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Machine scheduling problems have become increasingly complex and dynamic. In 

industrial contexts, managers often evaluate several objectives simultaneously and 

attempt to identify the optimal solution that satisfies all concerns. This study proposes 

two heuristic methods based on SPT and dominated rules (DR) to minimize Total 

Completion ∑𝐶𝑗, Total Earliness ∑𝐸𝑗, and Maximum Tardiness Time 𝑇𝑚𝑎𝑥 for multi-

criteria and multi-objective functions (1//(∑𝐶𝑗 , ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥) and (∑𝐶𝑗 + ∑𝐸𝑗 + 𝑇𝑚𝑎𝑥))

based on single machine scheduling problems. in addition, two exact methods Branch 

and Bound (BAB with and without DR) and a complete enumeration method are applied 

to solve the multi- criteria and multi-objective functions. According to the calculation 

results, the CEM is able to solve problems up to 𝑛 = 11 jobs, while BAB without DR 

and BAB with DR able to resolve problems from 𝑛 = 19 to 𝑛 = 50 jobs, respectively, 

within a reasonable time. However, heuristic methods can solve up to 𝑛 = 5000 jobs. 

in addition, the experimental results for a subproblem show that the heuristic methods 

can solve up to 𝑛 = 4000  jobs. Practical experiments demonstrate the proposed 

heuristic methods are the most effective of all approaches. All methods used in this 

work were coded with MATLAB 2019a. 

Keywords: 

multi-criteria (MC), multi-objective function 

(MOF), exact methods (EMs), heuristic methods 

(HMs) 

1. INTRODUCTION

Since 1954, scheduling issues have received a great deal of 

attention in the literature. Assigning machines to jobs in order 

to finish them all within specified constraints is the general 

definition of scheduling [1, 2]. Efficient scheduling is essential 

to prevent excessive or underutilization of resources [3]. The 

scheduling problem is a collection of 𝑛 jobs performed by one 

machine. Given job 𝑗, 𝑗 ∈ 𝑁 , where 𝑁 = {1,… , 𝑛}  has an 

integer-processed  time 𝑝𝑗 ,  due date 𝑑𝑗 . Given schedule 𝜎 =

(𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) , 𝐶1 = 𝑝1  and 𝐶𝑗 = ∑ 𝑝𝜎𝑘
𝑛
𝑘=1 (where

𝑗 = 2, 3, … , 𝑛 ) are then used to determine the completion time 

for each job 𝑗. 𝐿𝑗 = 𝐶𝑗 − 𝑑𝜎𝑗 expresses the lateness time of the

job 𝑗 . 𝐸𝑗 = 𝑚𝑎𝑥{0, −𝐿𝑗} = 𝑚𝑎𝑥 {𝑑𝜎𝑗 − 𝐶𝑗 , 0}  is used to

defined the earliness of job 𝑗, tardiness in job 𝑗 is defined as 

𝑇𝑗 = 𝑚𝑎𝑥{0, 𝐿𝑗}, 𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 is used to determine the slack

time of job 𝑗. Thus, there is a total completion time ∑𝑗∈𝑁𝐶𝑗,

total earliness time ∑𝑗∈𝑁𝐸𝑗  and maximal tardiness 𝑇𝑚𝑎𝑥 =

𝑚𝑎𝑥𝑗∈𝑁{𝑇𝑚𝑎𝑥} . Smith [4] concerned the total completion

time, 1// ∑𝐶𝑗  problem is minimized using SPT (short

processing time) rule and is optimum in 1956. The maximal 

earliness regarding the 1//∑𝐸𝑗  problem has been minimized

using MST (minimum slack time) rule [5]. According to a 

study by Jackson [6], the Earliest Due Date (EDD) rule was 

used to minimize the maximum tardiness with respect to the 

1//𝑇𝑚𝑎𝑥  ; the problem 1//∑𝐸𝑗  is NP-hard. Any problem with

cost functions as subproblems is NP-hard. The challenge is to 

determine the ideal processing sequence for these jobs on each 

machine in order to minimize the given objective function. 

Researchers focused on only one objective function [7]. In 

practical cases, the decision maker only needs to select one 

objective function. Nowadays, more studies are conducted on 

multi-objective planning problems. An overview of multiple 

and binary scheduling problems was published by Hoogeveen 

[8]. Hierarchical and simultaneous minification are the two 

main structures used to solve competing criteria [9]. The 

primary criterion is the first and the secondary criterion is the 

second. In this scenario, one decreases the primary criterion 

and selects a table with the minimum value of the secondary 

criterion. In the second method, a Pareto set is formed and the 

decision maker is the one with the optimal composite objective 

function [10]. Hoogveen [8] presented an algorithm that finds 

all effective tables for 1//(∑𝐶𝑗 , 𝐹𝑚𝑎𝑥) problem. Abdul-Razaq

and Ali [11] studied problem 1//(∑𝐶𝑗, ∑𝑇𝑗 , 𝑇𝑚𝑎𝑥) and found a

sub-problem, also solved this problem by branch and bound 

method. Abdul-Razaq and Motair [9] presented a multi-

objective function 1// ∑𝐶𝑗 + ∑𝑇𝑗 + 𝑇𝑚𝑎𝑥 + 𝐸𝑚𝑎𝑥  and used
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branch and bound to minimize this problem. Jawad et al. [12] 

provided the BAB to solve multi-criteria objective function 

1//(∑𝐶𝑗 , ∑𝐸𝑗)  problem in the SMSP. Ahmed and Ali [13] 

suggested BAB and heuristic approaches to minimize the 

∑𝐶𝑗 + 𝑅𝐿 + 𝑇𝑚𝑎𝑥 for single machine scheduling problem. Al-

Tameemi [14] used BAB to solved the problem 1//∑𝐶𝑗 +

∑𝑇𝑗 + 𝐸𝑚𝑎𝑥 . Arik [15] offered earliness /tardiness with shared 

due dates and gray processing times. Hameed and Chachan 

[16] multi-objective minimization the ∑(𝐶𝑗 + 𝑇𝑗 + 𝐸𝑗 + 𝑉𝑗) 

was proposed for single machine scheduling problems, two 

local search algorithms (GA and PSO) were also used. Also, 

Chachan and Hameed [17] used BAB method and local search 

algorithms to minimize ∑(𝐶𝑗 + 𝑇𝑗 + 𝐸𝑗 + 𝑉𝑗) . In addition, 

Chachan and Jaafer [18] presented a Branch and Bound 

algorithm to minimize the ∑(𝐸𝑗 + 𝑇𝑗 + 𝐶𝑗 + 𝑈𝑗 + 𝑉𝑗)  with 

unequal release dates for scheduling (𝑛 ) jobs on a single 

machine. Large and complex problems in the research 

community are often solved using contemporary heuristic 

optimization techniques [19]. Hassan et al. [20] used a 

heuristic algorithm to minimize the (𝐸𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥 + ∑𝐶𝑗)in a 

SMSP. Neamah and Kalaf [21] proved that SPT and EDD 

rules give efficient (optimal) solutions for two problems 

1//(∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥), and 1//∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 , also, proven 

special cases, resulting in the most an efficient and optimal 

solution to these problems.  

Within the paper, proposed two new heuristic methods to 

solve and find efficient solutions three criteria ∑𝐶𝑗 , ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥 

for scheduling problems. We started by organizing it as a tri-

criteria mathematical model and proposed a sub-problem with 

three objectives from the original problem. 

Below is an outline of the remaining portion of this paper: 

Section 2 describes the mathematical formulations of tri-

criteria and analysis of the sub-problem for the proposed 

problem. Section 3 presents the exact, approximate methods 

and algorithms for solving the two problems given in Section 

2. Section 4 validates the proposed model and demonstrates 

the effectiveness of the proposed strategy through 

computational study and results. Moreover, Section 4 presents 

the results and accompanying discussion. Finally, conclusion 

and lists of future works are provided in Section 5. 

 

 

2. MATHEMATICAL MODEL  

 

The mathematical formulation of the single machine 

scheduling problem for tri-criteria and tri-objective functions 

is presented in this section. Firstly, some of the notations 

included that are utilized in the formulation of tri-criteria and 

tri-objective functions of the single machine scheduling 

problem: 

ACT/S: Average of CPU-Time per second. 

ANEFS: Average number of efficient solutions. 

BAB(WDR): BAB method with dominance rules (DRs). 

BAB(WODR): BAB method without DRs. 

CT/S: CPU-Time per second. 

EDD: Jobs are arranged according to their due dates in non-

descending order 𝑑𝑗  (where 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛); this rule is 

utilized for minimizing 𝑇𝑚𝑎𝑥  for problem 1//𝑇𝑚𝑎𝑥  [6, 7, 22]. 

EFSO (Efficient solution) [12]: A schedule 𝛼∗ is known as 

efficient solution or Pareto optimal (non-dominated). If 

another schedule 𝛼  satisfying ℎ𝑗(𝛼) ≤ ℎ𝑗(𝛼
∗), 𝑗 = 1,2, . . , 𝑛 

cannot be found, considering that at least one of the 

aforementioned is a strict disparity. Another way is that 𝛼∗ is 

dominated by 𝛼 [20]. 

𝐹𝐶𝐸𝑇 : OF of (𝑆𝐶𝐸𝑀𝑇) -problem, and 𝐹𝑆𝑃  is objective 

function of (𝑆𝑃)-problem. 

Feasible schedule: Any schedule 𝛽 ∈ 𝑆 (S is the collection 

of all schedules) can be considered feasible if it meets the 

problem's constraints. 

MST: Jobs are arranged according to their slack time 𝑠𝑗 =

𝑑𝑗 − 𝑝𝑗 in a non-decreasing order (where 𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑛). 

For minimizing 𝐸𝑚𝑎𝑥  with the use of this rule [8]. 

MOF: Multi-objective function;  

N: Number 

MCF: Multi- criteria function. 
NEFS: Number of efficient solutions.  

𝑛𝑖: N. of jobs, where 𝑖 is the number of problems tested. 

OF: objective function regarding MSP could be either 

maximized or minimized under all possible constraints. 

Optimal (OP): The 𝜎∗ schedule is considered optimal in the 

case when there isn’t other schedule 𝜎 that satisfies 𝑓𝑗(𝜎) ≤

𝑓𝑗 (𝜎
∗), where 𝑗 from 1 to 𝑘(𝑘: N. of criteria), assuming a strict 

inequality for a minimum of one of the conditions that have 

been mentioned earlier. If not, then 𝜎 can be considered as 

dominant over σ*.  

Ver: 0 < Veritable < 1. 
SPT: The jobs are being processed in a non-descending 

order 𝑝𝑗 (i. e. 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑛), it is commonly known that 

this rule minimizes ∑𝐶𝑗 for the 1//∑𝐶𝑗 problem. 
 

The mathematical model for the 1// (∑𝑪𝒋, ∑𝑬𝒋, 𝑻𝒎𝒂𝒙) 

problem 

The problem aims to discover an efficient solution that 

yields the minimal value of the tri-criteria. Total completion 

time ∑𝐶𝑗, total earliness time ∑𝐸𝑗, and the maximum tardiness 

𝑇𝑚𝑎𝑥; this problem is denoted by: 
 

𝐹𝐶𝐸𝑇 = 𝑀𝑖𝑛(∑𝐶𝑗 , ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥)                

subject to                                 

𝐶𝑗 ≥ 𝑝𝑗(𝜎),                

𝐶𝑗 =∑𝑝𝑘

𝑗−1

𝑘=1

(𝜎) + 𝑝𝑗(𝜎),    

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗(𝜎),           

𝐸𝑗 ≥ 𝑑𝑗(𝜎) − 𝐶𝑗 ,           

𝐸𝑗 ≥ 0, and 𝑇𝑗 ≥ 0,         

 

}
 
 
 

 
 
 

 𝑗 from 1 to 𝑛

}
 
 
 
 
 

 
 
 
 
 

 (1) 

 

This problem is referred to as the (𝑆𝐶𝐸𝑀𝑇) -problem. 

For (𝑆𝐶𝐸𝑀𝑇) -problem,  sub-problem can be concluded that 

1//(∑𝐶𝑗 +∑𝐸𝑗 + 𝑇𝑚𝑎𝑥)  problem that referred to the (𝑆𝑃) -

problem, and it can be defined as follows: 
 

𝐹𝑆𝑃 = 𝑀𝑖𝑛(∑𝐶𝑗 + ∑𝐸𝑗 + 𝑇𝑚𝑎𝑥)            

subject to                                

𝐶1 = 𝑝1(𝜎),                

𝐶𝑗 =∑𝑝𝑘

𝑗−1

𝑘=1

(𝜎) + 𝑝𝑗(𝜎),    

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗(𝜎),           

𝐸𝑗 ≥ 𝑑𝑗(𝜎) − 𝐶𝑗 ,           

𝐸𝑗 ≥ 0, and 𝑇𝑗 ≥ 0,         

 

}
 
 
 

 
 
 

 𝑗 from 1 to 𝑛

}
 
 
 
 

 
 
 
 

 (2) 
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3. METHODOLOGY 

 

In this section, two exact method (BAB and CEM) and two 

HMs were introduced for solving the (𝑆𝐶𝐸𝑀𝑇)-problem and 

(𝑆𝑃)-problem. For the exact approaches, the BAB is utilized 

as the main approach for solving the problems. Moreover, 

BAB without DR and BAB with DR were performed. Also, 

two HMs were proposed and were adopted to find efficient 

solutions to this problem in a reasonable time. 

 

3.1 Exact method 

 

We have presented two exact methods in this subsection 

(CEM and BAB). The CEM was used as a simple approach 

that generates all of the feasible tables for choosing the optimal 

solution. While, the BAB method is the most popular 

scheduling solution approach. BAB is an illustration of the 

implicit enumeration method that could identify the optimal 

solution by methodically reviewing subsets of potential 

solutions. A search tree with nodes corresponding to these 

subsets has been utilized for describing BAB. 

 

3.1.1 BAB method to solve the (𝑆𝐶𝐸𝑀𝑇)-problem  

In this subsection, two BAB techniques will be used to solve 

this problem. 
First technique is BAB without DRs (BAB(WODRs)). 

This method can be summarized as follows: the LB for the 

non-sequenced section of each node will be based on the SPT 

rule, and the UB utilized will be based on the MST rule.  

The following steps for BAB(WODRs) can be seen below: 

 

Algorithm 1: BAB(WODRs) Algorithm 

Step 1: Enter: 𝑛, 𝑝𝑗  & 𝑑𝑗 , where 𝑗 from 1 to 𝑛. 

Step 2: Let 𝒮 = 𝜑, for any 𝛼 define 𝐹𝐶𝐸𝑇(𝛼) =

(∑𝐶𝑗(𝛼), ∑𝐸𝑗(𝛼), 𝑇𝑚𝑎𝑥(𝛼)). 

Step 3: Calculate an upper bound (UB) of (𝑆𝐶𝐸𝑀𝑇)-
problem, according to the order of jobs in 𝛼 = MST. Let 

UB𝐶𝐸𝑇 = 𝐹𝐶𝐸𝑇(𝛼) = (∑𝐶𝑗(𝛼), ∑𝐸𝑗(𝛼), 𝑇𝑚𝑎𝑥(𝛼)) at the 

search tree's parent node, where 𝑗 = 1, 2, … , 𝑛. 
Step 4: For every node in the BAB approach's search tree 

and each partial sequence 𝜎 of jobs, compute LB(𝜎)= The 

objective function's cost of sequencing jobs in 𝜎 + the cost 

of un-sequenced jobs arranged according to the SPT rule  

(where 𝜎 = SPT). 
Step 5: A branch of each node with LB does not dominate 

the UB. 

Step 6: Obtaining a set of solutions at the final level of the 

search tree, if 𝐹(𝜎) the result is indicated, 𝜎 is added to 

the set 𝒮 unless they are dominated by efficient solutions 
that have been obtained previously in 𝒮, this process is 

called filtering 𝒮. 

Step 7: End. 

 

Second technique is BAB with DRs (BAB(WDRs)). This 

method could be summarized as follows: The UB and LB of 

each node for the un-sequenced portion will be based on the 

SPT rule. To decrease the number of open nodes, which saves 

time and increases the number of solved problems, this BAB 

depends on DR, since the size of search tree (number of the 

nodes) grows as the number of (𝑛)  increases in the BAB 

approach, particularly in the branching scheme. Thus, it is 

necessary to decrease this size by removing irrelevant 

solutions or choosing intriguing ones. The goal of dominance 

rules is for reducing the available research on scheduling 

problems. Consequently, as a process for reducing search area 

and shorten search period. Several Dominance Rules can be 

used to reduce the current sequence. DRs typically indicate 

some (all) sections of the path in order to acquire a good value 

for the objective function, and they can be valuable in 

determining if a node in the BAB method can be discarded 

before its lower bound (LB) is determined. DRs are clearly 

useful when a node can be ignored despite having a less-than-

optimal LB. The DRs are also useful in the BAB approach for 

eliminating nodes that are dominated by others. These 

enhancements result in a significant reduction in the number 

of nodes required to achieve the efficient (optimal) solution. 

By applying the following theorem: 

Theorem (1) [23]: If 𝑝𝑖 ≤ 𝑝𝑘  and 𝑑𝑖 ≤ 𝑑𝑘, then there’s an 

optimal schedule for (SP) -problem where the job 𝑖  is 

processed before the job 𝑘. 

 

Algorithm 2: BAB(WDRs) Algorithm 

Step 1: Enter: 𝑛, 𝑝𝑗  & 𝑑𝑗 , where 𝑗 from 1 to 𝑛. Find 

adjacency matrix 𝐴. 

Step 2: Let 𝒮 = 𝜑, for any α define 𝐹𝐶𝐸𝑇(𝛼) =

(∑𝐶𝑗(𝛼), ∑𝐸𝑗(𝛼), 𝑇𝑚𝑎𝑥(𝛼)). 

Step 3: Calculate an upper bound (UB) of (𝑆𝐶𝐸𝑀𝑇) 
problem, by arranging jobs in 𝛼 = SPT. Calculate the 

UB𝐶𝐸𝑇 = 𝐹𝐶𝐸𝑇(𝛼) = (∑𝐶𝑗(𝛼), ∑𝐸𝑗(𝛼), 𝑇𝑚𝑎𝑥(𝛼)) at the 

search tree's parent node, where 𝑗 = 1, 2, … , 𝑛. 
Step 4: For every node in the BAB approach's search tree 

and each partial sequence 𝜎 of jobs, compute LB(𝜎)= The 

objective function's cost of sequencing jobs in 𝜎 + the cost 

of un-sequenced jobs arranged according to the 𝜎 = SPT 

rule. 
Step 5: Branch from every node within LB ≤ UB and 

check 𝑖 → 𝑗. 
Step 6: Obtaining a set of solutions at the final level of the 

search tree; if F(σ) the result is indicated, σ are added to 

the set S unless they are dominated by efficient solutions 

that have been obtained previously in 𝒮, this process is 

called S filtering 𝒮. 

Step 7: Stop. 
 

3.1.2 BAB method for the (𝑆𝑃)-problem  

For the (𝑆𝑃)-problem, the same BAB that used for the 

(𝑆𝐶𝐸𝑀𝑇)-problem with some modifications indicated by BAB. 

First, calculate UB for (SP)-problem s.t.  UB(𝛼 = SPT) =
𝐹𝑆𝑃(𝛼) = ∑𝐶𝑗(𝛼) + ∑𝐸𝑗(𝛼) + 𝑇𝑚𝑎𝑥(𝛼), then compute the LB 

of any node comprising of sequence and un-sequence 

components (by SPT rule). s.t. LB(𝜎 = SPT) = 𝐹𝑆𝑃(𝜎) =
∑𝐶𝑗(𝜎) + ∑𝐸𝑗(𝜎) + 𝑇𝑚𝑎𝑥(𝜎) , where σ is the rule for un-

sequenced jobs. Repeat these steps until an optimal solution is 

obtained from the root. 
 

3.2 HMs for (𝑺𝑪𝑬𝑴𝑻)-problem and (𝑺𝑷)-problem 
 

Heuristic methods speed up the process of reaching a 

satisfactory solution. Many researchers have used heuristic 

algorithms to solve NP-hard problems [24]. In this subsection, 

two heuristic algorithms were proposed (SM- (𝑆𝐶𝐸𝑀𝑇)  and 

DR-(𝑆𝐶𝐸𝑀𝑇) for solving the (𝑆𝐶𝐸𝑀𝑇)-problem and the (SP)-

problem: 
 

3.2.1 SM-(𝑆𝐶𝐸𝑀𝑇) method 

SM- (𝑆𝐶𝐸𝑀𝑇)  method is proposed for solving (𝑆𝐶𝐸𝑀𝑇) -
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problem and (𝑆𝑃)-Problem in this subsection [25]. Firstly, the 

objective function using the SPT rule is calculated. Next, 

arrange the third job in the second position, with the other jobs 

arranged in accordance with the SPT rule and compute OF, 

etc., up to  𝑛  sequences are obtained, then repeat the same 

procedures when using the MST rule, as described below: 

 

Algorithm 3: SM-(𝑺𝑪𝑬𝑴𝑻) Heuristic Algorithm 

Step 1: Enter: 𝑛, 𝑝𝑗  & 𝑑𝑗 , where 𝑗 from 1 to 𝑛, 𝒮 = 𝜑. 

Step 2: Place the jobs in SPT rule order (𝛽1) and compute 

𝐹11(𝛽1) = (∑𝐶𝑗(𝛽1), ∑𝐸𝑗(𝛽1), 𝑇𝑚𝑎𝑥(𝛽1)) ; 𝒮 = 𝒮 ∪

{𝐹11(𝛽1)}. 
Step 3: Place job 𝑖 at the first position of 𝛽𝑖−1 from 𝑖 = 2 

to 𝑛 to get 𝛽𝑖 and compute 𝐹1𝑖(𝛽𝑖) =

(∑𝐶𝑗(𝛽𝑖), ∑𝐸𝑗(𝛽𝑖), 𝑇𝑚𝑎𝑥(𝛽𝑖)); 𝛼 = 𝛼 ∪ {𝐹1𝑖(𝛽𝑖)}. 

End; 

Step 4: Place the jobs in MST rule order (𝜎1) and compute 

calculate 𝐹21(𝜎1) = (∑𝐶𝑗(𝜎1), ∑𝐸𝑗(𝜎1), 𝑇𝑚𝑎𝑥(𝜎1)); 𝒮 =

𝒮 ∪ {𝐹21(𝜎1)}. 
Step 5: Place job 𝑖 at the first position of (𝜎𝑖−1)  from 𝑖 =
2 to 𝑛 to get 𝜎𝑖 and compute 𝐹2𝑖(𝜎𝑖) =

(∑𝐶𝑗(𝜎𝑖), ∑𝐸𝑗(𝜎𝑖), 𝑇𝑚𝑎𝑥(𝜎𝑖)); 𝒮 = 𝒮 ∪ {𝐹2𝑖(𝜎𝑖)}.  

End; 

Step 6: To find a set of efficient solutions for (𝑆𝐶𝐸𝑀𝑇) 
problem, filter set 𝒮. 

Step 7: Output: 𝒮 represents a set of efficient solutions.  

Step 8: End. 

 

3.2.2 DR- (𝑆𝐶𝐸𝑀𝑇) heuristic method 

DR- (𝑆𝐶𝐸𝑀𝑇)  depends on DRs is proposed for solving 

(𝑆𝐶𝐸𝑀𝑇) −problem and  (SP)-problem. To summarize DR-

(𝑆𝐶𝐸𝑀𝑇) method, find a sequence sort with a minimum of 𝑝𝑗 

and 𝑑𝑗, corresponding to the DRs, and compute the objective 

function. DR- (𝑆𝐶𝐸𝑀𝑇)  algorithm is summarized in the 

following steps: 

 

Algorithm 4: DR-(𝑺𝑪𝑬𝑴𝑻) Heuristic Algorithm 

Step 1: Enter: 𝑛, 𝑝𝑗  & 𝑑𝑗 , where 𝑗 from 1 to 𝑛. 

Step 2: Employ theorem (1) to find the DRs and 

corresponding adjacent matrix 𝐴 ; 𝑁 = {1,2, … , 𝑛} ; 

calculate 𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 , ∀𝑗 ∈ 𝑁, 𝒮 = 𝜑.  
Step 3: Discover the sequence 𝛼1  with a non-increasing 

order of 𝑝𝑗  that does not conflict together with matrix 𝐴 

(DR); if 𝑝𝑗 = 𝑝𝑖  ,where 𝑗, 𝑖 ∈ 𝑁  then order 𝛼1  by 𝑑𝑗 , then 

𝒮 = 𝒮 ∪ {𝛼1}. 
Step 4: Discover the sequence 𝛼2  with a non-increasing 

order of 𝑑𝑗  that does not conflict together with matrix 𝐴 

(DR); if 𝑑𝑗 = 𝑑𝑖  ,where 𝑗, 𝑖 ∈ 𝑁 then order 𝛼2  by 𝑑𝑗 , then 

𝒮 = 𝒮 ∪ {𝛼2}. 
Step 5: Determine the set of the dominant sequence 𝒮′ 
from 𝒮. 

Step 6: Compute 𝐹𝐶𝐸𝑇(𝒮
′). 

Step 7: Output: 𝒮′ (the set of effective solution)  

Step 8: End. 

 

 

4. RESULTS AND DISCUSSION  

 

This section, considered compaction results of Exact and 

HMs to the (𝑆𝐶𝐸𝑀𝑇)-problem and (𝑆𝑃)-problem. Because we 

deal with the MSP, the 𝑝𝑗  and 𝑑𝑗  values are randomly 

generated for five examples s.t., 𝑝𝑗 ∈ [1,10]  and: 𝑑𝑗 ∈

{

[1,30] 1 ≤ 𝑛 ≤ 29
[1,40] 30 ≤ 𝑛 ≤ 99
[1,50] 100 ≤ 𝑛 ≤ 999
[1,70] otherwise

, 

subject to condition 𝑑𝑗 ≥ 𝑝𝑗, for 𝑗 = 1, 2, … , 𝑛. 

 

4.1 Results and discussion of the (𝑺𝑪𝑬𝑴𝑻)-problem 

 

In this subsection, the results of applying the exact methods 

will be compared with the heuristic methods for the problem 
(𝑆𝐶𝐸𝑀𝑇). All results from using all presented methods are 

averages of five examples for each 𝑛. Table 1 illustrated the 

comparison results of BAB(WODR), BAB(WDR), and CEM 

for the problem (𝑆𝐶𝐸𝑀𝑇) with 𝑛 = 4, 5, … , 11. In Table 2, the 

results of BAB without and with DR for problem (𝑆𝐶𝐸𝑀𝑇), 
where 𝑛 = 12: 19,20,30,40,50 were presented. Also, Table 3 

showed the comparison results between the proposed 

heuristics methods (SM- (𝑆𝐶𝐸𝑀𝑇)  and  DR- (𝑆𝐶𝐸𝑀𝑇) ), with 

CEM for the problem (𝑆𝐶𝐸𝑀𝑇) with 𝑛 = 4 to 11. In addition, 

the results of SM- (𝑆𝐶𝐸𝑀𝑇)  and  DR- (𝑆𝐶𝐸𝑀𝑇)  that were 

compared to the BAB(WODR), and BAB(WDR) for the 

problem (𝑆𝐶𝐸𝑀𝑇) have been listed in Table 4, for different 

values of 𝑛. Table 5 presented the results of SM-(𝑆𝐶𝐸𝑀𝑇) and 

DR-(𝑆𝐶𝐸𝑀𝑇) for problem (𝑆𝐶𝐸𝑀𝑇) for different 𝑛. 

The simulation result for exact and heuristic methods for 

solving the 1//(∑𝐶𝑗 , ∑ 𝐸𝑗 , 𝑇𝑚𝑎𝑥) problem can be analyzed in 

terms accuracy and CPU-Time. From Table 1 illustrated that 

CEM gave minimum values for the 1// (∑𝐶𝑗 , ∑ 𝐸𝑗 , 𝑇𝑚𝑎𝑥) 

problem compared to the results of the BAB up to 𝑛 ≤ 11. 

Also, CEM was taken a long time (CPU-Time) compared to 

BAB. In additionally, the BAB(WODR) starts to give the 

minimum values for the (𝑆𝐶𝐸𝑀𝑇) problem compared to the 

results for BAB(WDR) for 𝑛 ≤ 7, while BAB(WDR) starts to 

give the minimum values for the (𝑆𝐶𝐸𝑀𝑇) problem compared 

to the results for BAB(WODR) for 𝑛 > 7.  

Moreover, from Table 2, BAB(WDR) gave minimum 

values in terms accuracy and CPU-Time compared with 

results of BAB(WODR), for 𝑛 = 12  to 50. Therefore, 

BAB(WDR) performs better than BAB(WODR), and BAB 

without DR solved the problem in all cases from 𝑛 = 12 to 19, 

but failed to solve the problem when 𝑛 ≥ 19, whereas BAB 

with DR (BAB(WDR)) solved the problem in all cases from 

𝑛 = 12 to 55, but failed to solve the problem when 𝑛 > 50. 

Moreover, from Tables 1 and 2, the results of the BAB with 

dominance rules confirmed the number of efficient solutions 

to the problems less than the number of efficient solutions for 

BAB without dominance rules and CEM. In addition, from 

Table 3, the CEM gave best results compared to the heuristic 

methods (SM-(𝑆𝐶𝐸𝑀𝑇)  and DR-(𝑆𝐶𝐸𝑀𝑇). Furthermore, CEM 

takes a long time in the CPU-Time, whereas the HM SM-
(𝑆𝐶𝐸𝑀𝑇) gives better results than DR-(𝑆𝐶𝐸𝑀𝑇) for 𝑛 ≤ 11. In 

Table 4, BAB(WDR) gave best showed results when 

compared with BAB (WODR), SM- (𝑆𝐶𝐸𝑀𝑇) , and DR-

(𝑆𝐶𝐸𝑀𝑇) which also showed that BAB without DR solved all 

cases of the problem from 𝑛 = 4 to 𝑛 = 19, and BAB with 

DR failed to solve all problems for 𝑛 > 50. In general, the 

results of BAB method are better when compared to Heuristic 

Methods up to 𝑛 = 50. Also, heuristic method SM-(𝑆𝐶𝐸𝑀𝑇) 
gives better results than DR − (𝑆𝐶𝐸𝑀𝑇) for 𝑛 ≤ 50 . While 

DR − (𝑆𝐶𝐸𝑀𝑇)  gives better results than SM- (𝑆𝐶𝐸𝑀𝑇)  for 

50 < 𝑛 ≤ 5000 , for problem (𝑆𝐶𝐸𝑀𝑇) . From Table 5, the 
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heuristic method (SM-(𝑆𝐶𝐸𝑀𝑇)) gave better result than DR-
(𝑆𝐶𝐸𝑀𝑇) from 𝑛 = 4  to 60 while heuristics method DR-

(𝑆𝐶𝐸𝑀𝑇)  gave better results than SM-(𝑆𝐶𝐸𝑀𝑇)for problem 

(𝑆𝐶𝐸𝑀𝑇)  up to 60 < 𝑛 ≤ 5000 . Furthermore, DR-(𝑆𝐶𝐸𝑀𝑇) 

was successful in resolving all issues for 𝑛 ≤ 4000  and 

unable to resolve every problem for 𝑛 > 4000, whereas SM-

(𝑆𝐶𝐸𝑀𝑇) was successful in resolving all issues for 𝑛 ≤ 5000 

and didn't manage to resolve every problem for 𝑛 > 5000. 

 

Table 1. Comparison between BAB(WODR) and BAB(WDR) with CEM for problem (𝑆𝐶𝐸𝑀𝑇), for 𝑛 = 4, 5, … , 11 

 

EX 
CEM BAB(WODR)LB=SPT, UB=MST BAB(WDR)LB=SPT, UB=MST 

MCF TIME NES MCF TIME NES MCF TIME NES 

n5 AV(FCET) ACTS ANEFS AV(FCET) ACTS ANEFS AV(FCET) ACTS ANEFS 

4 (60.8,24.2,2.2) Ver 8.2 (60.7,24.4,2.2) Ver 8.0 (59.0,27.3,1.8) Ver 4.6 

5 (90.1,23.3,6.5) Ver 10.2 (90.1,23.3,6.5) Ver 10.2 (100.6,20.3,10.1) Ver 4.8 

6 (112.1,24.6,9.8) Ver 14.6 (112.1,24.8,9.8) Ver 20.6 (120.5,23.6,11.2) Ver 12.2 

7 (125.5,23.1,11.8) 2.09 36 (124.3,23.8,12.1) Ver 28.6 (126.3,22.4,12.6) Ver 22.6 

8 (153.3,26.1,16.1) 45.5 56.2 (152.3,26.4,16.9) Ver 39.2 (149.8,29.5,16.2) Ver 31.2 

9 (215.1,19.0,24.7) 985.4 35.4 (216.6,19.1,25.5) Ver 30.4 (182.5,20.8,17.9) Ver 24.8 

10 (205.0,18.3,12.1) 87.2 118.6 (209.8,35.0,21.8) Ver 92.4 (193.0,38.1,18.1) Ver 71.8 

11 (301.0,35.5,8.3) 1800 72.4 (294.2,22.8,37.8) Ver 34.4 (286.6,23.9,35.3) Ver 29.8 

 

Table 2. Comparison between the BAB without and with DR for problem (𝑆𝐶𝐸𝑀𝑇) 
 

EX 
BAB(WODR)LB=SPT, UB=MST BAB(WDR)LB=SPT, UB=MST 

MCF TIME NES MCF TIME NES 

n5 AV(FCET) ACTS ANEFS AV(FCET) ACTS ANEFS 

12 (345.7,28.2,41.9) Ver 50.6 (323.7,28.2,37.7) Ver 39.2 

13 (357.9,21.6,43.6) 1.2 58.8 (352.2,23.5,43.9) Ver 48.4 

14 (470.8,11.9,59.9) Ver 29.4 (458.4,14.8,58.2) Ver 20.4 

15 (549.8,23.1,65.6) 3.6 56.6 (556.8,25.4,66.8) Ver 48.6 

16 (529.9,28.2,60.6) 3.6 61.6 (514.4,31.1,60.9) Ver 47.0 

17 (633.3,20.7,72.7) 39.9 38.8 (631.9,21.4,72.7) Ver 33.2 

18 (708.6,37.0,75.2) 57.9 83.6 (702.0,38.0,74.0) Ver 79.6 

19 (738.2,28.7,77.5) 93.5 54.2 (697.1,33.4,75.7) Ver 48.2 

20 - - - (827.9,35.5,81.7) Ver 55.4 

30 - - - (1983.5,26.0,148.5) Ver 32.2 

40 - - - (3351.8,36.4,204.8) 3.0 49.2 

50 - - - (4950.1,36.8,246.8) 31.8 56.8 

 

Table 3.  Comparison of SM-(𝑆𝐶𝐸𝑀𝑇), DR-(𝑆𝐶𝐸𝑀𝑇) and CEM of problem (𝑆𝐶𝐸𝑀𝑇), 𝑛 = 4, 5, … , 11 

 

EX 
CEM SM-(𝑺𝑪𝑬𝑴𝑻) DR-(𝑺𝑪𝑬𝑴𝑻) 

MCF TIME NES MCF TIME NES MCF TIME NES 

n5 AV(FCET) ACTS ANEFS AV(FCET) ACTS ANEFS AV(FCET) ACTS ANEFS 

4 (60.8,24.2,2.2) Ver 8.2 (60.2,25.7,2.9) Ver 5.6 (61.7,25.3,4.0) Ver 4.8 

5 (90.1,23.3,6.5) Ver 10.2 (91.9,24.4,7.3) Ver 5.8 (92.9,24.9,9.3) Ver 5.0 

6 (112.1,24.6,9.8) Ver 21 (113.7,28.9,11.3) Ver 6.8 (116.6,26.9,12.9) Ver 4.8 

7 (125.5,23.1,11.8) 2.09 32.6 (131.4,24.1,14.4) Ver 7.8 (133.7,24.1,15.6) Ver 5.6 

8 (153.3,26.1,16.1) 45.5 56.2 (155.6,32.4,18.0) Ver 8.0 (157.0,31.8,18.4) Ver 5.6 

9 (215.1,19.0,24.7) 985.4 35.4 (225.3,21.3,27.7) Ver 6.8 (232.7,23.0,29.2) Ver 4.6 

10 (205.0,18.3,12.1) 87.2 40 (224.5,36.5,23.0) Ver 10.4 (227.5,35.0,23.7) Ver 6.2 

11 (301.0, 35.5, 8.3) 1800 26.8 (317.7,23.9,37.9) Ver 8.8 (326.7,22.8,38.9) Ver 6.2 

 
Table 4. Comparison results SM-(𝑆𝐶𝐸𝑀𝑇)and DR-(𝑆𝐶𝐸𝑀𝑇)with BAB (WODR), and BAB (WDR) for problem (𝑆𝐶𝐸𝑀𝑇) 

 

EX 

BAB(WODR), LB=SPT, 

UB=MST 

BAB(WDR), LB=SPT, 

UB=MST 
SM-(𝑺𝑪𝑬𝑴𝑻) DR-(𝑺𝑪𝑬𝑴𝑻) 

MCF TIME MCF TIME MCF TIME MCF TIME 

n5 AV(FCET) ACTS AV(FCET) ACTS AV(FCET) ACTS AV(FCET) ACTS 

12 (345.7,28.2,41.9) Ver (323.7,28.2,37.7) Ver (378.9,31.8,42.9) Ver (396.8,27.8,46.8) Ver 

13 (357.9,21.6,43.6) 1.2 (352.2,23.5,43.9) Ver (415.5,31.8,44.2) Ver (429.3,30.3,47.2) Ver 

14 (470.8,11.9,59.9) Ver (458.4,14.8,58.2) Ver (507.7,15.1,58.4) Ver (515.8,14.3,58.4) Ver 

15 (549.8,23.1,65.6) 3.6 (556.8,25.4,66.8) Ver (624.7,26.4,64.8) Ver (641.9,22.5,65.7) Ver 

16 (529.9,28.2,60.6) 3.6 (514.4,31.1,60.9) Ver (601.3,32.4,60.4) Ver (628.9,30.8,62.4) Ver 

17 (633.3,20.7,72.7) 39.9 (631.9,21.4,72.7) Ver (711.5,24.3,72.9) Ver (739.1,21.8,72.3) Ver 

18 (708.6,37.0,75.2) 57.9 (702.0,38.0,74.0) Ver (832.8,40.6,75.2) Ver (859.7,35.1,76.8) Ver 
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EX 

BAB(WODR), LB=SPT, 

UB=MST 

BAB(WDR), LB=SPT, 

UB=MST 
SM-(𝑺𝑪𝑬𝑴𝑻) DR-(𝑺𝑪𝑬𝑴𝑻) 

MCF TIME MCF TIME MCF TIME MCF TIME 

n5 AV(FCET) ACTS AV(FCET) ACTS AV(FCET) ACTS AV(FCET) ACTS 

19 (738.2,28.7,77.5) 93.5 (697.1,33.4,75.7) Ver (880.3,30.2,79.3) Ver (917.8,24.7,79.9) Ver 

20 - - (827.9,35.5,81.7) Ver (1039.4,31.3,89.1) Ver (1090.8,20.6,92.9) Ver 

30 - - (1983.5,26.0,148.5) Ver (1513.0,45.3,106.9) Ver (2262.2,23.8,143.8) Ver 

40 - - (3351.8,36.4,204.8) 3.0 (4022.5,32.7,201.1) Ver (4036.1,31.6,203) Ver 

50 - - (4950.1,36.8,246.8) 31.8 (6045.2,37.5,246.0) Ver (6116.3,30.4,245.3) Ver 

100 - - - - (25917.9,38.9,544.9) Ver (24137.7,24.5,547.2) Ver 

1000 - - - - (2637870,32,5487) 5.7 (1935453.8,0,5484.6) 9.9 

2000 - - - - 
(10582517.5,35.6,1098

3.5) 
26.8 (7713263,0,10980.6) 72.3 

3000 - - - - 
(23701295.9,30.0,1644

9.5) 
80.4 (17314163.2,0.0,16447) 264.9 

4000 - - - - 
(42269531.3,36.5,2202

3.2) 
183.6 (30915011.2,0.0,22020) 647.8 

5000 - - - - 
(65964191.8,29.1,2742

9.7) 
341.4 (48048599.0,0.0,27427) 1263.1 

 

Table 5. Comparison results SM-(𝑆𝐶𝐸𝑀𝑇)and DR-(𝑆𝐶𝐸𝑀𝑇)for problem (𝑆𝐶𝐸𝑀𝑇) 
 

EX 
SM-(𝑺𝑪𝑬𝑴𝑻) DR-(𝑺𝑪𝑬𝑴𝑻) 

MCF TIME NES MCF TIME NES 

n5 AV(FCET) ACTS ANEFS AV(FCET) ACTS ANEFS 

40 (4022.5,32.7,201.1) Ver 16.4 (4036.1,31.6,203.0) Ver 10.6 

60 (8577.7,32.9,298.0) Ver 18.2 (8605.1,24.5,299.6) Ver 11.8 

80 (16483.9,37.1,424.9) Ver 20.8 (15740.9,31.6,426.9) Ver 13.8 

100 (25917.9,38.9,544.9) Ver 21.0 (24137.7,24.5,547.2) Ver 12.4 

400 (415738.1,34.3,2179.2) 1.2 34.2 (330938.5,1.8,2176.6) 1.4 5.0 

600 (940295.2,35.0,3258.7) 2.3 38.2 (714625.0,0.1,3257.1) 3.1 1.4 

800 (1688582.7,29.4,4394.1) 3.8 39.0 (1263913. 4,0.1,4390.8) 5.9 1.2 

1000 (2637870.0,32.0,5487.0) 5.8 39.2 (1935453.8,0.0,5484.6) 10.1 1.0 

2000 (10582517.5,35.6,10983.5) 27.3 40.2 (7713263.0,0.0,10980.6) 74.0 1.0 

3000 (23701295.9,30.0,16449.5) 80.4 40.4 (17314163.2,0.0,16447.8) 264.9 1.0 

4000 (42269531.3,36.5,22023.2) 183.6 40.4 (30915011.2,0.0,22020.2) 647.8 1.0 

5000 (65964191.8,29.1,27429.7) 341.4 39.6 (48048599.0,0.0,27427.0) 1263.1 1.0 

 

4.2 Results and discussion of the (𝑺𝑷)-problem 

 

In this subsection, the simulation results of the exact 

methods will be compared with the two suggested heuristic 

methods with regard to the subproblem (𝑆𝑃), the outcomes of 

the comparison were presented in Tables 6-8. 

In Table 6, the results of BAB(WODR), and BAB(WDR) 

methods were compared with the CEM for the problem (𝑆𝑃) 
in different values of n (𝑛 = 4 to 17). This table illustrated that 

CEM gave same results of BAB(WODR) and better than 

BAB(WDR), but CEM taken more time, and BAB(WODR) 

takes a long time in CUP-Time compared to BAB(WDR). 

Moreover, CEM solved the problem when 𝑛 ≤ 11 , 

BAB(WODR) solved the problem when 4 ≤ 𝑛 ≤ 15 , 

BAB(WDR) solved the problem when 4 ≤ 𝑛 ≤ 17.  

In Table 7, the results of SM- (𝑆𝑃) and DR-(𝑆𝑃)  were 

compared with CEM for the problem (𝑆𝑃) are presented for 

𝑛 = 4 to 11. Furthermore, Table 7 shows that result of CEM 

best from the SM-(𝑆𝑃) and DR-(𝑆𝑃). However, CEM takes a 

long time compared to SM-(𝑆𝑃)and DR-(𝑆𝑃) for the problem 

(𝑆𝑃). For better illustration for Table 7, all the comparative 

results between SM-(SP) and DR-(𝑆𝑃), and CEM for problem 

(𝑆𝑃) on different values of 𝑛 (𝑛 = 4, 5, … ,11) are depicted in 

Figure 1. 

 

Table 6. Comparison results of BAB(WODR) and BAB(WDR) with CEM for subproblem (𝑆𝑃) 
 

EX 
CEM BAB(WODR), LB=UB=SPT BAB(WDR), UB=LB=SPT 

MOF TIME MOF TIME MOF TIME 

n5 AV(FSP) ACTS AV(FSP) ACTS AV(FSP) ACTS 

4 84.2 Ver 84.2 Ver 84.2 Ver 

5 116.6 Ver 116.6 Ver 116.6 Ver 
6 141 Ver 141.0 Ver 141.0 Ver 

7 154.2 Ver 154.2 Ver 154.2 Ver 

8 189.6 Ver 189.6 Ver 189.6 Ver 
9 253.8 6.7 253.8 Ver 253.8 Ver 

10 257.6 71.4 257.6 351.4 257.6 Ver 

11 348 833.3 348.0 145.8 348.0 Ver 
12 - - 409.8 628.2 409.8 Ver 

13 - - 418.2 1800 418.2 Ver 

14 - - 537.2 254.3 537.2 Ver 
15 - - 629 1800 629.6 86.3 

16 - - - - 607.4 16.7 

17 - - - - 718.2 0.9 
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Table 7. Comparison between SM-(𝑆𝑃) and DR-(𝑆𝑃) with CEM for problem (𝑆𝑃) 
 

EX 
CEM SM-(𝑺𝑷) DR-(𝑺𝑷) 

MOF TIME MOF TIME MOF TIME 

n5 AV(FSP) ACTS AV(FSP) ACTS AV(FSP) ACTS 

4 84.2 Ver 84.2 Ver 85.6 Ver 
5 116.6 Ver 118.2 Ver 117.2 Ver 
6 141 Ver 147.2 Ver 144.0 Ver 
7 154.2 Ver 162.8 Ver 163.8 Ver 
8 189.6 Ver 194.0 Ver 196.6 Ver 
9 253.8 6.7 267.0 Ver 267.6 Ver 
10 257.6 71.4 272.4 Ver 270.4 Ver 
11 348 833.3 358.4 Ver 361.4 Ver 

 

Table 8. Comparison results between the BAB without DR, BAB with DR, SM-(𝑆𝑃), and DR-(𝑆𝑃) for the problem (𝑆𝑃) 
 

EX 

BAB(WODR), 

LB=UB=SPT 

BAB(WDR), 

UB=LB=SPT 
SM-(𝑺𝑷) DR-(𝑺𝑷) 

MOF TIME MOF TIME MOF TIME MOF TIME 

n5 AV(FSP) ACTS AV(FSP) ACTS AV(FSP) ACTS AV(FSP) ACTS 

4 84.2 Ver 84.2 Ver 84.2 Ver 85.6 Ver 
5 116.6 Ver 116.6 Ver 118.2 Ver 117.2 Ver 
6 141.0 Ver 141.0 Ver 147.2 Ver 144.0 Ver 
7 154.2 Ver 154.2 Ver 162.8 Ver 163.8 Ver 
8 189.6 Ver 189.6 Ver 194.0 Ver 196.6 Ver 
9 253.8 Ver 253.8 Ver 267.0 Ver 267.6 Ver 

10 257.6 351.4 257.6 Ver 272.4 Ver 270.4 Ver 
11 348.0 145.8 348.0 Ver 358.4 Ver 361.4 Ver 
12 409.8 628.2 409.8 Ver 423.4 Ver 426.2 Ver 
13 418.2 1800 418.2 Ver 450.4 Ver 451.2 Ver 
14 537.2 254.3 537.2 Ver 548.0 Ver 545.6 Ver 
15 629 1800 629.6 86.3 648.2 Ver 648.4 Ver 
16 - - 607.4 16.7 625.2 Ver 623.8 Ver 
17 - - 718.2 Ver 738.6 Ver 734.8 Ver 
18 - - - - 828.6 Ver 828.2 Ver 
19 - - - - 854.8 Ver 851.0 Ver 
20 - - - - 1031.0 Ver 1030.0 Ver 
40 - - - - 3583.2 Ver 3580.4 Ver 
60 - - - - 7359.0 Ver 7346.8 Ver 
80 - - - - 13638.8 Ver 13616.0 Ver 

100 - - - - 21258.8 Ver 21236.8 Ver 
400 - - - - 312938.6 Ver 312795.4 Ver 
600 - - - - 697160.0 1.1 697006.6 1.3 

800 - - - - 1245389.8 1.8 1245259.0 2.5 

1000 - - - - 1941079.4 2.7 1940938.4 4.1 

2000 - - - - 7724404.0 13.2 7724243.6 27.8 

3000 - - - - 17330742.8 39.2 17330611.0 104.8 

4000 - - - - 30937191.0 86.2 30937031.4 248.7 
 

 
 

Figure 1. The comparison results between SM-(𝑆𝑃) and DR-(𝑆𝑃) with CEM, 𝑛 = 4, 5, … , 11 
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Figure 2. Results of the comparison between the BAB with and without DR, SM-(𝑆𝑃), and DR-(𝑆𝑃) for problem (𝑆𝑃) 
 

Table 8 presents the results of heuristic methods (SM-

(𝑆𝑃) and DR-(𝑆𝑃), and Exact methods (BAB without and 

with DR) for problem (𝑆𝑃) for different value of 𝑛 (𝑛 = 4 to 

20,40,60,80,100,400,600,800,1000,2000,3000, and 4000). In 

addition, by using Table 8, Figure 2 shows the comparison 

result between BAB and HM for the problem (𝑆𝑃). Moreover, 

in Table 8, BAB(WODR) gave best s results when compared 

with BAB (WDR), SM- (𝑆𝑃)  and DR- (𝑆𝑃), which also 

showed that BAB with DR solved all problem situations from 

𝑛 = 4 to 17. In addition, all instances of the problem were 

solved by BAB without DR, from 𝑛 = 4 to 15, and when 𝑛 >
15, was unable to solve the problems. However, SM-(𝑆𝑃) and 

DR-(𝑆𝑃) solved all the problems from 𝑛 = 4 to 𝑛 = 4000, 

but the BAB (WODR) and BAB (WDR) method gave better 

results.  

 

 

5. CONCLUSIONS 

 

In this paper, two new techniques two new Heuristic 

methods SM-(𝑆𝐶𝐸𝑀𝑇)  and DR-(𝑆𝐶𝐸𝑀𝑇)  were proposed to 

solve the tri-criteria problem (1//(∑𝐶𝑗, ∑𝐸𝑗 , 𝑇𝑚𝑎𝑥)), three multi 

objective (1// (∑𝐶𝑗 +∑𝐸𝑗 + 𝑇𝑚𝑎𝑥) ) machine scheduling 

problems. In addition, BAB with DRs, BAB without DRs, and 

CEM as an Exact method were used to compare results 𝑛 

terms of accuracy and computational time. The result showed 

that, SM-(𝑆𝐶𝐸𝑀𝑇) performs better than DR-(𝑆𝐶𝐸𝑀𝑇) were for 

all 𝑛 ≤ 400, while, when 𝑛 ≥ 400, DR-(𝑆𝐶𝐸𝑀𝑇) gave better 

results than SM-(𝑆𝐶𝐸𝑀𝑇). Furthermore, for two problems, the 

result of the BAB with dominance rules for two problems 

showed a lower number of efficient solutions for all 𝑛. than 

the number of efficient solutions of d BAB without dominance 

rules and CEM. For future work, a new UB and LB can be 

used for the BAB algorithm to prove its effectiveness in 

determining the best solution for the MOF. Different machine 

environments can be used to study more complex problems 

and/or our proposed problems can be completed with 

constraints, such as the release date (𝑟𝑗), setup time (𝑆𝑓), and 

pre-stopping. 
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