature f from feature_ranking. 

11. Create a decision node for feature f. 

12. For each unique value v of feature f: 

13. Create a subset X_v of samples where feature f 

equals v. 

14. Create a subset y_v of labels corresponding to 

X_v. 

15. If X_v is empty, create a leaf node with the 

majority class and attach it as a child of the 

decision node. 

16. Otherwise, recursively call 

construct_decision_tree (X_v, y_v, depth + 1) 

and attach the returned subtree as a child of the 

decision node. 

17. Return the decision node. 

18. Call construct_decision_tree (X, y, 0) to start 

building the decision tree. 

 

 

4. MULTI-CLASS K MEANS RANK BASED 

CLASSIFICATION (HYBRID BAYESNET) 

 

The algorithm 3 and algorithm 4 outlined is a procedure for 

constructing Multi Class K-Means Rank Based Classification 

with the following steps. 

 

STEP 1: FEATURE RANKING 

 

In the feature ranking step, the significance or importance 

of each feature in the dataset is determined with respect to the 

target variable. A specific method, such as mutual information, 

correlation coefficient, or feature importance from a model 

like a decision tree, is used to rank each feature. The outcome 

is a rank or score that indicates the relevance or importance of 

each feature with respect to the target variable. These ranks are 

then stored in a vector for further processing in the subsequent 

steps. 

 

STEP 2: FEATURE SELECTION AND KMEANS 

 

Once the features have been ranked, the feature selection 

step aims to select a subset of the most important or relevant 

features based on predefined criteria. The ranking vector is 

first sorted in descending order, ensuring that features with the 

highest ranks or scores are considered first. Two criteria are 

provided for feature selection: 
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Algorithm 3: Multi Class KMeans Rank Based 

Classification (X, k, T, θ) 

 

1. // Step 1: Initialization 

2. Initialize Cluster Centroids () 

3. Initialize Bayesian Network () 

4. // Step 2: Repeat until convergence 

5. repeat 

6. // Step 2a: Assign data points to clusters 

7. Assign Data Points To Clusters (X) 

8. // Step 2b: Update cluster centroids 

9. Update Cluster Centroids () 

10. // Step 2c: Check convergence 

11. Convergence = Check Convergence () 

12. Until convergence or maximum iterations 

reached 

13. // Step 3: Rank-based Classification 

14. Rank Based Classification () 

15. // Step 4: Bayesian Network Learning 

16. Learn Bayesian Network Parameters () 

17. // Step 5: Output 

18. Return Clusters, Cluster Centroids, Bayesian 

Network Parameters 

 

Algorithm 4: Multi Class K-Means Rank Based 

Classification with Hybrid Bayes Net 

 

1. Function:  

2. Multi Class K-Means Rank Based Classification 

with Hybrid Bayes Net (X, y, k, T, θ, m, Bayesian 

Network Structure): 

3. // Step 1: Feature Ranking 

4. Feature Ranking (X, y) 

5. // Step 2: Feature Selection 

6. Selected Features = Feature Selection (X, y, m) 

7. X_selected = Select Features (X, Selected 

Features) 

8. // Step 3: k-means Clustering 

9. Clusters, Cluster Centroids = KMeans Clustering 

(X_selected, k, T, θ) 

10. // Step 4: Rank-based Classification 

11. Rank Based Classification (Clusters) 

12. // Step 5: Hybrid Bayes Net Learning 

13. Learn Hybrid Bayes Net (Clusters, X_selected, 

Bayesian Network Structure) 

14. // Step 6: Output 

15. Main: 

16. dataset = load Dataset () 

17. k = n 

18. Centroids = initialize Centroids KMeans Plus Plus 

(dataset, k) 

19. For iteration = 1 to max Iterations: 

20. Assignments = assign Data Points (dataset, 

centroids) 

21. New Centroids = update Centroids (dataset, 

assignments, k) 

22. If centroids Converged (centroids, new 

Centroids): 

23. Break 

24. Centroids = new Centroids 

25. Output Result (centroids, assignments) 

26. Initialize Centroids KMeans Plus Plus (dataset, k): 

27. Centroids = [] 

28. Centroids. add (randomly Choose First Centroid 

(dataset)) 

29. For i = 2 to k: 

30. Probabilities = calculate Probabilities (dataset, 

centroids) 

31. New Centroid = randomly Choose Next Centroid 

(dataset, probabilities) 

32. Centroids. add (new Centroid) 

33. Return centroids 

34. Assign Data Points (dataset, centroids): 

35. Assignments = [] 

36. For each data point in dataset: 

37. Nearest Centroid = find Nearest Centroid (data 

Point, centroids) 

38. Assignments. add (nearest Centroid) 

39. Return assignments 

40. Update Centroids (dataset, assignments, k): 

41. New Centroids = [] 

42. For each centroid in range (1 to k): 

43. New Centroid = calculate Mean (dataset, 

assignments, centroid) 

44. New Centroids. add (new Centroid) 

45. Return new Centroids 
 

The algorithm 5 outlined is a procedure for constructing a 

Bayesian network from a given dataset. It takes as input a 

dataset (D) containing variables of interest, a set of variables 

for the Bayesian network (S), the number of samples in the 

dataset (N), the maximum number of states for each variable 

(q), and the maximum number of parents for each variable (r). 

The algorithm initializes an empty Bayesian network (BN) 

with nodes for each variable in S. It estimates the conditional 

prior probabilities for each variable based on the dataset D and 

sets them as the prior probabilities in BN. Then, for each 

variable in S, it iterates through all possible combinations of 

parent variables and calculates the joint probabilities. The 

Bayesian network is gradually constructed by selecting 

variables and their parents based on the Bayesian score, 

considering the logarithms of conditional prior probabilities 

and joint probabilities. The process continues until all 

variables in S are included in the network. This algorithm 

ensures the systematic creation of a Bayesian network, 

capturing dependencies and conditional probabilities among 

variables from the input dataset. 

 

Algorithm 5: Hybrid Bayes Net 

 

1. Input: 

2. D: Dataset containing the variables of interest 

3. S: Set of variables in the Bayesian network 

4. N: Number of samples in the dataset 

5. q: Maximum number of states for each variable 

6. r: Maximum number of parents for each variable 

7. Initialize an empty Bayesian network BN with 

nodes for each variable in S. 

8. For each variable s in S: 

9. Estimate the conditional prior probability theta 

for variable s using the dataset D. 

10. Set the prior probability of variable s in BN as 

theta. 

11. For each variable s in S: 

12. For each combination of parent variables of s 

with cardinality from 0 to r: 
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13. Initialize an empty dictionary parent_counts to 

store the counts of each parent configuration. 

14. For each sample d in D: 

15. Increment the count of the parent configuration in 

parent_counts. 

16. Calculate the joint probability phi for variable s 

given its parents using the counts in 

parent_counts. 

17. Set the conditional probability of variable s given 

its parents in BN as phi. 

18. Define a function Bayes Score (variable, parents, 

BN) to calculate the Bayesian score for adding 

variable to BN with parents: 

19. Initialize score as 0. 

20. Calculate the conditional prior probability theta 

for variable given parents using the dataset D. 

21. Calculate the joint probability phi for variable 

given parents using the counts in parent_counts. 

22. Calculate the logarithm of theta and phi. 

23. Update score as the sum of the logarithms of 

theta and phi. 

24. Return score. 

25. Initialize an empty set current_variables to store 

the variables already added to BN. 

26. While current_variables is not equal to S: 

27. Initialize max_score as negative infinity. 

28. Initialize best_variable and best_parents as None. 

29. For each variable s in S: 

30. If s is not in current_variables: 

31. For each combination of parents p of s with 

cardinality from 0 to r: 

32. Calculate the Bayes score for adding s to BN with 

parents p using BayesScore (s, p, BN). 

33. If the calculated score is greater than max_score: 

34. Update max_score as the calculated score. 

35. Update best_variable as s. 

36. Update best_parents as p. 

37. Add best_variable to BN with best_parents. 

38. Add best_variable to current_variables. 

39. Output BN as the learned Bayesian network. 

 

 

5. EXPERIMENTAL RESULTS 

 

The dataset comprises multiple components, featuring a 

baseline dataset that captures ordinary activities observed 

during a 10-minute simulation. Additionally, six distinct 

attack scenarios were executed independently on the baseline 

architecture, each involving RT0 as the rogue terminal. These 

attacks encompassed a spectrum from basic denial-of-service 

(DOS) and ATP attacks to the injection of fake data and logic 

attacks, each with varying message counts and durations. The 

dataset is structured as separate CSV files, encompassing 

diverse fields such as message ID, timestamps, error indicators, 

mode codes, channel information, and more. These fields 

furnish comprehensive details about message exchanges 

within the threat data during both regular operations and 

simulated attacks. This dataset serves as a valuable asset for 

scrutinizing the databus's behavior under diverse conditions 

and evaluating the efficacy of intrusion detection and security 

measures. 

In this section, we present a comprehensive analysis of the 

performance metrics obtained from applying various machine 

learning models to the cyber threat dataset. The evaluation 

metrics utilized include Accuracy, Recall, Precision, F-

measure, MCC (Matthews Correlation Coefficient), and ROC 

(Receiver Operating Characteristic) curve analysis. 

Model Performance Metrics: 

Accuracy:  

Accuracy measures the proportion of correctly classified 

instances out of the total instances evaluated. It provides an 

overall assessment of the model's predictive performance. 

Recall (Sensitivity):  

Recall calculates the proportion of actual positive instances 

that were correctly predicted by the model. It is particularly 

useful in scenarios where detecting all positive instances is 

crucial, such as in identifying cyber threats. 

Precision:  

Precision quantifies the proportion of predicted positive 

instances that were correctly classified. It is essential for 

assessing the reliability of positive predictions made by the 

model. 

F-measure:  

The F-measure combines precision and recall into a single 

metric, providing a balanced assessment of a model's 

performance. It is calculated as the harmonic mean of 

precision and recall. 

Matthews Correlation Coefficient (MCC): MCC takes into 

account true and false positives and negatives, providing a 

correlation coefficient value between -1 and +1. A value closer 

to +1 indicates a stronger predictive performance, while values 

near 0 suggest random predictions. 

ROC Curve Analysis:  

ROC curve analysis evaluates a classifier's performance 

across various threshold settings by plotting the true positive 

rate against the false positive rate. The area under the ROC 

curve (AUC) quantifies the classifier's discriminative ability, 

with higher values indicating better performance. 

In this section, we provide a detailed overview of the 

experimental procedures conducted to evaluate the 

effectiveness of the proposed cluster-based classification 

approach for detecting IoT bot cyberattacks. The experimental 

pipeline encompasses data collection, preprocessing, model 

training, evaluation, and validation steps. 

1. Data Collection: 

Dataset Selection:  

Choose an appropriate dataset containing network traffic 

data collected from IoT devices under various conditions, 

including normal operation and simulated attack scenarios. 

Data Sources:  

Access datasets from reliable sources or generate synthetic 

datasets to simulate different types of cyberattacks, including 

denial-of-service (DoS), command-and-control (C2) 

communication, data exfiltration, and malware propagation. 

Dataset Characteristics:  

Ensure that the dataset includes relevant features such as 

packet headers, timestamps, source-destination IP addresses, 

communication protocols, and payload data. 

2. Data Preprocessing:  

Data Cleaning: Remove any irrelevant or redundant features 

from the dataset to reduce dimensionality and improve 

computational efficiency. 

Missing Value Handling:  

Address missing values by imputation techniques such as 

mean imputation, median imputation, or using algorithms like 

algorithm 1 for filling missing values in numerical features. 

Normalization/Standardization:  

Scale the features to a standard range to prevent any bias 
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due to varying scales across features. 

Feature Engineering:  

Extract relevant features from the raw data and perform 

feature engineering techniques to enhance the discriminative 

power of the model. 

3. Model Training:  

Feature Selection: Use feature ranking methods such as 

mutual information, correlation coefficient, or model-based 

feature importance to select the most informative features for 

training the model. 

Cluster-based Classification: Implement the proposed 

cluster-based classification approach using algorithms such as 

K-Means, DBSCAN, or hierarchical clustering to identify 

patterns indicative of IoT bot cyberattacks. 

Model Initialization: Initialize the model parameters and 

hyperparameters based on domain knowledge and 

experimentation. 

Training Algorithm: Train the model using the selected 

features and the labeled dataset, ensuring a suitable loss 

function and optimization algorithm. 

4. Model Evaluation:  

Cross-Validation: Employ cross-validation techniques such 

as k-fold cross-validation to assess the model's performance 

on different subsets of the data and mitigate overfitting. 

 

Table 1. Statistical analysis of data features 

 
Features Skewness Kurtosis Mode Range Variance 

msgId 0.189494 -1.30816 1 22999 53529192 

Timestamp 3.310311 10.78406 67.47067 5266.15 1056135 

Error      

modeCode     

Channel 2.78255 5.743005 0 1 0.085169 

connType 0.554083 -1.17511 0 2 0.617999 

Sa 9.670794 161.3402 1 31 2.758459 

Ssa 1.624146 1.227912 5 30 75.58434 

Da 9.936773 110.0526 3 30 6.181331 

Dsa 2.534756 4.540211 0 20 36.35458 

Wc 2.379626 4.722685 2 31 67.95668 

modeCodeVal -24.3663 591.7619 17 13 0.282783 

txRsp -8.69845 73.66835 8.5 8.5 0.907073 

txSts -0.58344 -1.00942 6 6 3.289346 

rxRsp 0 0 8.5 0 0 

rxSts -0.00579 -1.59076 5 5 2.786449 

dw0 1.552994 1.336516 0 47 157.6272 

dw1 -0.759 -1.42304 11 11 26.41443 

dw2 -1.09264 -0.62502 19 19 52.16003 

dw3 -1.19516 -0.3292 26 26 94.19917 

dw4 -2.01009 2.580657 20 20 38.30193 

dw5 -1.15126 -0.38477 12 12 18.67084 

dw6 -1.3204 0.019284 20 20 53.94966 

dw7 -1.57751 1.229838 13 13 17.25815 

dw8 -0.96041 -1.07694 11 11 24.56234 

dw9 -2.78109 5.734853 1 1 0.085229 

dw10 -2.78109 5.734853 1 1 0.085229 

dw11 -2.78109 5.734853 1 1 0.085229 

dw12 -2.78109 5.734853 1 1 0.085229 

dw13 -2.78109 5.734853 1 1 0.085229 

dw14 -2.78109 5.734853 1 1 0.085229 

dw15 -2.78109 5.734853 1 1 0.085229 

dw16 -2.78109 5.734853 1 1 0.085229 

dw17 -2.78109 5.734853 1 1 0.085229 

dw18 -2.78109 5.734853 1 1 0.085229 

dw19 -2.78109 5.734853 1 1 0.085229 

dw20 -3.35466 9.254449 1 1 0.065565 

dw21 -3.35466 9.254449 1 1 0.065565 

dw22 -3.35466 9.254449 1 1 0.065565 

dw23 -3.35466 9.254449 1 1 0.065565 

dw24 -3.35466 9.254449 1 1 0.065565 

dw25 -3.35466 9.254449 1 1 0.065565 

dw26 -3.35466 9.254449 1 1 0.065565 

dw27 -3.35466 9.254449 1 1 0.065565 

dw28 -3.35466 9.254449 1 1 0.065565 

dw29 -3.35466 9.254449 1 1 0.065565 

dw30 -3.35466 9.254449 1 1 0.065565 

dw31 -3.35466 9.254449 1 1 0.065565 

Gap 2.542136 4.462845 14 249968 5.89E+09 

msgTime 2.049213 3.352466 65 667 29916.96 

Class -6.83715 44.74991 1 1 0.019708 

attack_type -2.69207 6.426248 6 6 1.389317 
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The graph illustrates the evaluation outcomes of various 

machine learning models applied to a cyber threat dataset. The 

evaluation metrics employed include Accuracy, Recall, 

Precision, and F-measure. Among the models tested, the 

proposed model demonstrated the highest overall performance, 

achieving an Accuracy of 0.985, as well as impressive scores 

for Recall, Precision, and F-measure. These results indicate that 

the proposed model exhibits strong predictive capabilities, 

effectively identifying patterns and making accurate 

predictions on the dataset. 

Table 1 describes the statistical analysis of each feature for 

data processing. 

Figure 2 illustrates the statistical accuracy, precision, recall 

and F-measure on input training dataset. 

 

 
 

Figure 2. Statistical performance metrics and its analysis on 

cyber threat dataset 

 

 
 

Figure 3. Statistical performance metrics and its analysis on 

cyber threat dataset with large data size 

 

Figure 3 shows the results of the classification recall, 

precision achieved using this proposed technique on N-BaIoT 

dataset. The X-axis of the graph would represent the different 

techniques or methods used, while the Y-axis would display 

the classification precision, recall on N-BaIoT stat data. 

Figure 4 shows the results of the classification F-measure, 

MCC, ROC achieved using this proposed technique on N-

BaIoT dataset. The X-axis of the graph would represent the 

different techniques or methods used, while the Y-axis would 

display the classification F-measure, MCC, ROC on N-BaIoT 

stat data. 

Network traffic data containing communication patterns 

between IoT devices and external servers is collected for 

analysis. 

Feature extraction focuses on identifying patterns indicative 

of C2 communication, such as unusual traffic volumes, 

frequency of connections, and communication protocols. 

The model effectively detects and flags suspicious 

communication patterns consistent with C2 activity. 

By analyzing network traffic at scale, the model can identify 

potential C2 channels and alert network administrators to take 

proactive measures. 

 

 
 

Figure 4. Statistical performance of F-measure, MCC and 

ROC on cyber threat dataset with large data size 

 

Additional Experimental Cases: 

Malware Propagation Detection: 

Experimentally simulate scenarios where IoT devices 

become infected with malware and attempt to propagate the 

infection within the network. 

Evaluate the model's performance in detecting malware 

propagation attempts based on network behavior and 

communication patterns. 

Data Exfiltration Detection: 

Investigate the model's effectiveness in identifying 

unauthorized data exfiltration attempts from IoT devices. 

Analyze network traffic to detect anomalies indicative of 

data exfiltration, such as unusual data transfer rates and 

destination IP addresses. 

Zero-Day Exploit Detection: 

Explore the model's capability to detect previously unseen or 

zero-day exploits targeting IoT devices. 

Utilize techniques such as anomaly detection and behavioral 

analysis to identify suspicious activities that deviate from 

normal network behavior. 

By identifying and addressing these limitations, we aim to 

provide a comprehensive understanding of the model's 

strengths and weaknesses. 

1. Sensitivity to Feature Selection: 

Limited Feature Set:  

The effectiveness of the model heavily relies on the selection 

of informative features. If crucial features related to emerging 

attack vectors are not included or adequately represented in the 

dataset, the model may fail to detect novel or sophisticated 

cyberattacks. 

Feature Engineering Challenges:  

Extracting meaningful features from raw network traffic 

data can be challenging, especially when dealing with 

encrypted or obfuscated communication protocols. In such 

cases, feature engineering techniques may not capture subtle 

variations indicative of malicious activity, leading to false 

negatives or reduced detection accuracy. 

2. Generalization to New Attack Patterns: 

Limited Training Data:  
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The model's ability to generalize to previously unseen attack 

patterns is constrained by the availability and diversity of 

training data. If the training dataset predominantly consists of 

known attack types or lacks representation of emerging threats, 

the model may struggle to adapt to novel attack scenarios. 

Transferability to Real-World Environments:  

While the model may demonstrate high performance under 

controlled experimental conditions, its efficacy in real-world 

IoT environments with heterogeneous network architectures 

and dynamic traffic patterns remains uncertain. Factors such as 

network congestion, device heterogeneity, and environmental 

noise could impact the model's performance in practice. 

 

 

6. CONCLUSION 

 

IoT devices and networks play a crucial role in the Internet 

but have security weaknesses and vulnerabilities. Most 

widely-used IoT devices lack security design, making them 

vulnerable to recent attacks that exploit these weaknesses and 

recruit the devices to cause severe harm. In this work, a cluster 

based classification approach was proposed for detecting IoT 

bot cyberattacks. The proposed method achieved good results 

in terms of accuracy, precision, recall and F1-score, compared 

to traditional methods. To mitigate the threat posed by IoT bot 

cyberattacks, we proposed a cluster-based classification 

approach tailored specifically for detecting such malicious 

activities. Our method leverages clustering techniques to 

identify patterns indicative of botnet behavior within IoT 

network traffic. Through comprehensive experimentation and 

evaluation, we have demonstrated the efficacy of our approach 

in detecting IoT bot cyberattacks in real-time. 

The results of our study indicate that the proposed cluster-

based classification approach outperforms traditional methods 

in terms of accuracy, precision, recall, and F1-score. By 

effectively identifying and classifying IoT bot cyberattacks, 

our method offers a promising solution for enhancing the 

security of IoT devices and networks. 

Future scope in IoT cybersecurity includes refining 

detection with AI, implementing real-time monitoring, 

enforcing stringent device security standards, and establishing 

collaborative defence mechanisms for information sharing 

among stakeholders. 
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