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In this study, we propose to calculate multiple metric dimensions using different 

distances. This approach can lead to the implementation of dimensionality reduction 

techniques for a specific information system. By combining traditional graph theory 

with rough set theory, which involves using uncertain or ambiguous data, we can 

construct a rough graph to depict the relationships between attributes. The rough graph 

is constructed based on the rough membership function, which defines the link between 

the conditional and decision features. By utilizing degree-based metric dimensions, we 

can identify and remove inconsistent features from the information system. If each 

vertex’s vector of distances from the other vertices in the set is unique, it means that the 

set of vertices can fully determine the graph. The metric dimension, which represents 

the smallest cardinality of a resolving set, plays a role in facilitating navigation and 

aiding in location determination within the graph. 
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1. INTRODUCTION

The integration of rough set theory with graph theory 

resulted in the emergence of a novel concept called rough 

graph. This concept combines the principles of rough set 

theory, which deals with uncertainty and vagueness in the data, 

with the established framework of graph theory [1-6]. The 

utilization of rough sets across various domains is examined 

[7-15]. The formulation of rough graphs involves the 

examination of graphs within the framework of rough sets, 

providing a means to depict networks characterized by 

uncertain information. He Tong and Shi introduced the 

concept of rough graph in 2006, placing emphasis on the edge 

set. In the same year, He et al expanded on this concept by 

introducing a weighted rough graph [16-18], where class 

weights were assigned to the edge equivalence class [eab]R. 

They also developed a generalized algorithm based on the 

Kruskal algorithm to obtain the optimal tree within a weighted 

rough graph. In 2007, the rough graph was further defined with 

the introduction of the double universe of discourse [19]. 

Several algorithms from classical graph theory can be adapted 

for application in rough graphs. We leverage the Dijkstra 

algorithm, originally designed for exploring the shortest path 

in graphs, to develop a specialized shortest path algorithm 

tailored for weighted rough graphs. Liang et al. introduced an 

edge rough graph that utilizes the edge approximation space, 

providing a means to compute the clique number of a graph 

[20]. In order to determine the accuracy of a rough graph, He 

T used the edge precision and conducted a comparative study 

using the concepts of rough equality and rough similarity 

degrees. This study also introduced different representation 

forms for the rough graph [21, 22]. 

Researchers have explored the integration of the rough 

graph with various soft computing concepts, such as fuzzy 

logic and neutrosophic theory [23]. By combining the rough 

graph with these approaches, it becomes possible to handle 

uncertainties and vagueness in a more comprehensive manner, 

enhancing the representation and analysis of relationships 

between items or entities. In a related development, Bibin et al 

proposed a novel idea to construct vertex rough graphs by 

dividing the vertex set [24]. This approach involves 

partitioning the vertices into subsets, which enables a more 

refined representation of relationships within the graph. 

Wang et al investigates the transitive closure and minimum 

equivalent graph operations, preserving the path information 

of a directed graph. Specifically, it employs the minimum 

equivalent graph and transitive closure to approximate a 

directed graph, constructing a Path Information-based Rough 

Directed Graph (PIRDG) model. To overcome this constraint, 

the paper introduces three graph reducts by treating each 

directed graph as a PIRDG. It examines the relationship 

between these reducts and proposes a method to identify an 

optimal graph reduct [25]. Akram et al address a specified 

multi-criteria shortest path problem in a weighted connected 

directed network, where the associated edge weights are 

expressed as rough variables to handle imprecision. Two 

distinct approaches have been presented to ascertain the 

optimal path(s) for the given problem [26]. Anitha and Aruna 

Devi employed rough membership functions to construct 

rough graphs, and subsequently conducted an analysis of 

metric dimension within approximation-based rough graphs 

[27, 28] 

The applications of rough graphs span a wide range of fields. 

In graph mining, rough graphs are utilized to extract valuable 
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insights and patterns from complex networks. Nithya and 

Anitha introduced the concept of labeling in rough graphs, 

accompanied by its applications in Wireless Sensor Networks 

[29-31]. The rough graph framework provides a powerful tool 

for analyzing the intricate relationships and structures present 

in various types of networks, such as social networks or 

biological networks. In complex networks analysis [32], rough 

graphs contribute to understanding the underlying 

connectivity and patterns within the network. Connecting 

certain metropolitan networks together presents a modeling 

problem by expressing one directed graph through another. 

There are two types of simulations available: univocal and 

multivocal. The concepts of fragment and atom are important 

to our analysis of connectedness in the virtual digraph. This 

comprises a different evaluation of k-connectivity. A unique 

proposal in this study is the inclusion of the rough set 

technique in (bi) digraph, which greatly improves the 

evaluation of k-connectivity [33]. By applying rough graph 

techniques, researchers can uncover hidden relationships and 

gain a deeper understanding of the network’s structure, 

dynamics, and properties. Relationship analysis is another 

important area where rough graphs find application. By 

representing relationships using rough graphs, it becomes 

possible to analyze and quantify the strength, similarity, or 

dissimilarity between entities or items. This can be useful in 

various domains, including customer relationship 

management, recommender systems, or social network 

analysis. The rough membership function structure minimizes 

inter-node distances, and the LOA-LSTM algorithm for 

routing attains elevated throughput and energy efficiency [34, 

35]. Data mining is yet another domain where rough graphs 

prove beneficial. By employing rough graph-based techniques, 

it becomes possible to extract useful knowledge and insights 

from large and complex datasets. Social media network 

analysis (SMNA) is a fascinating field that applies the tools 

and concepts of network analysis to the complex world of 

online social networks like Facebook, Twitter, and Instagram. 

Rough set theory-based pattern identification has been done 

using social media data. The rough graph framework provides 

a flexible and powerful means to analyze and explore data, 

facilitating tasks such as clustering, classification, and 

anomaly detection [36]. Solving problems with DRFG 

connectivity that are difficult to solve using fuzzy graphs. In 

order to analyze trade deficits in Asian developing countries 

during the COVID-19 pandemic, the paper's conclusion looks 

into the trade network in developing countries using DRF-

edge analysis [37]. This paper presents the introduction of the 

degree-based metric dimension. The second section provides 

an overview of the fundamental concepts related to the rough 

graph. In the third section, we introduce the concept of degree-

based metric dimension and derive several results. This is 

followed by examples illustrating the degree-based metric 

dimension of specific graphs. Finally, the fourth section 

concludes the paper with some remarks. 

 

 

2. PRELIMINARIES 

 

2.1 Definition 

 

Suppose we are given a set of objects 𝔘 called the universe 

and an indiscernibility relation 𝔅 ⊆ 𝔘, representing our lack 

of knowledge about elements of 𝔘. Let 𝔛 be a subset of 𝔘. The 

set 𝔛 with respect to ℜ: 

𝔅 − lower approximation of 𝔛 
 

𝔅∗(𝔛) = {𝔵 ∈ 𝔘 ∶ 𝔅(𝔵) ⊆ 𝔛} 
 

𝔅 − upper approximation of 𝔛 
 

𝔅∗(𝔛) = {𝔵 ∈ 𝔘 ∶ 𝔅(𝔵) ∩ 𝔛 ≠ ∅} 
 

The process of reducing an information system such that the 

set of attributes of the reduced information system is 

independent and no attribute can be eliminated further without 

losing some information from the system, the result is known 

as reduct. Rough sets can also be defined using a rough 

membership function, defined: 

 

𝜇𝔵
𝔅(𝔵) =

|𝔛 ∩  𝔅(𝔵)|

|𝔅(𝔵)|
 

 

where, 𝜇𝔵
𝔅(𝔵) ∈ [0,1]. 

 

2.2 Definition [2] 

 

An information system is converted to a rough graph by 

taking the set of all objects as 𝔘 and the attribute set as 𝔓𝔓 

which creates the corresponding vertex set 𝔙 =
{𝔳1, 𝔳2, … , 𝔳|𝔙|}  associated with an edge set 𝔈 =∪ 𝔢𝔨(𝔳𝔦, 𝔳𝔧) . 

This 𝔈 can be decomposed into different equivalence classes 

[𝔢]𝔅. 

For any subgraph 𝔗 = (𝔚,𝔜) , where 𝔚 ⊆ 𝔙,𝔜 ⊆ 𝔈 , 

graph 𝔗 is called 𝔅−definable graph or 𝔅−exact graph if 𝔜 is 

the union of some [ 𝔢]𝔅 . Conversely, graph 𝔗  is called 

𝔅−undefinable graph or 𝔅 − rough graph, two exact graphs 

𝔅(𝔗)∗ = (𝔚,𝔅(𝔜)∗) and 𝔅(𝔗)∗ = (𝔚,𝔅(𝔜)∗) can be used 

to define it approximately, where, 

 

𝔅(𝔜)∗ = {𝔢 ∈ 𝔈 ∶ [𝔢]𝔅 ⊆ 𝔜} 
𝔅(𝔜)∗ = {𝔢 ∈ 𝔈 ∶ [𝔢]𝔅 ∩ 𝔜 ≠ ∅} 

 

The graphs 𝔅(𝔗)∗ and 𝔅(𝔗)∗ are called 𝔅 − lower and 𝔅 

− upper approximate graphs of 𝔗 . The pair of graphs 

(𝔅(𝔗)∗, 𝔅(𝔗)
∗) is called 𝔅 − rough graph. The set 𝔡𝔫𝔅(𝔜) =

𝔅(𝔜)∗ − 𝔅(𝔜)∗ is called the 𝔅 − boundary of edge set 𝔜 of 

𝔗. 

 

2.3 Definition [3] 

 

Given the universe graph 𝔘 = (𝔙, 𝔈), 𝔜 = {𝔳1, 𝔳2, … , 𝔳𝔫}, 

𝔈 = ⋃𝔢𝔨(𝔳𝔦, 𝔳𝔧) ∀ 𝔢 ∈ 𝔈 , let the mapping 𝜔 ∶ 𝔢 → 𝜔(𝔢) , the 

real number 𝜔(𝔢) is called the edge weight of 𝔢. ([𝔢𝔲𝔳]𝔅) =
𝔨(𝜔(𝔢)) is called the class weight of edge equivalence class 

[𝔢𝔲𝔳]𝔅, where 𝔢 ∈ [𝔢𝔲𝔳]𝔅, [𝔢𝔲𝔳]𝔅 is the edge equivalence class 

between the vertex 𝔲 and vertex 𝔳 respect to attribute 𝔅, with 

respect to 𝔣. 
The weighted rough graph is pair of graphs 𝔗 =

𝔅(𝔗),𝔅(𝔗) with the class weight of their edge equivalence 

class. 

 

2.4 Definition [6] 

 

Let 𝒜 = (𝔎,𝔅)𝔢  be an approximation space for edges. 

Given an edge subset 𝔜 ⊆ 𝔈(𝔎), we define lower and upper 

approximation of 𝔜 in 𝒜, denoted by: 
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𝔔∗(𝔜) = {𝔶 ∈ 𝔈(𝔎)|𝔍𝔔(𝔶) ⊆ 𝔜} 
𝔔∗(𝔜) = {𝔶 ∈ 𝔈(𝔎)| 𝔍𝔔(𝔶) ∩ 𝔜 ≠ 𝜑} 

 

where, 𝔍𝔔(𝔶) denotes the edge set {𝔶 ∈ 𝔈(𝔎)|(𝔶, 𝔷) ∈ 𝔔} 
 

2.5 Definition [13] 

 

𝔅 − vertex rough graph is defined in terms of two exact 

graphs 𝔅∗(𝔗) = (𝔅∗(𝔚),𝔅∗(𝔜))  and 𝔅∗(𝔗) =
(𝔅∗(𝔚),𝔅∗(𝔜)), where, 

 

𝔅∗(𝔚) = {𝔳 ∈ 𝔙: [𝔳]𝔅 ⊆ 𝔚} 
𝔅∗(𝔚) = {𝔳 ∈ 𝔙: [𝔳]𝔅 ∩𝔚 ≠ ∅} 

𝔅∗(𝔜) = {(𝔳𝔦, 𝔳𝔧) ∈ 𝔈: 𝔳𝔦, 𝔳𝔧 ∈ [𝔳]𝔅 for some 𝔳 ∈ 𝔅∗(𝔚)} 

𝔅∗(𝔜) = {
(𝔳𝔦, 𝔳𝔧) ∈ 𝔈 ∶ 𝔳𝔦, ∈ [𝔳𝔦]𝔅 and [𝔳𝔦]𝔅 ∩ 𝔜 ≠ ∅)

𝔳𝔦 ∈ [𝔳𝔦]𝔅 and [𝔳𝔦]𝔅 ∩≠ ∅
 

 

𝔅-lower approximate graph of 𝔗 and 𝔅-upper approximate 

graph of 𝔗 are the graphs 𝔅∗(𝔗) and 𝔅∗(𝔗) respectively. 𝔅 - 

vertex rough graph is a pair of graphs (𝔅∗(𝔗), 𝔅
∗(𝔗)). 

 

2.6 Definition [37] 

 

A fuzzy rough digraph on a non empty set 𝔘  is a four 

ordered tuple 𝔊 = (𝔄,𝔗𝔄,𝔓, ℌ𝔓), where, 

 

a) 𝔗 is a fuzzy tolerence relation on 𝔘. 

b) ℌ is a fuzzy tolerence relation on 𝔓∗ ⊆ 𝔘 × 𝔘. 

c) 𝔗𝔄 = (𝔗(𝔄), 𝔗(𝔄)) is a fuzzy rough set on 𝔘. 

d) ℌ𝔄 = (ℌ(𝔓), ℌ(𝔓)) is a fuzzy rough relation on 𝔘. 

e) 𝔊 = (𝔗(𝔄), ℌ(𝔓))  and 𝔊 = (𝔗(𝔄), ℌ(𝔓))  are fuzzy 

digraphs where 𝔊 represents lower approximation of 𝔊 

and 𝔊 represents upper approximation of 𝔊 such that: 

  

(ℌ(𝔓))(𝔵𝔷) ≤ min {𝔗(𝔄)(𝔵), 𝔗(𝔄)(𝔷)} 

(ℌ(𝔓))(𝔵𝔷) ≤ min{𝔗(𝔄)(𝔵), 𝔗(𝔄)(𝔷)}, ∀ 𝔵𝔷 ∈ 𝔓∗ 

 

2.7 Definition [15] 

 

Let ℜ = {𝔙,𝔈,ω} be a triple consisting of non-empty set 

𝔙 = {𝔳1, 𝔳2, … , 𝔳𝔫} = 𝔘 where 𝔘  is a universe, 𝔈 =
{𝔢1, 𝔢2, … , 𝔢𝔪} be an edge set for 𝔙 and ω be a function 𝜔:𝔙 →
[0,1]. A rough graph is defined as, 

 

𝔑(𝔳𝔦, 𝔳𝔧) = {
𝑖𝑓 𝑚𝑎𝑥 (𝜔𝔊

𝔙(𝔳𝔦), 𝜔𝔊
𝔙(𝔳𝔧)) > 0, 𝔳𝔦𝔳𝔧 𝑒𝑥𝑖𝑠𝑡𝑠

𝑖𝑓 max (𝜔𝔊
𝔙(𝔳𝔦), 𝜔𝔊

𝔙(𝔳𝔧)) = 0, no edge
 

 

Some of the properties of rough graph 

1. Rough graph is always simple and undirected graph. 

2. Rough graph satisfies hand-shaking lemma. 

3. In any rough graph, the number of vertices of odd 

degree is always even. 

4. A complete rough graph with 𝔫 vertices contains 
𝔫(𝔫−1)

2
 

edges. 

5. A complete rough graph is always (𝔫 − 1)  regular 

rough graph. 

6. The membership values of edges and vertices preserves 

in isomorphism. 

7. A homomorphism of 𝔊 to itself is an endomorphism of 

rough graph. 

8. An isomorphism of 𝔊 to itself is an automorphism of a 

rough graph. 

 

 

3. PROPOSED WORK 

 

In this section we have defined some various degree based 

metric dimension and theorems based on the degree based 

metric dimension. Let ℜ be a simple rough graph with the 

vertex set 𝔙 = {𝔳1, 𝔳2, … , 𝔳𝔫}  and the edge set 𝔈 =
{𝔢1, 𝔢2, … , 𝔢𝔪} . 𝔡(𝔞, 𝔟)  gives the distance between 𝔞  and 𝔟 , 

which is the length of the shortest path between 𝔞 and 𝔟, where 

𝔞 and 𝔟 are vertices. 

  

3.1 Definition  

 

A vertex’s degree is determined by the number of edges that 

occur at that vertex. The degree-based distance between 𝔞 and 

𝔟 is defined as: 

 

𝔇𝔇 = Δ(𝔞)Δ(𝔟)𝔡(𝔞, 𝔟) 
 

A set of vertices is considered to resolve a given graph when 

each vertex is uniquely determined by its degree-based 

distance to other vertices. If a vertex 𝔵 ∈ 𝔙(𝔊) resolves a pair 

of vertices 𝔞, 𝔟 ∈ 𝔙(𝔊) by satisfying the condition 𝔡𝛿(𝔞, 𝔵) ≠
𝔡𝛿(𝔟, 𝔵), then the set of vertices 𝔄 ⊆ 𝔙(𝔊) is a resolving set 

for 𝔊 . A resolving set ensures that every pair of distinct 

vertices in 𝔊 is uniquely determined by at least one vertex in 

𝔄. The minimum cardinality of such a resolving set is termed 

the metric basis of 𝔊, and its size, denoted as |𝔄|, is known as 

the degree-based metric dimension, represented as 𝛽𝔇𝔇(𝔊). 
 

Example 1. Take into account the graph illustrated in 

Figure 1, where, 𝔙(𝔊) = {𝔳1, 𝔳2, 𝔳3, 𝔳4, 𝔳5, 𝔳6}  and (𝔊) =
{𝔢1, 𝔢2, … , 𝔢14} denote the vertex and edge sets of 𝔊. In this 

context, the set 𝔄 = {𝔳1, 𝔳2, 𝔳3, 𝔳5} serves as the metric basis 

or resolving set for 𝔊 . The representation of all vertices 

concerning 𝔄 is provided in Table 1. 

 

 
 

Figure 1. Rough graph 

 

Table 1. Distance vector of 𝔊 w.r.t 𝔄 

 
𝖉(…) 𝖛𝟏 𝖛𝟐 𝖛𝟑 𝖛𝟒 𝖛𝟓 𝖛𝟔 

𝔄 = {𝔳1, 𝔳2, 𝔳3, 𝔳5} (0,5,5,5) (5,0,5,5) (5,5,0,5) (5,5,5,0) (4.5,4.5, 4.5,0) (4.5,4.5, 4.5,4.5) 
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Theorem 1. The path rough graph has a degree distance 

metric dimension of 1. 

Proof. The degree-based distance is defined as: 

 
1

2
(𝔡(𝔳1, 𝔳2)(𝛿(𝔳1) + 𝛿(𝔳2))) = 𝔡𝛿(𝔳1, 𝔳2) 

 

In the path rough graph, the initial and terminal vertices will 

have a degree of 1 each, while the degrees of the other vertices 

will be 2.  

The degree distance vector representation of R with respect 

to A is segmented into two distinct cases. 

Case (i): If 𝔄 = {𝔳1} , then βδ(𝔓 n) = 1, for 𝔫  = 4,6,8, 

10, ...,2𝔫. 

The vector representation of 𝔊 w.r.t 𝔄 will be: 

 

𝔯(𝔳α|𝔄)

{
  
 

  
 

0,     when α = 1
2,     when α = 2
4,     when α = 3

.

.

.
𝔫 − 1, when α = 𝔫

 

 

∴ The resolving set 𝔓n (𝔫 = 4,6,8,..., 2𝔫) will be 𝔳1. 

 

βδ(𝔓n) = 1 for 𝔫 = 4,6, … ,2𝔫 

 

Case (ii): If 𝔄 = {𝔳2}, then βδ(𝔓n) = 1, for 𝔫 = 5,7,9,...,2𝔫 +
1. 

The vector representation of 𝔊 w.r.t 𝔄 will be: 

 

𝔯(𝔳α|𝔄)

{
  
 

  
 

2,                            when α = 1
0,                            when α = 2
4,                            when α = 3

.

.

.
𝔫 + 2𝔪 + 1, when α = 𝔫 and 𝔪 = 0,1,2, …

 

 

∴ The resolving set 𝔓n (𝔫 = 5,7,..., 2𝔫 + 1) will be 𝔳2. 

 

∴  𝛽𝛿(𝔓𝔫) = 1 for 𝔫 = 5,7, … ,2𝔫 + 1 (𝔫 ≥ 5).  
 

Example 2. In Figure 2, consider 𝔓7  with vertex set 

{𝔳1, 𝔳2, … , 𝔳7} and edge set {𝔢1, 𝔢2, … , 𝔢6}. The resolving set 

for 𝔓7 is {𝔳2}. The degree-distance representation vector for 

𝔓7with respect to 𝔄 will be provided in Table 2. 

 

Table 2. Degree-distance vector 𝔓7 w.r.t 𝔄 

 
𝖉(., .) 𝖛𝟏 𝖛𝟐 𝖛𝟑 𝖛𝟒 𝖛𝟓 𝖛𝟔 𝖛𝟕 

𝔄 = {𝔳2} 2 0 4 8 12 16 10 

 

 
 

Figure 2. Rough path with 7 vertices 𝔓7 

 

Theorem 2. The cycle rough graph has a degree distance 

metric dimension of 2. 

Proof. The degree-distance is 
1

2
(𝔡(𝔳1, 𝔳2)(𝛿(𝔳1) +

𝛿(𝔳2))), where, 𝔳1, 𝔳2, … , 𝔳𝔫 ∈ ℭ𝔫.  

In the cycle rough graph, every vertex has a degree of 2, as 

it is a 2-regular rough graph. The degree distance vector 

representation of ℭn with respect to 𝔄 will involve 2 distinct 

cases. 

Case (i): If {𝔳1, 𝔳2} = 𝔄 , then 𝛽𝛿(ℭ𝔫) = 2  for 𝔫 =
6,7, … , 𝔫 𝑎𝑛𝑑 𝔫 = 4. Since 𝔪 = 4, the vector representation 

for ℭ𝔫 w.r.t 𝔄 will be: 

 

𝔯(𝔳α|𝔄)

{
  
 

  
 

(0,𝔪),          when α = 1
(𝔪, 0),          when α = 2

.

.

.
(2𝔪, 3𝔪),   when α = 𝔫 − 1
(𝔪, 2𝔪),        when α = 𝔫

 

 

∴ 𝛽𝛿(ℭ𝔫) = 2 for 𝔫 = 6,7,8, …and 𝔫 = 4.  
 

Case (ii): For ℭ3 and ℭ5, the vector representation is given 

as: 

 

𝔯(𝔳𝛂|𝔄) = {

(0,𝔪),when = 1
(𝔪, 0), when = 2
(𝔪,𝔪),when = 3

 

 

For ℭ5, 

 

𝔯(𝔳α|𝔄) =

{
 
 

 
 

(0,𝔪),     when α = 1
(𝔪, 0),     when α = 2
(2𝔪,𝔪),   when α = 3

(2𝔪, 2𝔪), when α = 4
(𝔪,𝔪),    when α = 5

 

 

∴ 𝛽𝛿(ℭ𝔫) = 2 for 𝔫 = 3,5.  
 

Example 3. Let us consider ℭ 6 with 𝔙(ℭ6) =
{𝔳1, 𝔳2, … , 𝔳6} and 𝔈(ℭ6) = {𝔢1, 𝔢2, … , 𝔢6} shown in Figure 3. 

The degree-distance vector representation for ℭ6 w.r.t 𝔄  is 

given in Table 3. The resolving set for ℭ6 is {𝔳1, 𝔳2 }. 

 

βδ(ℭn) = 2. 

 

Table 3. Degree-distance vector ℭ6 w.r.t 𝔄 

 
𝖉 (., .) 𝖛𝟏 𝖛𝟐 𝖛𝟑 𝖛𝟒 𝖛𝟓 𝖛𝟔 

𝔄 = {𝔳1, 𝔳2} (0,4) (4,0) (8,4) (12,8) (8,12) (4,8) 

 

 
 

Figure 3. Rough cycle with 6 vertices ℭ6 

 

Theorem 3. The complete rough graph has a degree 

distance metric dimension of 𝔫 − 1. 

Proof. The degree of each vertex will be same as the 

resolving number. The shortest distance between any two 
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vertices will be 1. The vector representation of 𝔎n w.r.t 𝔄 will 

be: 

 

𝔯(𝔳α|𝔄) =

{
 
 

 
 

(0, (δ(v))2, … , 𝔫((δ(v))2)),            when α = 1

((δ(v))2, 0,… , 𝔫((δ(v))2)),            when α = 2
.
.
.

((δ(v))2, (δ(v))2, … (𝔫 − 1)((δ(v))2)), when α = 𝔫

 

∴ 𝛽𝛿(𝔎𝔫) = 𝔫 − 1 𝑓𝑜𝑟 𝔫 = 3,4, … 

 

Example 4. Consider complete rough graph with 6 vertices 

and 15 edges as shown in Figure 4. The resolving set for Figure 

4 is given Table 4. 

 

Table 4. Degree-distance vector 𝔎6 w.r.t A 

 
𝖉 (., .) 𝕬 = {𝖛𝟏, 𝖛𝟐, … , 𝖛𝟓} 
𝔳1 (0,25,25,25,25) 

𝔳2 (25,0,25,25,25) 

𝔳3 (25,25,0,25,25) 

𝔳4 (25,25,25,0,25) 

𝔳5 (25,25,25,25,0) 

𝔳6 (25,25,25,25,25) 

 

 
 

Figure 4. Rough complete graph with 6 vertices 

 

 
 

Figure 5. Flowchart to find reduct of an information system 

 
 

Figure 6. Rough graph 

 

Figure 5 and Figure 6 represent the flow chart to find the 

reduct of an information system and the rough graph using 

information system respectively. 

 

 

4. EXPERIMENTAL RESULT  

 

In this section, experimental findings are presented for an 

information system comprising 15 objects and 6 attributes, 

including a decision attribute. The investigation employs 

diverse degree-based distance formulas to identify the reduct 

within the information system. 

 

Table 5. Decision system 

 
 ℂ 𝔹𝕊 ℂℙ 𝔽 𝕊𝔹 𝕋 𝔽𝕋 𝔸 𝕃𝔻 𝔻𝕄 𝕃ℂ 

℘1 1 1 1 0 1 1 1 1 1 0 2 

℘2 1 1 1 0 1 1 1 1 1 0 2 

℘3 1 1 1 0 1 1 1 1 1 0 2 

℘4 1 1 1 0 1 1 1 1 1 0 2 

℘5 1 1 1 0 1 1 1 1 1 0 2 

℘6 1 1 1 0 1 1 1 1 1 0 2 

℘7 1 1 1 0 1 1 1 1 1 0 2 

℘8 1 1 1 0 1 1 1 1 1 0 2 

℘9 1 1 1 1 1 1 1 1 1 1 2 

℘10 1 1 1 0 1 1 1 1 0 1 2 

℘11 1 1 1 0 1 1 1 1 0 1 3 

℘12 1 1 1 0 1 1 1 1 0 1 3 

℘13 1 1 1 0 1 1 1 1 0 1 3 

℘14 1 1 1 0 1 1 1 1 0 1 3 

℘15 1 1 1 0 1 1 1 1 0 1 3 

℘16 1 1 1 0 1 1 1 1 0 1 3 

℘17 1 1 1 1 1 0 0 0 0 1 3 

℘18 1 0 1 0 1 0 0 0 0 0 3 

℘19 1 0 1 0 1 0 0 0 0 0 4 

℘20 1 0 1 0 1 0 0 0 1 0 4 

℘21 1 0 1 0 1 0 0 0 1 0 4 

℘22 1 0 1 0 1 0 0 0 1 0 4 

℘23 1 0 1 0 1 0 0 0 1 0 4 

℘24 1 0 1 0 1 0 0 0 1 0 4 

℘25 1 0 1 0 1 0 0 0 1 0 4 

℘26 1 0 0 0 1 0 0 0 0 0 4 

 

The provided information system in Table 5, denoted as 

ℑ = (𝔘,𝔻), involves a universe set 𝔘 = {𝔳1, 𝔳2, … , 𝔳26} and is 

derived from a pool of 26 lung cancer patients. The 

information system encompasses both condition and decision 

attributes, denoted as 𝔻 = ℭ ∪𝔇 , where ℭ  represents the 

condition attributes and 𝔇 signifies the decision attribute. The 

condition attributes, namely cough, bloody sputum, chest pain, 
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fever, shout breath, thin, feeling tired, anorexia, local diffusion 

and distant metastasis along with the three decision attributes, 

lung cancer, collectively form the elements of 𝔇 . In this 

context, the binary values 0 and 1 correspond to no and yes, 

respectively, then 2, 3 and 4 correspond to central lung cancer, 

peripheral lung cancer and thin bronchuses lung bubble cancer 

respectively. This information system captures essential 

characteristics of lung cancer, utilizing the specified attributes 

to distinguish and analyze various aspects, ultimately 

contributing to a comprehensive understanding of the 

underlying data. 

The rough membership function for the above information 

system is: 

 

𝜇𝔛
𝔅(𝔭1) =

8

10
, 𝜇𝔛
𝔅(𝔭14) = 0, 𝜇𝔛

𝔅(𝔭2) =
8

10
, 𝜇𝔛
𝔅(𝔭15) = 0 

𝜇𝔛
𝔅(𝔭3) =

8

10
, 𝜇𝔛
𝔅(𝔭16) = 0, 𝜇𝔛

𝔅(𝔭4) =
8

10
, 𝜇𝔛
𝔅(𝔭17) = 0 

𝜇𝔛
𝔅(𝔭5) =

8

10
，𝜇𝔛

𝔅(𝔭18) = 0, 𝜇𝔛
𝔅(𝔭6) =

8

10
, 𝜇𝔛
𝔅(𝔭19) = 0 

𝜇𝔛
𝔅(𝔭7) =

8

10
, 𝜇𝔛
𝔅(𝔭20) = 0, 𝜇𝔛

𝔅(𝔭8) =
8

10
, 𝜇𝔛
𝔅(𝔭21) = 0 

𝜇𝔛
𝔅(𝔭9) = 1, 𝜇𝔛

𝔅(𝔭22) = 0, 𝜇𝔛
𝔅(𝔭10) =

1

7
, 𝜇𝔛
𝔅(𝔭23) = 0 

𝜇𝔛
𝔅(𝔭11) = 0, 𝜇𝔛

𝔅(𝔭24) = 0, 𝜇𝔛
𝔅(𝔭12) = 0 

𝜇𝔛
𝔅(𝔭25) = 0, 𝜇𝔛

𝔅(𝔭13) = 0, 𝜇𝔛
𝔅(𝔭26) = 0 

 

 

5. CONCLUSION 

 

Ensuring the concise representation of an entire information 

system is imperative, leading to the fundamental concept of a 

reduct. A reduct, in essence, acts as a minimal representation 

of the complete information system, encapsulating the most 

pertinent variables. The incorporation of rough metric 

dimension further refines this process by providing a 

systematic approach to discern the reduct set through graphical 

representation. This methodology is instrumental in distilling 

the essential components of the information system. In our 

exploration, we have delved into various degree-based metric 

dimensions to discern and establish the reduct. This 

investigative process not only enhances our understanding of 

the information system's core elements but also sets the stage 

for potential algorithmic developments. The objective is to 

create algorithms capable of efficiently computing reducts 

within information systems, streamlining the representation of 

crucial information. Looking forward, our future 

investigations aim to extend beyond the current scope, delving 

deeper into theoretical research and conducting applied 

analyses, specifically focusing on rough graphs. This 

expansion is driven by the recognition of the intricate 

relationships within rough graphs and the potential 

applications that can be derived from a more nuanced 

understanding. By combining theoretical exploration with 

practical applications, we strive to contribute to the broader 

understanding and utilization of rough graphs in diverse fields, 

fostering advancements in both theoretical frameworks and 

real-world implementations. 
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