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In large-scale manufacturing, ensuring the efficient operation of rotating machines is 

crucial to avoid breakdowns and failures during production. This article introduces a 

method for detecting gearbox faults by analyzing vibration signals and employing 

artificial intelligence techniques, with a particular emphasis on comparing these 

methods. The diagnostic process consists of three stages: extracting features using 

Wavelet Packet Transform (WPT) and statistical analysis, selecting optimal properties 

through the gain ratio method, and using Support Vector Machine (SVM) and Artificial 

Neural Network (ANN) models to distinguish between faults and assess their 

performance. The diagnostic outcomes demonstrate that both SVM and ANN models 

accurately identify various fault patterns depending on the operating conditions. 

Remarkably, the study highlights the ANN model's superiority over the SVM model in 

classifying gearbox faults, indicating its suitability for gearbox fault diagnosis. This 

research yields valuable insights into machine condition monitoring, showcasing the 

ANN model as a robust tool for gearbox fault detection. The findings advocate for the 

implementation of ANN-based approaches in real-world applications to enhance the 

reliability of fault detection and prevention in rotating machines. Furthermore, future 

research directions may explore additional enhancements and optimizations for ANN 

models, leading to more advanced machine health monitoring systems in the 

manufacturing industry. 
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1. INTRODUCTION

Gearboxes play a crucial role in manufacturing applications, 

such as transmission and revolving equipment. However, gear 

faults account for a significant portion of overall faults in 

gearboxes and lead to substantial failures due to inadequate 

maintenance work. This highlights the urgent need for gearbox 

state monitoring and fault diagnosis to ensure safe machine 

operation and reduce maintenance costs [1]. The vibration 

signals analysis is significantly utilized for state monitoring as 

well as fault diagnostics in rotating equipment [2]. Recently, 

several analysis approaches of vibration signal have been 

employed for diagnosis of the fault, among which is the FFT, 

which is the broadly utilized and properly developed approach. 

Inopportunely, the FFT-based methods are inappropriate for 

the analysis of non-stationary signals [3]. Nevertheless, the 

component of non-stationary signals contains further info 

about the faults of the machine. The wavelet transform is 

beneficial in several fields of machine fault diagnosis [4]. It is 

particularly appropriate for the scrutiny of non-stationary 

signals that it creates via the fault. 

As computer technology continues to advance, there is an 

increasing trend toward employing sophisticated classification 

algorithms for monitoring system conditions and detecting 

faults. Prominent among these techniques are Artificial Neural 

Networks (ANNs) and Support Vector Machines, which have 

gained widespread adoption in recent times (SVM) [5]. The 

main difference between the SVM and the ANN is the risk 

minimization principle. In the SVM case, the principle of 

structural risk minimization reduces an upper bound 

depending upon an anticipated risk. However, in the ANN, the 

conventional minimization of experimental risk is utilized, 

reducing the error based on the training data. The difference in 

the minimization of risk causes better-generalized 

performance for the SVM than the ANN [6]. 

The extraction and selection of features aim to reduce the 

signal processing's data dimension. The extraction of features 

is implemented to convert the high-dimensional raw data into 

lower-dimensional space, and the selection of features is 

choosing the pertinent and valuable feature without any 

conversion. Certain methods of feature extraction depend 

upon the linear method, like the Wavelet Packet Transform 

(WPT) [7], Principal Component Analysis (PCA), and 

Independent Component Analysis (ICA) [8]. Beyond the 

extraction of features, there is still unrelated and redundant 

info and noise in such extracted features. The optimized 

feature is selected by a feature selection approach that can 

reduce the amount of raw data and improve classification 

accuracy. There are certain methods of the selection of 

features, like the method of distance assessment [9], 
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Compensation Distance Evaluation Technique (CDET) [10], 

Genetic Algorithms (GAs) [11], and Gain Ratio (GR) [12]. 

The present study introduces a technique for the fault 

diagnosis of gears, depending on the method of extraction of 

features, dimensionality reduction techniques, and artificial 

intelligence technologies, such as SVM and ANN. Wavelet 

Packet Transform is utilized for the extraction of features since 

it is more effective than wavelet transforms for data 

compression and decomposition. The feature ranking 

technique, Gain Ratio, is utilized to rank the characteristics of 

the high-dimensional dataset. The low-ranking characteristics 

are filtered to form fresh, reduced data subsets. By exploring 

these techniques and comparing their performance, this 

research aims to advance the field of gearbox fault detection 

and pave the way for more reliable and efficient machine 

health monitoring systems in the manufacturing industry. The 

flow diagram of the diagnosis method is revealed in Figure 1. 

 

 
 

Figure 1. The flow diagram of the diagnosis method 

 

1.1 Wavelet transform 

 

The Wavelet Transform is a powerful and contemporary 

mathematical tool that has emerged as a highly effective 

technique for analyzing non-stationary signals. Its unique 

properties make it particularly well-suited for the analysis of 

non-stationary vibration signals, which exhibit dynamic and 

time-varying characteristics. By employing the Wavelet 

Transform, researchers and engineers can effectively capture 

and study the intricate patterns and transient behaviors 

embedded within these complex vibration signals, enabling a 

more comprehensive and accurate understanding of the 

underlying phenomena. Contrary to STFT, where the size of 

the window is constant for the whole signal analysis, the 

wavelet transform utilizes changeable sizes of windows for the 

whole sign to obtain a virtuous resolution in both frequency 

and time. And its opinion is depended upon the signal 

decomposition into different scales' wavelet coefficients in the 

time domain. One can divide the class of wavelet transform 

into (3) types: Wavelet Packet Transform (WPT), continuous 

wavelet transform (CWT), and discrete wavelet transform 

(DWT) [13]. 

 

1.1.1 Continuous wavelet transform (CWT) 

It is defined as follows: 

 

𝑓(𝑎, 𝑏) = ∫  
+∞

−∞
𝑓(𝑡)𝜓𝑎,𝑏

∗ (𝑡)d𝑡  (1) 

 

Wavelets are therefore defined by: 

 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) , 𝑎 ∈ ℜ∗+, 𝑏 ∈ ℜ  (2) 

 

Eq. (1) becomes: 

 

𝑓(𝑎, 𝑏) =
1

√𝑎
∫  

+∞

−∞
𝑓(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) d𝑡  (3) 

 

where, a and b are the parameters of dilation (scale) and the 

translation (shift) parameters correspondingly: 

𝜓(𝑡): The mother wavelet  

𝜓∗(𝑡): The complex conjugate of 𝜓 

Numerous mother wavelets, like Morlet functions, 

Daubechies, Meyer, and Haar, can be employed for the 

detection as well as diagnosis of faults in rotating machinery. 

Thus, the wavelet transform provides virtuous outcomes when 

the mother wavelet is cautiously chosen (Figure 2). 

 

1.1.2 Discrete Wavelet Transform (DWT) 

It is a continuous wavelet transform (CWT) discretization. 

Via substituting, 

 

𝑎 = 𝑎0
𝑚 et 𝑏 = 𝑛𝑏0𝑎0

𝑚 with 𝑎0 ∈ 𝑍 et 𝑏0 ∈ 𝑍. 

 

The above expression becomes 

 

𝑓(𝑚, 𝑛) = 𝑎0

−
𝑚

2 ∫
−∞

+∞
 𝑓(𝑡)𝜓(𝑎0

−𝑚𝑡 − 𝑛𝑏0)d𝑡  (4) 

 

The highly usual discretization is dyadic, where a = 2 et b = 

1 with m and n integers, 

 

𝑓(𝑚, 𝑛) = 2−
𝑚

2 ∫  
+∞

−∞
𝑓(𝑡)𝜓(2−𝑚𝑡 − 𝑛)d𝑡  (5) 

 

An applied form of the discrete wavelet transforms, named 

Multi-Resolution Analysis (MRA), permits the signal 𝑠(𝑡) to 

decompose at many levels. It consists of introducing the initial 

signal 𝑠(𝑡)  into low-pass (L)  and high-pass (H) filters. At 

level one, a pair of vectors (𝐴1  and 𝐷1) will be determined. 

Also, the vector elements (𝐴1) being named Approximation 

Coefficients, and the vector elements (𝐷1) being named Detail 

Coefficients (𝐷2). The process can be recurrent with (𝐴1) at 

level two, a pair of vectors (𝐴2 and 𝐷2) will be determined. 

The procedure of decomposition can be recurrent 𝑗 times, with 

𝑗  the ultimate no. of levels. The DWT work procedure is 

displayed in Figure 3. 

 

1.1.3 Wavelet Packet Transform (WPT) 

WPT can be considered a distinctive discrete wavelet 

transform (DWT) format. The DWT easily decomposes the 
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estimate signals, and the WPT is able to capture the info of the 

two detailed estimate signal constituents (Figure 4). Therefore, 

the WPT derives further clarified frequency resolution from 

the decomposed signal. Similar wavelet foundations (i.e., sym, 

db., and coif) are utilized for the WPT to facilitate the relative 

analysis with the DWT [14]. 

The WPT has been confirmed to be effective in the analysis 

of vibration signals of numerous engineering uses [7]. It 

decomposes the high-frequency as well as the low-frequency 

into 2𝑗 . The band of interval frequency permits better signals' 

time-frequency localization. For such reason, the WPT is 

highly suitable for the extraction of features from the 

frequency domain and the time domain of the vibration signals. 

For analyzing the time features in various bands of the 

frequency of the signal of vibration, the raw signal is 

decomposed via the decomposition of a j-level wavelet packet. 

Thus, there's an entire set of 2𝑗  packets with the sequence 

m=1, 2, 3…2𝑗  that being determined. R (j, m) represents the 

mth node beneath the j level. In the present investigation, the 

decomposition of a three-level wavelet packet, j = 0, 1, 2, 3, 

and m = 1, 2, 3…8, as well as the reconstruction of each node 

of the 3rd level, were taken. This reflects the signal variation 

with the time in the range [(m-1)/2𝑗 and m/2𝑗 ] of frequency. 

The reconstructed signal of every node comprises a 

characteristic band of frequency reflecting certain fault 

information.

 

 
 

Figure 2. Examples of mother wavelets [15] 

 

 
 

Figure 3. Discrete wavelet transform [16] 

 

 
 

Figure 4. Wavelet packet decomposition [14] 
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1.2 Time-domain statistical features extraction 

 

The time-domain signal can diagnose the fault by analyzing 

the vibration signals from different conditions. The statistical 

technique of the time domain is able to give the physical 

features of the time series data. For example, Widodo [17] 

employed the features of the time-domain statistical to detect 

the defects in low-speed bearing, like kurtosis, skewness, 

standard deviation, and mean. He et al. [18] utilized the 

statistical parts for diagnosing the faults of gear, containing the 

MDE, crest factor, and kurtosis. In the present investigation, 

six statistical features time domains have been employed for 

analyzing the signal of vibration from various state 

experiments and are listed in Table 1. 

 

Table 1. The chosen statistical characteristics derived from 

the time-domain signals 

 
Time-Domain Feature Equation 

Root mean square 𝑥𝑟𝑚𝑠 = √
1

𝑁
∑  𝑁

𝑖=1 𝑥𝑖
2  

Kurtosis 𝑥𝑘𝑢𝑟 =
1

𝑁
∑  𝑁

𝑖=1 𝑥𝑖
4  

Crest factor 𝑐𝑓 =
𝑥𝑝

𝑥𝑟𝑚𝑠
  

Variance 𝐷𝑥 =
1

𝑁−1
∑  𝑁

𝑖=1 (𝑥𝑖 − �̅�𝑖)2  

Skewness 𝑆𝑘 =
1

𝑁
∑  𝑁

𝑛=1 (𝑥[𝑛]−�̅�)3

𝜎3   

 

1.3 Feature selection using gain ratio algorithm 

 

The selection of the feature subset is of high significance in 

the data mining field. The large size of the data makes the 

testing and training complicated. The selection of important 

features is the difficulty of selecting a small feature subset that, 

idyllically, is essential and adequate for describing the idea of 

the target [19]. The expressions features, variables, and the 

feature selection objective are to evade choosing very few 

features or very numerous than is necessary. When very few 

features are selected, there's a virtuous opportunity that the 

info included in such features group brings low. 

On the other side, when too numerous (irrelevant) features 

are chosen, the noise influences existing in the majority of 

real-world data may overshadow the existing info. Therefore, 

this is an interchange that should be addressed via every 

technique of the selection of features [20]. In this study, the 

filter-based feature subset selection method known as the Gain 

Ratio (GR) was employed to rank and prioritize the features 

within the utilized dataset. 

GR modifies the information gain, reducing bias. The gain 

ratio considers the branch's no. as well as size if selecting a 

characteristic. It modifies the gained info by getting the 

inherent info of splitting into consideration. The inherent info 

is the entropy of examples distribution into branches, and that 

means how much information one requires to tell which 

branch model belongs to. The value of an attribute reduces as 

inherent information becomes bigger [21]. 
 

Gain ratio (Attribute ) =
 Gain ( Attribute )

 Intrinsic info ( Attribute )
 

 

After collecting the vibration data and extracting the time 

domain features from that data, one has a large number of 

features, and it is possible that some of them are not effective. 

Therefore, the gain ratio method was used to reduce this data 

and remove the weak-impact features. 

2. SUPPORT VECTOR MACHINES (SVM) 

 

It's too valuable as the features no. of the categorized 

entities won't influence the SVM performance [22]. This 

means that no limited number of attributes can be selected as 

the basis of the diagnosis system. There is no requirement for 

experts' knowledge of SVM, and no layers are included in the 

structure of SVM. 

 

2.1 Multiclass classification based on SVM 

 

In the context of a binary classification problem, the 

fundamental concept behind the SVM approach is to construct 

a hyperplane that serves as the decision boundary. This 

hyperplane effectively separates the two classes, labeled as 

negative (-1) and positive (+1), with the maximum possible 

margin (Figure 5). The margin is defined as the sum of the 

distances from the hyperplane to the boundaries formed by the 

nearest data points from each of the two classes. These closest 

data points, which determine the boundaries, are referred to as 

the support vectors. 

Assume that there's a certain training data set 

𝐺={(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1 … 𝑃}, every sample 𝑥𝑖 ∈ 𝑅𝐷 goes to a class 

𝑦𝑖 ∈ {+1, −1}. The Support Vector Machine hyper-plane can 

be stated as:  

 

𝜔 ⋅ 𝑥 + 𝐛 = 0 (6) 
 

where, 𝜔 represents a weight vector, and b represents a bias 

vector. Therefore, the subsequent decision function can be 

utilized for classifying every data point (x) in either class (-1) 

or (+1): 

 

𝑓(𝑥) = sgn (𝝎 ⋅ 𝑥 + 𝐛) (7) 

 

where, sgn (⋅) is the process for finding the value's sign. In 

relation to (8), the Support Vector Machine-based classifier is: 

 

𝑓(𝑥) = sgn [∑  P
𝑖=1  𝑎𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝐛]  (8) 

 

It is subject to: 

 

∑  𝑙
𝑖=1 𝛼𝑖𝑦𝑖 = 0  (9) 

 

where, 𝛼𝑖 ≥ 0 represents a Lagrange multiplier, 𝐾(𝑥, 𝑥𝑖). It's 

the kernel function. 

The kernel function employed in SVM performs a mapping 

of the input vectors into a higher-dimensional feature space 

through a nonlinear transformation. This mapping enables the 

construction of a separating hyperplane, thereby rendering the 

data linearly separable in the feature space, even though the 

original input vectors may not be linearly separable in the 

input space [23]. One of the widely used kernel functions for 

SVMs is the Radial Basis Function (RBF). The popularity of 

the RBF kernel stems from its similarity to the K-Nearest 

Neighbor (K-NN) algorithm. It combines the advantages of K-

NN while addressing the issue of space complexity, as RBF 

kernel SVMs only need to store the support vectors during 

training rather than the entire dataset. The RBF kernel is 

considered to exhibit highly accurate, reliable, and effective 

performance in practical applications [24]. Figure 5 illustrates 

the classification process using an SVM. 

The gearbox fault categorization is a multiclass problem. 

Thus, a multiclass SVM classifier is designed. Selecting a 
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suitable strategy for categorization is a crucial topic in 

multiclass categorization, and much effort was conducted on 

such matters [25]. For the purpose of assessing the condition 

of the gearbox under examination in this research, a multiclass 

Support Vector Machine (SVM) classifier with a radial basis 

function (RBF) kernel was utilized.  

 

 
 

Figure 5. SVM classification [26] 

 

 

3. ARTIFICIAL NEURAL NETWORKS (ANN) 

 

Artificial Intelligence (AI), as defined by John McCarthy, is 

"the science and engineering of creating intelligent machines" 

[27]. Artificial Neural Networks (ANNs), a branch of AI, draw 

inspiration from the design and functioning of the human brain. 

ANNs possess remarkable capabilities in pattern recognition, 

classification, data interpretation, and function approximation. 

They provide a nonlinear, parameterized mapping between 

input data and output data. ANNs consist of interconnected 

networks organized into layers of input neurons, hidden 

neurons, and output neurons. These layers are linked through 

transfer functions, while adjustable weights are assigned to the 

neurons. ANNs exhibit a diverse range of architectures and 

topologies, each tailored to specific applications and 

requirements. The power of ANNs lies in their ability to learn 

from data and adapt their internal parameters, enabling them 

to capture intricate patterns and relationships within the data. 

Through a process of training on representative examples, 

ANNs can generalize their learning and make accurate 

predictions or decisions on previously unseen data. This 

adaptability and robustness have made ANNs invaluable tools 

in various domains, including pattern recognition, signal 

processing, control systems, and data analysis. Feed-forward 

multilayer perceptions are the most frequently utilized 

networks in fault detection (MLP). 

Figure 6 shows an MLP network with layers 𝑖, 𝑗, and 𝑘 and 

interconnection weights 𝑊𝑖𝑗 and 𝑊𝑗𝑘 between the layers of the 

neurons. The originally given weights are continually adjusted 

during training. The outputs that MLP predicted are compared 

to the ones that actually happened, and the mistakes are 

backpropagated (from right to left in Figure 6). The weights 

are modified or rectified based on this approach, and mistakes 

are reduced. 

 

 
 

Figure 6. The schematic diagram for 3-layered MLP [28] 

 

 

4. EXPERIMENT APPROACH 

 

4.1 Experiment setup 

 

The test rig is designed for experimental testing on gears, as 

shown in Figure 7, which can simulate the most common faults 

in gear teeth. It was utilized to perform a wide investigational 

monitoring of the various failure modes of the gear. The two-

stage helical gearbox was used, and its details are explained in 

detail in Table 2. A load generator and an induction motor 

connect both gearboxes via flexible couplings. Such 

preparation permits various load states to be imposed upon the 

gearboxes of the test. The assembly of the test rig is driven via 

a 1.1 kW (1.5 hp) AC motor (1472 rpm), whereas the 

servomotors were utilized for applying various states of load 

upon the regime. The accelerometer was strategically 

positioned on the gearbox housing in the vertical direction, 

specifically in close proximity to the potential damage site for 

this particular test. Placing the sensor as close as possible to 

the expected damage sites is a recommended practice. This 

approach ensures that the sensor captures the most relevant 

and accurate data related to potential faults or abnormalities in 

the gearbox [29]. 

In addition to having the test device, there are tools to 

complete the task, the most important of which are the 

accelerometer and Data Acquisition System (DAQ) used to 

analyze that data. Table 3 summarizes the tools used in this 

work and their respective functions. 

 

 
 

Figure 7. Test rig for gearbox fault diagnosis 
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Figure 8. Simulated gear faults 

 

Table 2. Two-stage helical gearbox details 

 

Description 
1 Stage 2 Stages 

Pinion Gear Pinion Gear 

No of teeth     

Rotation speed (rpm) 1472 530 530 98 

Meshing frequency (Hz) 540 107 

Gear ratio 2.7 5.4 

 

In the current investigation, the faults of the gear were 

analyzed. Four kinds of gear faults were utilized in the 

experiments: Broken gear teeth, cracked teeth, worn teeth, and 

missed teeth (see Figure 8). The test rig was set to different 

operating conditions with four speeds (570,870,1170 and 1472 

rpm) and a load of 10 NM. Table 4 evinces a thorough 

description of the faults. 

 

Table 3. Accelerometer and data acquisition system 

 
Tools Type Function 

Accelerometer 
IEPE Type 

CTC102-1A 
Vibration measurement 

Data Acquisition 

System/Hardware 

NI USB-4431 

from National 

Instruments 

Acquire data from the 

accelerometer 

Data Acquisition 

System/Software 

LabVIEW 

Program 

Manages data collection 

and has necessary 

capabilities, including 

wavelet analysis and 

time-domain 

 

Table 4. Description of each fault condition of the gearbox 

 
Test Number Condition Fault Code 

1 Healthy H 

2 Wear teeth W 

3 Crack tooth C 

4 Broken teeth B 

5 Missed tooth M 

 

 
 

Figure 9. A sample of the developed LabVIEW program 

 

 
 

Figure 10. The vibration signals from the first speed of the 

gearbox with five conditions 

4.2 Data acquisition 

 

In this study, the test gearbox was operated under the most 

demanding operating conditions. It was observed that the 

highest frequency present in the system did not exceed 600 Hz. 

Consequently, the sampling rate was set to 2048 (211) samples 

per second, in accordance with the Nyquist sampling theorem, 

which states that the sampling rate should be at least twice the 

highest frequency component in the signal to avoid aliasing. 

Due to the inherent noise that accompanies such operating 

conditions, it was crucial to avoid an excessively high 

sampling rate, as this would lead to redundancy in the signal 

representation and result in increased noise levels in the 

recorded signal. Therefore, the chosen sampling rate of 2048 

Hz strikes a balance between capturing the relevant frequency 

components while minimizing the impact of noise on the 

recorded vibration signal. A Data Acquisition System was 

employed to acquire the vibration signals from the gearbox 

through a sensor. A dedicated system was developed using the 
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LabVIEW programming environment to record the raw 

vibration signals. Subsequently, the wavelet transform method 

was applied to decompose and reconstruct the original signal, 

enabling the extraction of relevant features. The classification 

system then utilized these extracted features to facilitate the 

identification and categorization of potential faults. Figure 9 

manifests a simple system for the LabVIEW program, where 

the original signal is processed and reconstructed by a wavelet 

packet, and then features are extracted from it and stored. The 

vibration signal was acquired for five operation conditions 

(One healthy and four different faults). Two hundred 

unceasing measurements were registered for every situation. 

The registered length of time length of every measure was (0.5 

sec), and the no. of data was 1024 (210 ), and the rate of 

sampling was 2048(211 ) Hz. Also, the raw signals of the 

vibration of five states are schemed in Figure 10. 

 

 

5. FAULT DIAGNOSIS WITH THE COMBINATION OF 

WPT, GR, AND AI ALGORITHMS 

 

5.1 Methodology processes 

 

The flow diagram of the fault diagnosis of gear is elucidated 

in Figure 1. It comprises (4) sections: Acquisition of data, 

extraction of feature, selection of feature, and training, as well 

as testing for the diagnosis of the fault. The extracted feature 

throughout the statistical computation of WPT in addition to 

the time domain. The Wavelet Packet Transform is too 

appropriate for the extraction of features from the time- and 

frequency-domain of the signals of vibration. Furthermore, 

feature extraction techniques are employed to eliminate 

redundant and irrelevant information from the acquired data. 

The optimal set of features is then selected through a feature 

selection method, which aims to reduce the volume of raw data 

while simultaneously enhancing the classification accuracy. 

Ultimately, the SVM is utilized to classify the faults in the 

gearbox. The training and testing processes are carried out 

using artificial intelligence techniques, specifically the SVM 

and ANN. Within the test step, the training model in the 

present work was used to test the five gear conditions, which 

contain the usual conditions and four gear faults. The results 

showed that this method reaches the ideal performance. 

 

5.2 Feature extractions based on WPT and time domain 

analysis 

 

In this study, the maximum frequency in the system does 

not exceed 540 Hz. According to the sampling rate, the 

frequency range of raw signal R is within [0, 1024 HZ]. 

Wavelet packets were decomposed into three levels, as shown 

in Figure 11. 

The main feature extraction steps based on WPT are 

denoted as follows:  

Step 1: Daubechies-4 (dB-4) wavelet was employed to 

decompose the three-level raw signals. Daubechies wavelets 

have gained significant popularity in the field of rotating 

machine fault diagnosis, specifically db4 [30]. 

Step 2: Take the reconstruction signal in every node of the 

3rd level to extract the features in the various frequency bands 

of the vibration signal. This level was chosen because the 

vibration signal analysis at the third level covers a wide range 

of frequencies present in the system. Therefore, in this work, 

eight re-construction signals R31, R32, R33, R34, R35, R36, R37, 

R38 (Green boxes in Figure 11) were determined. R denotes 

the raw signal; R31 denotes the level 3 node 1. Figure 12 shows 

how to reconstruct the raw vibration signal into eight 

reconstructed signals by Wavelet Packet Transform of the 

healthy state of the gearbox. 

Step 3: Calculate 5 statistical feature factors of the time 

domain for the (8) reconstruction signals. Two hundred 

features were obtained for each of the time domain statistical 

factors. Table 5 shows the total number of statistical features 

extracted for each case after the reconstruction signal by 

applying (WPT) method. 

 

 
 

Figure 11. Wavelet packets were decomposed into three 

levels 

 

 
 

Figure 12. Raw and reconstruction signals for a healthy 

gearbox 

 

Table 5. Statistical features of the time domain 

 
Statistical No. of Statistical No. of All Features 

RMS 8 1600 

KU 8 1600 

SK 8 1600 

VA 8 1600 

CF 8 1600 

TOTAL 40 8000 

 

Based on the information provided in Table 5, the number 

of statistical features for each individual case is represented by 

a matrix with dimensions of 200 rows and 40 columns. To 

obtain the dataset for all cases, these individual case matrices 
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are combined, resulting in a larger matrix with dimensions of 

4000 rows and 40 columns. This is because there are a total of 

20 cases (200 rows×20 cases = 4000 rows), and each case has 

40 features (columns). Consequently, the overall dataset for all 

cases consists of a matrix with 4000 rows (representing the 

combined data from all 20 cases) and 40 columns 

(representing the 40 features extracted for each case). The total 

number of features in the dataset can be calculated by 

multiplying the number of rows (4000) by the number of 

columns (40), which yields 160,000 features. In summary, the 

dataset for all cases is a matrix of dimensions 4000×40, and 

the total number of features in the dataset is 160,000. 

 

5.3 Feature selection and classification 

 

Data mining has recently appealed much care in the 

community, converting big data quantities into valuable 

information and awareness. It is a procedure that utilizes 

mathematical, statistical, machine learning, and artificial 

intelligence methods for extracting and identifying valuable 

info and correlated awareness from different big databases 

[31]. 

Open-source data mining software is used to construct 

categorization algorithms on the datasets. The utilized 

software is a tool from ORANGE founded upon phyton 

programming [32]. ORANGE is a valuable tool for data 

mining for optical programming as well as the analysis of 

explorative data. It can also be conducted in phyton. The 

multiple constituents of ORANGE are recognized as widgets. 

Such data mining tools support Linux, macOS, and Windows. 

Another advantage of this program is the selection of the 

influential features from the primary data set and the 

classification procedure in the same process. As a result, the 

number of features can be selected from the data set to be 

trained and tested under the accuracy of the classification. 

 

 
 

Figure 13. Flow diagram for feature selection and 

classification processing 

 

In this work, 4000 samples* 40 features were collected for 

all cases (H, W, C, B, and M). The influencing features were 

selected using the Gain Ratio method, and the classification 

was done using SVM and ANN classifiers. The Gain Ratio 

method divides the features into the data set according to the 

attribute's intrinsic information, reducing the features that 

contain unimportant information. The data set was split into a 

training data set of 70% (2800 samples) and a testing data set 

of 30% (1200 samples) for verifying the classifier. The feature 

selection and classification process flow diagram are shown in 

Figure 13. It is implemented using the program ORANGE. 

 

6. RESULTS AND DISCUSSIONS 

 

Tables 6 and 7 present the performance evaluation of the 

Support Vector Machine (SVM) model. Table 6 displays the 

results before applying the feature selection strategy, while 

Table 7 shows the results after employing the feature selection 

approach. When considering all 40 features, the base SVM 

model achieved a classification accuracy of 91%. However, 

after implementing the feature selection technique, which 

reduced the number of features to 16, the SVM model 

demonstrated improved performance with a higher 

classification accuracy of 96%. In addition to the increased 

classification accuracy, the precision metric also improved, 

rising from 86% to 91% after feature selection. Similarly, the 

recall metric saw a substantial improvement, increasing from 

89% to 97%. Furthermore, the Area Under the Curve (AUC) 

metric, which evaluates the model's overall performance, 

exhibited an enhancement, increasing from 98% to 99% after 

the feature selection process. These results highlight the 

positive impact of the feature selection strategy, which not 

only reduced the dimensionality of the data but also improved 

the overall performance of the SVM model across multiple 

evaluation metrics, including classification accuracy, 

precision, recall, and AUC. 

 

Table 6. SVM Model results’ evaluation before feature 

ranking 

 
Model AUC % CA % Precision % Recall % 

SVM 98 91 86 89 

 

Table 7. SVM Model results’ evaluation after feature ranking 

 
Model AUC % CA % Precision % Recall % 

SVM 99 96 91 97 

 

Figure 14 shows how the SVM model has predicted 99.6% 

of the state of health as healthy and 0.4% as a worn tooth. 

Where the balls on the right of Figure 14 represent the 

prediction result of the test data for the case of healthy teeth, 

and the balls on the left represent the test data for the other 

cases. By describing the colors in the figure, the green balls 

represent the condition of healthy teeth, while the other colors 

represent the other conditions. Since the accuracy of data 

classification for the condition of healthy teeth amounted to 

99.6%, so we note that most of the balls in the condition of 

healthy teeth are green, which represents 99.6% of the test data 

for the condition of healthy teeth, While the yellow ball with 

the green balls on the right of the figure represents the 

classification error percentage of 0.8%, which indicates the 

worn tooth. 

In this work, a classification of gearbox faults was carried 

out using artificial intelligence techniques, and two classifiers, 

SVM and ANN, were used in order to identify the difference 

between these techniques and to choose the best model for the 

classification. The same procedures that were applied to the 

classifier SVM are now applied to the ANN classifier, and the 

effect of feature selection on the classification process is 

demonstrated. Tables 8 and 9 show the effect of applying 

feature selection on classification by ANN. Where we also 

notice an increase in classification accuracy from (96) to (98) 

and an increase in each of AUC, Precision, and Recall after the 

feature selection process, and that the optimal number of 

features to obtain the best classification of faults is 16 features. 
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Figure 14. Scatter plot for predicting crack tooth case by 

SVM model 

 

 
 

Figure 15. Confusion matrices of classification by ANN 

model 

 

Table 8. ANN Model results’ evaluation before features 

ranking 

 
Model AUC % CA % Precision % Recall % 

ANN 99 96 92 95 

 

Table 9. ANN Model results’ evaluation before features 

ranking 

 
Model AUC % CA % Precision % Recall % 

ANN 100 98 98 98 

 

The confusion matrix in Figure 15 shows how to classify 

the five healthy and defective states of the gearbox under 

different speeds and constant load by the ANN model. The 

horizontal axis indicates the predicted values and the vertical 

axis displays the actual values. The goal is to have as many 

correct forecasts as possible (lots of points in the diagonal). 

Each row displays how the machine learning model trained on 

the training set predicts the data of the testing set for each case. 

The confusion matrix displays the categorization by ANN 

model outcomes for the test dataset. The results reveal that the 

classification accuracy of the health and fault states of the 

gearbox approaches 98%. Through the result, we notice that 

the worn tooth occupies the highest classification accuracy of 

99.6%, followed by the healthy tooth and broken tooth, with 

the accuracy of 99.2% and 98.3%, respectively. It was the least 

accurate classification of the crack tooth, followed by the 

missing tooth, with a classification accuracy of 98% and 

97.9%, respectively. 

Through Tables 7 and 9, it can be seen that the classification 

accuracy of the model ANN is higher than that of the model 

SVM due to the noise present in the vibration signal, as it 

reduces the performance of SVM, and this is identical to what 

was mentioned by Mohd Ghazali and Rahiman [33]. On the 

other hand, we notice that the training time for the ANN 

classifier is longer than the training time for the SVM classifier, 

as it depends on the number of iterations. 

These findings provide a somewhat accurate description of 

the gearbox state. It suggests that the SVM and ANN 

classifiers have successful data training. It should be 

mentioned that the accuracy of the machine learning method 

frequently depends on the quality of the features; in this 

instance, features that are excellent condition indicators are 

extracted using the domain knowledge of the physics of 

defects. 

 

 

7. CONCLUSION 

 

The findings of this study hold significant practical 

implications for the field of gearbox fault diagnosis. By 

applying a combination of Wavelet Packet Transform (WPT), 

computation of time domain statistical features, information 

gain ratio technique (GR), and artificial intelligence 

techniques (SVM and ANN), the study demonstrates the 

effectiveness of integrating traditional vibration signal 

analysis with advanced machine learning methods for fault 

diagnosis in gearboxes. 

1- Improved Fault Diagnosis Accuracy: The experimental 

results reveal that the proposed methodology can 

accurately identify gearbox faults occurring under 

different operating conditions with high classification 

accuracy. This enhanced fault diagnosis accuracy can 

lead to early detection of potential issues, enabling 

proactive maintenance and reducing downtime and costly 

breakdowns in various industries. 

2-  Significance of Wavelet Packet Transform: The 

application of Wavelet Packet Transform to the raw 

vibration signal before feature extraction is highlighted as 

crucial. This step allows for the extraction of important 

information from the reconstruction signals, which might 

not be evident in the raw signal due to similarities 

between healthy and faulty gearbox vibration patterns. By 

harnessing the potential of Wavelet Packet Transform, 

the diagnostic process becomes more robust and capable 

of capturing subtle fault signatures. 

3- Feature Selection for Enhanced Performance: Feature 

extraction and selection play a vital role in fault 

classification by eliminating redundant and unnecessary 

information and addressing the dimensionality problem. 

The study demonstrates the efficacy of feature selection 

in achieving high classification accuracy by retaining 

only relevant features. This process streamlines the 

diagnostic model, making it more efficient and effective 

in real-world applications. 

4- Applicability of SVM and ANN: Both SVM and ANN 

classifiers exhibit good classification accuracy in gearbox 

defect diagnosis. This finding provides versatility in 

choosing an appropriate classification method based on 

specific application requirements and available data. 

Industries and systems reliant on rotating machinery, 

such as manufacturing, automotive, and aerospace sectors, 

can benefit from the versatility of these classifiers in fault 

detection and diagnosis. 

5- Superior Performance of ANN: The study reveals that the 

ANN model outperforms the SVM model in fault 

classification accuracy, particularly when dealing with 
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noisy gearbox data. This highlights the advantage of 

utilizing ANN-based approaches in scenarios where noise 

and complex fault patterns are prevalent, leading to more 

reliable and accurate diagnosis outcomes. 

6- Considerations in Model Training Time: The research 

notes that the training time for the ANN model is longer 

compared to the SVM model. Understanding the 

computational demands of each classifier is crucial for 

implementing the methodology in real-world applications, 

especially in systems where real-time fault diagnosis is 

essential. 

Overall, the study's results contribute to advancing the 

effectiveness and efficiency of gearbox fault diagnosis, 

offering practical solutions to industries seeking improved 

condition monitoring and predictive maintenance strategies. 

By leveraging the proposed methodology, companies can 

minimize unplanned downtime, optimize maintenance 

schedules, and ensure the safe and reliable operation of critical 

rotating machinery in various industrial settings. 
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