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According to common knowledge, the first kind of Volterra integral equation is an 

example of a problem that is not well-posed. This kind of equation is encountered in 

several problems of science, and it is useful in a variety of fields, including control 

theory, nuclear reactors, and ecological systems, where it can be used to evolutionary 

processes. In this article, we'll present an effective and accurate technique to converting 

VK1 into those of the second kind (VK2) and the kernel must not be zero for the 

conversion process to be effective, and we will find the approximation solutions of them 

by using the decomposition of Taylor series with Nyström method (Trapezoidal and 

Simpson’s rules). In finality, we will present a variety of numerical examples to 

demonstrate that the conversion that has been proposed is both successful and stable. 
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1. INTRODUCTION

In this work, a direct regularization technique for solving 

nonlinear ill-posed operator equations will be presented: 

A f = (1) 

where the nonlinear operator 𝐴: 𝐷 → 𝐹 is defined for 𝜙 ∈ 𝐷 

and 𝑓 ∈ 𝐹 which are Hilbert or Banach spaces. 

It is well known that the first kind Volterra integral equation 

(VK1) is inherently ill-posed. In literature, Tikhonov [1] and 

Phillips [2] developed the regularization techniques for these 

ill-posed equations, Eq. (1). Many different methods of 

regularizing VK1 have been presented like as Kabanikhin 

method [3] and Denisov method [4]. For further information 

and additional details on regularization and computational 

solutions for ill-posed Volterra equations, refer to references 

[1-3, 5-12]. 

The theory and applications of integral equations such as 

elasticity, semi-conductors, scattering theory, metallurgy, 

seismology, thermal conditions, fluid flow, population 

dynamics, chemical processes, etc., are discussed in the book 

"Leçons sur les équations intégrales et intégro-différentielles" 

written by Vito Volterra. This book was published in 1913, 

illustrated by Wazwaz [5]. 

Concerning the subject of this work is the first kind 

nonlinear Volterra integral equation of the form: 

t

k(t,x)F( (x))dx f(t),   a x t b
a

 =    (2) 

where 𝜙(𝑡)  is unknown function, 𝐹(𝜙(𝑥))  is a nonlinear 

function of 𝜙(𝑥) , 𝑘(𝑡, 𝑥)  is a kernel and 𝑓(𝑡)  is given 

function in 𝑎 ≤ 𝑥 ≤ 𝑡 ≤ 𝑏 with 𝑓(𝑎) = 0, we will take: 

( ) ( )  : ( , ) ( ( )) .   ,

t

a

A t A t k t x F x dx t a b = 

2. MAIN RESULT

In this part, we’ll transmit the nonlinear integral equation 

Eq. (2) to a second kind integral equation defined in the 

interval I=[0,1]. It is necessary to highlight that the solution 

for ill-posed problems is generally unstable, and slight changes 

can make large errors. The Leibnitz theorem and the Taylor 

series are going to be applied in the next section: 

Let 𝐴(𝑡) be a function with n derivatives with respect to 𝑡 

in I=[0,1] than for 0 < 𝑡 − 𝜀 < 𝑡 < 𝑡 + 𝜀 < 1,  with 𝜀 → 0 . 

The Taylor series is given by  
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where, 𝑂(𝜀𝑛)  is the approximation error term. For the
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derivation of higher order approximations to derivatives of any 

order, the Taylor expansion is a very helpful tool. If 𝜀 is small, 

then higher order accuracy generally means higher accuracy. 

The first order of Taylor series is given by: 

 

( )
1

ε A(t)
A(t ε) A(t) . O

! t



+ = + +


 (3) 

 

( )
1

ε A(t)
A(t ε) A(t) . O

! t



− = − +


 (4) 

 

The Leibnitz rule is a famous rule utilizing for 

differentiation of integrals [5]. Let 𝐴(𝑡)  and 
𝜕𝐴(𝑡)

𝜕𝑡
 be 

continuous in the domain 0 ≤ 𝑡 ≤ 1, and let: 

 
( )

( )

( ) ( , ) ,

h t

g t

A t H t x dx=   

 

then differentiation of the integral in 𝐴(𝑡) exists and is given 

by: 

 

( )

( )

( ) ( ) ( )
( , ( )) ( , ( ))

( , )
.

h t

g t

A t dh t dg t
H t h t H t g t

t dt dt

H t x
dx

t


= −




+



 

 

In our previous work [12, 13], we converted the Volterra-

Hammerstein integral Eq. (2) to a second kind integral 

equation defined in the interval [0, 1] by using Taylor series of 

the first order Eq. (3) (This approximation is known as: "𝑓𝑑𝑎" 

the forward difference approximate of 𝐴(𝑡)), we obtained this 

equivalent equation: 

 

( , ) ( ( )) ( ) ( , ) ( ( ))

( , ) ( ( )) ( ),

t

a

t

a

k t x F x dx f t k t t F t

k
t x F x dx f t

t



 



   
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  

 

then, we get a well-posed integral equation (VK2), which is 

given by: 

 
( )

( )

,
( , ) ( )

( ( )) ( ( )) ,  
, ( , )

k t xt

t

a

k t x f t
F t F x dx

k t t k t t
 

 
 

 
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
+ +

+ =  

  0,  and ( , ) 0.k t t →   

(5) 

 

Eq. (5) can be rewritten as follows: 

 

( ) ( ) ( ) ( )
0

,

t

t K t x x dx f t   +  =  (6) 

 

where, 
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( ( ))  if 0.F t   = = →  

 

and 𝜙𝜀(𝑡) = 𝐹−1(𝛷𝜀(𝑡)) = 𝜙(𝑡) if 𝜀 → 0. Substituting 𝑡 = 0 

into Eq. (6) gives the initial condition 𝛷𝜀(0) = 𝛷0. For more 

details, refer to references [11-13]. 

If we use the Taylor series of the first order Eq. (4) (the first 

order backward difference approximation "𝑏𝑑𝑎"  ), and 

Leibnitz rule, we get a well-posed integral equation (VK2), 

which is given by: 
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( )

,
( , )

( ( )) ( ( ))
,

( )
, 0,  and ( , ) 0.
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a
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 (7) 

 

Eq. (7) can be simplified as follows: 
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0

, ,

t
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Now, if we use Eq. (3) and Eq. (4) (the central difference 

approximation "cda") of the flowing form: 

 

( ) ( ) 2 ( ) ( ),    0
1!

A t A t A t O


   + − −  + →  

 

and Leibnitz rule, we get a well-posed integral equation (VK2), 

which is given by:  

 

,

( , )
( ( )) ( ( ))
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2 ( , )
.
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Eq. (8) can be rewritten in the form: 

 

( ) ( ) ( ) ( ) ,,

0

t
t K t x x dx f t

  
 +  =

 

 

where, 
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( , ) ( ) ( )

, ,   
( , ) 2 ( , )

( ( ))  if 0.

k t x f t f t
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F t


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 
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Now, we state the theorem of the existence and uniqueness 

of the solution to Volterra integral equation of the first kind 

[14, 15]: 

 

Theorem [14]: Assume that, 

1) 𝑘(𝑡, 𝑥) and 
𝜕𝑘(𝑡,𝑥)

𝜕𝑡
 are continuos in 0 ≤ 𝑥 ≤ 𝑡 ≤ 𝑇,  

2) 𝑘(𝑡, 𝑡) does not vanish anywhere in 0 ≤ 𝑥 ≤ 𝑡 ≤ 𝑇,  
3) 𝑓(0) = 0,  
4) 𝑓(𝑡) and 𝑓 ′(𝑡) are continuos in 0 ≤ 𝑥 ≤ 𝑡 ≤ 𝑇.  

Then: 

 

0

( , ) ( ) ( ),    0

t

k t x x dx f t x t T =     

 

has a unique continuous solution. This solution is identical 

with the continuous solution of 

 

( )
( ),

, ( ) ( ) ( ).

t

a

k t x
k t x x x dx f t

t


 +  =

  

 

There are different iterative methods available for resolving 

nonlinear Volterra integral equations such as variational 

iteration method, Adomian's decomposition method, and 

homotopy perturbation method [16-18]. In our previous 

research [12], we applied the variational iteration method with 

Taylor series for solving the above ill-posed problem Eq. (2) 

which is equivalent to the well-posed problems Eq. (5), Eq. (7) 

and Eq. (8). Having converted the above integral equation of 

the first kind to the linear Volterra integral equation of the 

second kind, we then can use any numerical method like 

Nyström methods; trapezoidal method, Simpson method, 

modified Simpson method. 

In this section, we shall describe the quadrature or Nyström 

method (Trapezoidal rule and Simpson’s rule….), for the 

approximate solution of linear Volterra integral equations of 

the second kind with continuous kernels.  

The quadrature methods are intended to estimate the 

definite integral of 𝑓(𝑡)  over the interval 𝐼 = [𝑎, 𝑏]  by 

evaluating 𝑓(𝑡) at a finite number of sample points.  

Assume that: 

 

( ) ( ) ( )
1 2 .

n n n

na t t t b=    =  

 

A form of formula: 

 

  ( ) ( )( )
1

,
n

n n

n i i

i

Q f w f t
=

=  

 

with a property that  

 

( )    ,
b

n

a

f t dt Q f E f= +  

 

The term 𝐸[𝑓] is called the truncation error for integration. 

The values {𝑡𝑖
(𝑛)

}
𝑖=1

𝑛

 are called the quadrature nodes and 

{𝑤𝑖
(𝑛)

}
𝑖=1

𝑛

 are called the weights. A sequence 𝑄[𝑓]  of 

quadrature formulas is called convergent if 𝑄𝑛[𝑓] → 𝑄[𝑓], 

𝑛 → ∞ , for all 𝑓 ∈ 𝐶(𝐼) [16]. 

 

Corollary [19] (Trapezoidal rule: Error analysis)  

Suppose that [𝑎, 𝑏]  is subdivided into n subintervals 

[𝑡𝑖 , 𝑡𝑖+1] of width ℎ = (𝑏 − 𝑎)/𝑛. The composite trapezoidal 

rule: 

 

( ) ( ) ( )( ) ( )
1

1

,
2

n

i

i

h
T f h f a f b h f x

−

=

= + +   

 

is an approximation to the integral 

 

( ) ( ) ( ), , .

b

T

a

f x dx T f h E f h= +  

 

Furthermore, if 𝑓 ∈ 𝐶2[𝑎, 𝑏] , there exists a value 𝑐  with 

𝑎 < 𝑐 < 𝑏 so that the error term 𝐸𝑇(𝑓, ℎ) has the form: 

 

( )
( ) ( ) ( )

( )
2 2

2, .
12

T

b a f c h
E f h O h

− −
= =  

 

The linear integral of the second kind can be mathematically 

approximated using any quadrature rule, as shown below: 

 

( ) ( ) ( ) ( )
1

, , , , ,
n

j j j
I

j

k t x x dx w k t x x 
=

  

 

with quadrature points (nodes) {𝑥𝑗}
𝑗=1

𝑛
 contained in 𝐼 and real 

quadrature weights {𝑤𝑗}
𝑗=1

𝑛
.  

 

( ) ( ) ( )
1

, ( ),
n

n j j n j

j

t w k t x x f t 
=

+ =  

 

where 𝜙𝑛(𝑡) is an approximation to 𝜙(𝑡).  

By the numerical integration formulas of Trapezium rule, so 

we get 

 

( ) ( )

( )

1

1 1

2

( , ) 2 ( , )
( ) ( )

2
( , )

j

j j i i

ij j

j J J

k t t t k t t th
t f t

k t t t
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



−

=

 
+ 

= +  
 + 


 

 

We will now apply modified Simpson method and take 

Φ𝜀(𝑡) = Φ(𝑡). Consider let  

 

0 1 2 20 1,j nt t t t=      =  

 

be a step's equidistant subdivision ℎ = 𝑡2𝑗+1 − 𝑡2𝑗  for 𝑗 =

0,  1, … ,  𝑛. The goal is to approximate the solutions of the 

approximation of the second kind equation Eq. (5), Eq. (7) or 

Eq. (8) to the all nodes of 2j indices (at the point 𝑡2𝑗 ), then the 

form of modified Simpson method is: 

 

( ) ( ) ( ) ( )
2 2

2
2 2 1 2 24 ,

3

j

j

t

j j j
t

h
g t dt g t g t g t

+

+ +
 = + +
   
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where the integration error is 𝑂(ℎ) = −2
(ℎ/2)5

90
(𝑔(𝜁))

(4)
. 

This method has been used by Nadir and Rahmoune [20]. 

By using this method can be written the equation Eq. (5), 

Eq. (7) and Eq. (8) of the second kind in the algorithm of the 

following form: 
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1
2 2 2 2 2 1 2 1

2
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+

  

 

We approximate 𝛷2𝑖+1 by 
𝛷2𝑖+𝛷2𝑖+2

2
, the Eq. (5) becomes: 

 

( )

( )

( )

( )

2 2 ,2 1 2 ,2

2 2 ,0 2 ,1 0

12

2 ,2 2 ,2 1 2

0

12

2 ,2 1 2 ,2 2 2 2

0

1 2
3

2
3

2
2

3

2
2 .

3

j j j j j

j j j

j

j i j i i

i

j

j i j i i

i

h
K K

h
f K K

h
K K

h
K K

−

−

+

=

−

+ + +

=

 
 − + 

 

 
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 
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+ + 
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We are able to calculate the approximate solutions 𝛷 of the 

equations Eq. (5), Eq. (7) and Eq. (8) by using recurrence. in 

all points 𝑡2𝑗  for 𝑗 = 0,1, … , 𝑛 . It is evident that the initial 

value of 𝛷  is 𝛷(0) = 𝛷0 = 𝑓𝜀(0). Suppose that 𝐹(𝜙𝜀(𝑡)) is 

invertible. After that, we will be able to set: 

 
1( ( ))F t
−=   

 

3. NUMERICAL EXAMPLES 

 
Our method of conversion for nonlinear ill-posed Volterra 

equations will be demonstrated by discussing examples that 

follow, and we will compare the numerical results between 

three approximate Eqs. (5)-(8). Rather than conducting an 

exhaustive investigation of the numerical properties, the 

objective is to illustrate the viability of the proposed method. 

 

Example 1: [12] 

 

Let be a Volterra -Hammerstein integral equation of the 

form: 

 

2 3

0

(10 6 10 ) log ( ) 9 5 ,     0 1

t

t x x dx t t x t+ − = +     

 

To solve this equation, first we convert it to linear VK2 of 

the second kind (VK2fda, VK2bda and VK2cda, respectively) 

given by: 

 

( ) ( )
2 3

0

9 510 10 6 10
( ) ( )

6 6

t t tt x
t x dx 
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 

+ + +− + +
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0

9 510 10 6 10
( ) ( )

6 6

t t tt x
t x dx 

 

 

− + −− + − +
 +  =

−  

 

( ) ( ) ( ) ( )
2 3 2 3

0

9 5 9 55
( ) ( )

3 12

t t t t t
t x dx 

   



+ + + − − − −
 +  =

 

 

for 𝑡 ∈ [0,1] with 𝛷𝜀(𝑡) = 𝑙𝑜𝑔|𝜙(𝑡)|, the exact solution is: 

 
3( ) .tt e =  

 

Table 1. Comparison of the absolute errors for Example 1 of VK2fda, VK2bda and VK2cda obtained by Taylor approximation 
(𝜀 = 10−4) and Nyström method (𝑛 = 20) 

 
𝒕𝟐𝒋 Simpson Error of VK2fda Error of VK2cda  Error of VK2bda 

0 1.5002e-04  8.3333e-09  1.4998e-04  

0.1 2.0080e-04  9.5217e-09  2.2815e-04  

0.2 2.6877e-04  1.0879e-08  3.4707e-04  

0.3 3.5974e-04  1.2431e-08  5.2797e-04  

0.4 4.8151e-04  1.4204e-08  8.0316e-04  

0.5 6.4450e-04  1.6229e-08  1.2218e-03  

0.6 8.6265e-04  1.8541e-08  1.8586e-03  

0.7 1.1547e-03  2.1188e-08  2.8274e-03  

0.8 1.5455e-03  2.4189e-08  4.3011e-03  

0.9 2.0687e-03  2.7648e-08  6.5430e-03  

1 2.7689e-03  3.1610e-08 9.9534e-03  

𝒕𝟐𝒋 Trapeziodal Error of VK2fda Error of VK2cda  Error of VK2bda 

0 1.5002e-04  8.3333e-09  1.4998e-04  

0.1 6.4960e-04  9.5210e-09  1.2329e-03  

0.2 2.0299e-03  1.0878e-08  3.1277e-03  

0.3 4.3391e-03 1.2428e-08  6.3570e-03  

0.4 8.1256e-03  1.4199e-08  1.1770e-02  

0.5 1.4252e-02  1.6223e-08  2.0743e-02  

0.6 2.4076e-02  1.8533e-08  3.5511e-02  

0.7 3.9728e-02  2.1177e-08  5.9687e-02 

0.8 6.4551e-02 2.4176e-08  9.9128e-02  

0.9 1.0379e-01  2.7631e-08  1.6330e-01  

1 1.6569e-01 3.1588e-08  2.6752e-01 
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Figure 1. Comparison of resultants to Example 1, for n=20 and 𝜀 = 10−4 by Simpson method 

 

Example 2: [8] 

 

Let be a Volterra -Hammerstein integral equation of the 

form: 

 

( )( ) ( )
0

sin
sin 1 cos ( ) sin ,

2

 0 1

t
t t

t x x dx t

x t

− + = +

  

  

 

To solve this equation, first we convert it to linear VK2 of 

the second kind (VK2fda, VK2bda and VK2cda, respectively) 

given by: 
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for 𝑡 ∈ [0,1] with 𝛷𝜀(𝑡) = 𝑐𝑜𝑠(𝜙(𝑡)).
 

The exact solution is: 

 

𝜙(𝑡) = 𝑡. 

 

Table 2. Comparison of the absolute errors for Example 2 of VK2fda, VK2bda and VK2cda obtained by Taylor approximation 
(𝜀 = 10−4) and Nyström method (𝑛 = 20) 

 

𝒕𝟐𝒋  

Simpson 

Error of 

VK2fda 

Error of 

VK2cda  

Error of 

VK2bda 

0 9.9998e-03  5.7735e-05  1.0000e-02  

0.1 5.0009e-04 4.9477e-05  6.0614e-04  

0.2 2.4721e-04  4.6874e-05  3.6699e-04  

0.3 1.6198e-04  4.4267e-05  2.9405e-04  

0.4 1.1847e-04  4.1656e-05  2.6364e-04  

0.5 9.1614e-05 3.9037e-05  2.5100e-04  

0.6 7.3061e-05  3.6406e-05  2.4800e-04  

0.7 5.9226e-05  3.3757e-05  2.5130e-04  

0.8 4.8310e-05  3.1084e-05  2.5938e-04  

0.9 3.9311e-05  2.8379e-05  2.7155e-04  

1 3.1619e-05 2.5632e-05 2.8759e-04 

𝒕𝟐𝒋  

Trapezoidal  

Error of 

VK2fda 

Error of 

VK2cda  

Error of 

VK2bda 

0 9.9998e-03  5.7735e-05  1.0000e-02  

0.1 1.5380e-04  3.9742e-04  1.0217e-03  

0.2 1.0231e-04  3.7812e-04  7.9744e-04  

0.3 1.9265e-04  3.6031e-04  7.4007e-04  

0.4 2.4253e-04  3.4369e-04  7.2760e-04  

0.5 2.7712e-04  3.2815e-04  7.3592e-04  

0.6 3.0495e-04  3.1361e-04  7.5750e-04  

0.7 3.2983e-04  3.0000e-04  7.8963e-04  

0.8 3.5383e-04  2.8727e-04  8.3157e-04  

0.9 3.7829e-04  2.7537e-04  8.8358e-04  

1 4.0420e-04 2.6426e-04 9.4658e-04 
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Figure 2. Comparison of resultants to Example 2, for n=20 and 𝜀 = 10−4 by Simpson method 

 

Example 3: [8] 

 

Let be a Volterra -Hammerstein integral equation of the 

form: 
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To solve this equation, first we convert it to linear VK2 of 

the second kind (VK2fda, VK2bda and VK2cda, respectively) of 

the flowing form: 
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for 𝑡 ∈ [0,1], Φ𝜀(𝑡) = 𝜙2(𝑡).  
The exact solution is: 

 

( ) .tt e =  

 

Table 3. Comparison of the absolute errors for Example 3 of VK2fda, VK2bda and VK2cda obtained by Taylor approximation 
(𝜀 = 10−4) and Nyström method (𝑛 = 20) 

 

𝒕𝟐𝒋  

Simpson 

Error of 

VK2fda 

Error of 

VK2cda 

Error of 

VK2bda  

0 7.5003e-05  5.8333e-09  7.4997e-05  

0.1 4.2112e-05  1.0427e-05  8.6028e-05  

0.2 1.0755e-05  2.0965e-05  9.8212e-05  

0.3 1.9516e-05  3.1712e-05  1.1167e-04  

0.4 4.9126e-05  4.2777e-05  1.2653e-04  

0.5 7.8474e-05  5.4270e-05  1.4295e-04  

0.6 1.0795e-04  6.6307e-05  1.6109e-04  

0.7 1.3792e-04 7.9007e-05  1.8112e-04  

0.8 1.6877e-04  9.2497e-05  2.0326e-04  

0.9 2.0086e-04 1.0691e-04  2.2771e-04  

1 2.3456e-04 1.2240e-04 2.5473e-04 

𝒕𝟐𝒋  

Trapezoid 

Error of 

VK2fda 

Error of 

VK2cda 

Error of 

VK2bda  

0 7.5003e-05  5.8333e-09  7.4997e-05  

0.1 6.1211e-05  1.0428e-05  8.5480e-05  

0.2 4.6312e-05  2.0965e-05  9.7107e-05  

0.3 3.0184e-05  3.1713e-05  1.1000e-04  

0.4 1.2693e-05  4.2777e-05 1.2429e-04 

0.5 6.3098e-06  5.4270e-05  1.4013e-04  

0.6 2.6989e-05  6.6306e-05  1.5768e-04  

0.7 4.9525e-05  7.9005e-05  1.7712e-04 

0.8 7.4118e-05 9.2495e-05  1.9865e-04  

0.9 1.0099e-04  1.0691e-04  2.2249e-04  

1 1.3039e-04 1.2240e-04 2.4889e-04 
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Figure 3. Comparison of resultants to Example 3, for n=20 and 𝜀 = 10−4 by Simpson method

Table 4. Comparison of maximum absolute error of proposed algorithm “cda” for Example 3 

n Trapezoidal Method Modified Simpson Method Absolute Errors [8] 

8 7.6466e-04 6.4495e-04 2.8 e-03 

16 1.9124e-04 1.7592e-04 7.3 e-04 

32 4.7807e-05 4.5869e-05 1.8 e-04 

64 1.1945e-05 1.1701e-05 4.6 e-05 

128 2.9787e-06 2.9482e-06 1.1 e-05 

256 7.3719e-07 7.3340e-07 2.9 e-06 

512 1.7681e-07 1.7635e-07 7.3 e-07 

As expected, Tables 1-3 and Figures 1-3 demonstrate that 

the convergence rate of Nyström methods to "cda" 

approximation equation (if 𝜀 → 0) is much faster and more 

accurate than "fda" and "bda". However, the convergence rate 

of the proposed algorithms is quicker. 

Table 4 above displays the maximum absolute errors for 

various values of n. Furthermore, this final table presents a 

comparison of the absolute mistakes that are produced by the 

method that we propose with the one that is described by 

Inderdeep and Sheo [8] of Example 3. 

The proposed approach has smaller absolute errors than the 

absolute errors presented by Inderdeep and Sheo [8]. This 

shows that proposed method “cda” is more accurate than the 

method presented by Inderdeep and Sheo [8] for (ε=10-4). 

4. CONCLUSIONS

In this paper, we gave an approach technique that uses 

Taylor series and Nyström methods for approximating 

solution of first kind nonlinear Volterra problems, the 

effectiveness of this above technique was tested by utilizing 

three distinct examples. It has been observed that all 

equivalent equations converge and the absolute error is near 

which was proved that numeric results were accepted for all 

types of the first kind Volterra-Hammerstein integral equation. 

Then, the most accurate approximation by Taylor series is the 

central difference approximation "cda". 

In our future project, we will apply the techniques that have 

been proposed to general equations and systems of all ill-posed 

problems. 
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NOMENCLATURE 

VK1 Volterra integral equation of the first kind 

VK2 Volterra integral equation of the second kind 

bda The backward difference approximation 

fda The forward difference approximation 

cda The central difference approximation  

AS The approximate solutions 

Err The absolute errors 

1036




